首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fully automatic co-registration of functional to anatomical brain images using information intrinsic to the scans has been validated in a clinical setting for positron emission tomography (PET), but not for single-photon emission tomography (SPET). In this paper we evaluate technetium-99m hexamethylpropylene amine oxime to magnetic resonance (MR) co-registration for five fully automatic methods. We attached six small fiducial markers, visible in both SPET and MR, to the skin of 13 subjects. No increase in the radius of SPET acquisition was necessary. Distortion of the fiducial marker distribution observed in the SPET and MR studies was characterised by a measure independent of registration and three subjects were excluded on the basis of excessive distortion. The location of each fiducial marker was determined in each modality to sub-pixel precision and the inter-modality distance was averaged over all markers to give a fiducial registration error (FRE). The component of FRE excluding the variability inherent in the validation method was estimated by computing the error transformation between the arrays of MR marker locations and registered SPET marker locations. When applied to the fiducial marker locations this yielded the surface registration error (SRE), and when applied to a representative set of locations within the brain it yielded the intrinsic registration error (IRE). For the best method, mean IRE was 1.2 mm, SRE 1.5 mm and FRE 2.4 mm (with corresponding maxima of 3.3, 4.3 and 5.0 mm). All methods yielded a mean IRE <3 mm. The accuracy of the most accurate fully automatic SPET to MR co-registration was comparable with that published for PET to MR. With high standards of calibration and instrumentation, intra-subject cerebral SPET to MR registration accuracy of <2 mm is attainable.  相似文献   

2.
A method developed for registration of ictal and interictal single-photon emission tomography (SPET), magnetic resonance imaging (MRI) and electroencephalography (EEG) is described. For SPET studies, technetium-99m ethyl cysteinate dimer (ECD) was injected intravenously while the patient was monitored on video-EEG to document the ictal or interictal state. Imaging was performed using a triple-head gamma camera equipped with a transmission imaging device using a gadolinium-153 source. The images (128×128 pixels, voxel size 3.7×3.7×3.6 mm3) were reconstructed using an iterative algorithm and postfiltered with a Wiener filter. The gold-plated silver electrodes on the patient’s scalp were utilized as markers for registration of the ictal and interictal SPET images, as these metallic markers were clearly seen on the transmission images. Fitting of the marker sets was based on a non-iterative least squares method. The interictal SPET image was subtracted from the ictal image after scaling. The T1-weighted MPRAGE MR images with voxel size of 1.0×1.0×1.0 mm3 were obtained with a 1.5-T scanner. For registration of MR and subtraction SPET images, the external marker set of the ictal SPET study was fitted to the surface of the head segmented from MR images. The SPET registration was tested with a phantom experiment. Registration of ictal and interictal SPET in five patient studies resulted in a 2-mm RMS residual of the marker sets. The estimated RMS error of registration in the final result combining locations of the electrodes, subtraction SPET and MR images was 3–5 mm. In conclusion, transmission imaging can be utilized for an accurate and easily implemented registration procedure for ictal and interictal SPET, MRI and EEG. Received 20 September and in revised form 16 October 1999  相似文献   

3.
The fusion of functional positron emission tomography (PET) data with anatomical magnetic resonance (MR) or computed tomography images, using a variety of interactive and automated techniques, is becoming commonplace, with the technique of choice dependent on the specific application. The case of PET-MR image fusion in soft tissue is complicated by a lack of conspicuous anatomical features and deviation from the rigid-body model. Here we compare a point-based external marker technique with an automated mutual information algorithm and discuss the practicality, reliability and accuracy of each when applied to the study of soft tissue sarcoma. Ten subjects with suspected sarcoma in the knee, thigh, groin, flank or back underwent MR and PET scanning after the attachment of nine external fiducial markers. In the assessment of the point-based technique, three error measures were considered: fiducial localisation error (FLE), fiducial registration error (FRE) and target registration error (TRE). FLE, which represents the accuracy with which the fiducial points can be located, is related to the FRE minimised by the registration algorithm. The registration accuracy is best characterised by the TRE, which is the distance between corresponding points in each image space after registration. In the absence of salient features within the target volume, the TRE can be measured at fiducials excluded from the registration process. To assess the mutual information technique, PET data, acquired after physically removing the markers, were reconstructed in a variety of ways and registered with MR. Having applied the transform suggested by the algorithm to the PET scan acquired before the markers were removed, the residual distance between PET and MR marker-pairs could be measured. The manual point-based technique yielded the best results (RMS TRE =8.3 mm, max =22.4 mm, min =1.7 mm), performing better than the automated algorithm (RMS TRE =20.0 mm, max =30.5 mm, min =7.7 mm) when registering filtered back-projection PET images to MR. Image reconstruction with an iterative algorithm or registration of a composite emission-transmission image did not improve the overall accuracy of the registration process. We have demonstrated that, in this application, point-based PET-MR registration using external markers is practical, reliable and accurate to within approximately 5 mm towards the fiducial centroid. The automated algorithm did not perform as reliably or as accurately.  相似文献   

4.
A method developed for registration of ictal and interictal single-photon emission tomography (SPET), magnetic resonance imaging (MRI) and electroencephalography (EEG) is described. For SPET studies, technetium-99m ethyl cysteinate dimer (ECD) was injected intravenously while the patient was monitored on video-EEG to document the ictal or interictal state. Imaging was performed using a triple-head gamma camera equipped with a transmission imaging device using a gadolinium-153 source. The images (128x128 pixels, voxel size 3.7x3.7x3.6 mm3) were reconstructed using an iterative algorithm and postfiltered with a Wiener filter. The gold-plated silver electrodes on the patient's scalp were utilized as markers for registration of the ictal and interictal SPET images, as these metallic markers were clearly seen on the transmission images. Fitting of the marker sets was based on a non-iterative least squares method. The interictal SPET image was subtracted from the ictal image after scaling. The T1-weighted MPRAGE MR images with voxel size of 1.0x1.0x1.0 mm3 were obtained with a 1.5-T scanner. For registration of MR and subtraction SPET images, the external marker set of the ictal SPET study was fitted to the surface of the head segmented from MR images. The SPET registration was tested with a phantom experiment. Registration of ictal and interictal SPET in five patient studies resulted in a 2-mm RMS residual of the marker sets. The estimated RMS error of registration in the final result combining locations of the electrodes, subtraction SPET and MR images was 3-5 mm. In conclusion, transmission imaging can be utilized for an accurate and easily implemented registration procedure for ictal and interictal SPET, MRI and EEG.  相似文献   

5.
We present a system of image co-registration and its validation in phantom and volunteer studies. The system co-registered images via six novel non-invasive and non-radioactive external markers. The fiducial markers were attached with sponge bases on the skin surface of the phantom and the volunteers in a non-collinear and non-coplanar array. The subjects were scanned with a 1.5-T magnetic resonance (MR) imager using 2D spin-echo T1-weighted (SE) and 3D spoiled gradient recalled pulse sequences (SPGR) and with a positron emission tomography (PET) scanner for transmission imaging (TI) and emission imaging (EI). The sponge bases created radiolucent gaps with good contrast between the fiducial markers and skin surface. They made the markers visible with clear edge boundaries on both PET and MR images. The images to be registered were rescaled, interpolated, reformatted and followed by point-to-point registration for coordinate determination and the estimation of geometrical transformation and fiducial registration errors (FREs) via the fiducial markers. The images formed four matched pairs of inter-modality (SE-TI, SPGR-TI, SE-EI and SPGR-EI) and two pairs of intra-modality (SE-SPGR, TI-EI) imaging for direct co-registration. The parameters for direct co-registration of SE-TI and SPRG-TI were subsequently used as a bridge and applied for indirect co-registration of SE with EI (SE-EI(TI)) and SPGR with EI (SPGR-EI(TI)), respectively. The overall FREs of the phantom were, respectively, 1.50 mm for inter-modality and 1.10 mm for intra-modality direct co-registration. Those of volunteers were, respectively, 1.79 mm for inter-modality and 1.21 mm for intra-modality direct co-registration. For indirect co-registration, the overall FREs of the phantom were 2.53 mm (SE-EI(TI)) and 2.28 (SPGR-EI(TI)) mm; those of volunteers were 2.84 mm (SE-EI(TI)) and 2.81 mm (SPGR-EI(TI)). The errors of direct co-registration were smaller than those of indirect co-registration; the errors of phantom studies, MR-EI and SPGR-PET were smaller than those of the volunteer studies, MR-TI and SE-PET, respectively (all P<0.01, paired-difference test). In conclusion, motion artefacts, imaging blurring and spatial resolution of imaging remained the key factors affecting the accuracy of co-registration. High-accuracy indirect co-registration is provided by using non-invasive and non-radioactive external fiducial markers. The errors were less than 3 mm for both phantom and volunteer studies. The system is applicable for imaging co-registration of inter-modality non-dual imaging, inter-modality multi-tracer imaging and intra-modality multiple parameter images in clinical practice.  相似文献   

6.
Peri-ictal single-photon emission tomography (SPET) difference images co-registered to magnetic resonance imaging (MRI) visualize regional cerebral blood flow (rCBF) changes and help localize the epileptogenic area in medically refractory epilepsy. Few reports have examined the reproducibility of SPET difference image results. Epilepsy patients having two peri-ictal and at least one interictal SPET scan who later underwent surgical resection were studied. Localization accuracy of peri-ictal SPET difference images results, interictal electroencephalography (EEG), and ictal EEG from the first (seizure 1) and second (seizure 2) seizure, as well as MRI and positron emission tomography (PET) findings, were compared using surgical resection site as the standard. Thirteen patients underwent surgical resection (11 temporal lobe and 2 extratemporal). SPET results from seizure 1 were localized to the surgical site in 12/13 (92%) patients, while SPET results from seizure 2 were localized in 13/13 (100%) patients. All other modalities were less accurate than the SPET results [interictal EEG – seizure 1 6/13 (46%); ictal EEG – seizure 1 5/13 (38%); interictal intracranial EEG – seizure 2 4/9 (44%); ictal intracranial EEG – seizure 2 results 8/9 (89%); MRI 6/13 (46%); PET 9/13 (69%)].SPET results were reproducible in 12/13 (92%) patients.SPET difference images calculated from two independent peri-ictal scans appear to be reproducible and accurately localize the epileptogenic area. While SPET difference images visualize many areas of rCBF change, the quantification of these results along with consideration of injection time improves the diagnostic interpretation of the results. Received 17 July and in revised form 27 September 1999  相似文献   

7.
A newly designed technique for experimental single-photon emission tomography (SPET) and positron emission tomography (PET) data acquisition with minor disturbing effects from scatter and attenuation has been developed. In principle, the method is based on discrete sampling of the radioactivity distribution in 3D objects by means of equidistant 2D planes. The starting point is a set of digitised 2D sections representing the radioactivity distribution of the 3D object. Having a radioactivity-related grey scale, the 2D images are printed on paper sheets using radioactive ink. The radioactive sheets can be shaped to the outline of the object and stacked into a 3D structure with air or some arbitrary dense material in between. For this work, equidistantly spaced transverse images of a uniform cylindrical phantom and of the digitised Hoffman rCBF phantom were selected and printed out on paper sheets. The uniform radioactivity sheets were imaged on the surface of a low-energy ultra-high-resolution collimator (4 mm full-width at half-maximum) of a three-headed SPET camera. The reproducibility was 0.7% and the uniformity was 1.2%. Each rCBF sheet, containing between 8.3 and 80 MBq of 99mTcO4 depending on size, was first imaged on the collimator and then stacked into a 3D structure with constant 12 mm air spacing between the slices. SPET was performed with the sheets perpendicular to the central axis of the camera. The total weight of the stacked rCBF phantom in air was 63 g, giving a scatter contribution comparable to that of a point source in air. The overall attenuation losses were <20%. A second SPET study was performed with 12-mm polystyrene plates in between the radioactive sheets. With polystyrene plates, the total phantom weight was 2300 g, giving a scatter and attenuation magnitude similar to that of a patient study. With the proposed technique, it is possible to obtain ”ideal” experimental images (essentially built up by primary photons) for comparison with ”real” images degraded by photon scattering and attenuation losses. The method can serve as a tool for experimental validation and intercomparison of attenuation and scatter correction methods. Moreover, the large flexibility of this phantom design will allow investigations of arbitrary activity distributions and autoradiography or other imaging techniques such as PET, x-ray computed tomography or magnetic resonance imaging. Received 8 August and in revised form 21 September 1999  相似文献   

8.
PURPOSE: To validate one possible function of a real-time x-ray/MR (XMR) interface in a hybrid XMR system using x-ray images as "scouts" to prescribe the MR slices. MATERIALS AND METHODS: The registration process consists of two steps: 1) calibration, in which the system's geometric parameters are found from fiducial-based registration; and 2) application, in which the x-ray image of a target structure and the estimated geometric parameters are used to prescribe an MR slice to observe the target structure. Errors from the noise in the location of the fiducial markers, and MR gradient nonlinearity were studied. Computer simulations were used to provide guidelines for fiducial marker placement and tolerable error estimation. A least-squares-based correction method was developed to reduce errors from gradient nonlinearity. RESULTS: In simulations with both sources of errors and the correction for gradient nonlinearity, the use of 16 fiducial markers yielded a mean error of about 0.4 mm over a 7200 cm(3) volume. Phantom scans showed that the prescribed target slice hit most of the target line, and that the length visualized was improved with the least-squares correction. CONCLUSION: The use of 16 fiducial markers to co-register XMR FOVs can offer satisfactory accuracy in both simulations and experiments.  相似文献   

9.
Single-photon emission tomography (SPET), using technetium-99m hexamethylpropylene amine oxime, and positron emission tomography (PET), using oxygen-15 butanol were compared in six healthy male volunteers with regard to the mapping of resting state regional cerebral blood flow (rCBF). A computerized brain atlas was utilized for 3D regional analyses and comparison of 64 selected and normalized volumes of interest (VOIs). The normalized mean rCBF values in SPET, as compared to PET, were higher in most of the Brodmann areas in the frontal and parietal lobes (4.8% and 8.7% respectively). The average differences were small in the temporal (2.3%) and occipital (1.1%) lobes. PET values were clearly higher in small VOIs like the thalamus (12.3%), hippocampus (12.3%) and basal ganglia (9.9%). A resolution phantom study showed that the in-plane SPET/PET system resolution was 11.0/7.5 mm. In conclusion, SPET and PET data demonstrated a fairly good agreement despite the superior spatial resolution of PET. The differences between SPET and PET rCBF are mainly due to physiological and physical factors, the data processing, normalization and co-registration methods. In order to further improve mapping of rCBF with SPET it is imperative not only to improve the spatial resolution but also to apply accurate correction techniques for scatter, attenuation and non-linear extraction. Received 3 August and in revised form 1 October 1997  相似文献   

10.
In this study, respiratory-gated ventilation and perfusion single-photon emission tomography (SPET) were used to define regional functional impairment and to obtain reliable co-registration with computed tomography (CT) images in various lung diseases. Using a triple-headed SPET unit and a physiological synchroniser, gated perfusion SPET was performed in a total of 78 patients with different pulmonary diseases, including metastatic nodules (n=15); in 34 of these patients, it was performed in combination with gated technetium-99m Technegas SPET. Projection data were acquired using 60 stops over 120° for each detector. Gated end-inspiration and ungated images were reconstructed from 1/8 data centered at peak inspiration for each regular respiratory cycle and full respiratory cycle data, respectively. Gated images were registered with tidal inspiration CT images using automated three-dimensional (3D) registration software. Registration mismatch was assessed by measuring 3D distance of the centroid of the nine selected round perfusion-defective nodules. Gated SPET images were completed within 29 min, and increased the number of visible ventilation and perfusion defects by 9.7% and 17.2%, respectively, as compared with ungated images; furthermore, lesion-to-normal lung contrast was significantly higher on gated SPET images. In the nine round perfusion-defective nodules, gated images yielded a significantly better SPET-CT match compared with ungated images (4.9±3.1 mm vs 19.0±9.1 mm, P<0.001). The co-registered SPET-CT images allowed accurate perception of the location and extent of each ventilation/perfusion defect on the underlying CT anatomy, and characterised the pathophysiology of the various diseases. By reducing respiratory motion effects and enhancing perfusion/ventilation defect clarity, gated SPET can provide reliable co-registered images with CT images to accurately characterise regional functional impairment in various lung diseases.  相似文献   

11.
The use of intensity-modulated radiation therapy for treatment of dominant intraprostatic lesions may require integration of functional magnetic resonance (MR) imaging with treatment-planning computed tomography (CT). The purpose of this study was to compare prospectively the landmark and iterative closest point methods for registration of CT and MR images of the prostate gland after placement of fiducial markers. The study was approved by the institutional ethics review board, and informed consent was obtained. CT and MR images were registered by using fiducial gold markers that were inserted into the prostate. Two image registration methods--a commonly available landmark method and dedicated iterative closest point method--were compared. Precision was assessed for a data set of 21 patients by using five operators. Precision of the iterative closest point method (1.1 mm) was significantly better (P < .01) than that of the landmark method (2.0 mm). Furthermore, a method is described by which multimodal MR imaging data are reduced into a single interpreted volume that, after registration, can be incorporated into treatment planning.  相似文献   

12.
Purpose

To determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions.

Materials and Methods

CT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined by measurement of the residual displacement in phantom lesions by two independent observers.

Results

Mean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values.

Conclusion

The accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.

  相似文献   

13.
目的 初步评价MR与正电子发射体层摄影(PET)图像配准和融合技术对Alzhermer病(AD)的诊断价值。方法 12例可能AD患者(53~83岁)和6例正常志愿者(45~71岁)行头颅MRI和PET扫描,两者间隔时间为1~32d,平均(18.2±11.6)d。分别用光盘和磁带机将MR和PET图像数据转移到图像工作站(SGIO2)上,再用统计学参数绘图(statisticalparametricmap,SPM)算法,自动行脑MR图像与PET图像的三维配准与融合。结果 PET所见完全符合AD改变者9例,可符合AD诊断、但需要与其他疾病相鉴别者3例。MRI根据特定脑结构测量作出AD诊断者11例,余1例未见异常改变。AD患者经配准处理的MRI可见内颞叶萎缩改变,PET显示大脑半球颞顶叶葡萄糖代谢减低区呈淡红色,融合图像可见大脑半球颞顶叶为红色代谢减低区。结论 配准图像可准确对比观察PET与MRI的异常改变,精确定位PET显示的病灶;融合图像增加了病灶的对比度。分析MRI与PET的配准与融合图像,全组12例患者均可作出AD的诊断。  相似文献   

14.
Transmission scanning in emission tomography   总被引:6,自引:5,他引:1  
Attenuation correction in single-photon (SPET) and positron emission (PET) tomography is now accepted as a vital component for the production of artefact-free, quantitative data. The most accurate attenuation correction methods are based on measured transmission scans acquired before, during, or after the emission scan. Alternative methods use segmented images, assumed attenuation coefficients or consistency criteria to compensate for photon attenuation in reconstructed images. This review examines the methods of acquiring transmission scans in both SPET and PET and the manner in which these data are used. While attenuation correction gives an exact correction in PET, as opposed to an approximate one in SPET, the magnitude of the correction factors required in PET is far greater than in SPET. Transmission scans also have a number of other potential applications in emission tomography apart from attenuation correction, such as scatter correction, inter-study spatial co-registration and alignment, and motion detection and correction. The ability to acquire high-quality transmission data in a practical clinical protocol is now an essential part of the practice of nuclear medicine. Received: 19 February 1998 / Accepted: 19 March 1998  相似文献   

15.
Axial and sagittal magnetic resonance (MR) sections and contiguous sections of axial positron emission tomographic (PET) images obtained with fludeoxyglucose F-18 were used to evaluate a new method of registering three-dimensional images of the brain. The users specified the interhemispheric fissure plane in three dimensions for both the MR and PET data sets by specifying its endpoints within several axial sections. A transformation matrix aligning the interhemispheric fissure plane in MR and PET space was calculated and used to create one resectioned PET image on the resectioned PET image, and the user specified the remaining translations and rotation by moving the overlaid outline of the MR image. MR and PET data sets in four subjects were registered. The three-dimensional error on average was less than 3.8 mm and never exceeded 7.5 mm. Less than 1 hour per patient was required for registration. The method is accurate unless the interhemispheric fissure deviates significantly from a planar configuration. It does not need thin or contiguous MR sections and provides an estimate of the total registration error for every case.  相似文献   

16.
Iodine-123 labelled epidepride is a novel radiopharmaceutical for the study of cerebral dopamine D2 receptors using single-photon emission tomography (SPET). A lipophilic labelled metabolite of [123I]epidepride which may enter the brain and hamper the quantitation of receptors has been observed in human plasma. In the present study, gradient high-performance liquid chromatography (HPLC) was used to investigate the plasma concentration of the lipophilic labelled metabolite and its correlation to SPET imaging of striatal dopamine D2 receptors. A linear regression fit showed a negative correlation between the amount of the lipophilic labelled metabolite and the striatum to cerebellum ratio (n=16, R=–0.58, P<0.02), suggesting that plasma metabolite analysis is essential when imaging dopamine D2 receptors with SPET using [123I]epidepride. Received 6 September and in revised form 21 October 1999  相似文献   

17.
In emission tomography, the spread of regional tracer uptake to surrounding areas caused by limited spatial resolution of the tomograph must be taken into account when quantitating activity concentrations in vivo. Assuming linearity and stationarity, the relationship between imaged activity concentration and true activity concentration is only dependent on the geometric relationship between the limited spatial resolution of the tomograph in all three dimensions and the three-dimensional size and shape of the object. In particular it is independent of the type of object studied. This concept is characterized by the term ”recovery coefficient”. Recovery effects can be corrected for by recovery coefficients determined in a calibration measurement for lesions of simple geometrical shape. This method works on anatomical structures that can be approximated to simple geometrical objects. The aim of this study was to investigate whether recovery correction of appropriate structures is feasible in a clinical setting. Measurements were done on a positron emission tomography (PET) scanner in the 2D and 3D acquisition mode and on an analogue and digital single-photon emission tomography (SPET) system using commercially available software for image reconstruction and correction of absorption and scatter effects. The results of hot spot and cold spot phantom measurements were compared to validate the assumed conditions of linearity and stationarity. It can be concluded that a recovery correction is feasible for PET scanners down to lesions measuring about 1.5×FWHM in size, whereas with simple correction schemes, which are widely available, an object-independent recovery correction for SPET cannot be performed. This result can be attributed to imperfections in the commercially available methods for attenuation and scatter correction in SPET, which are only approximate. Received 22 June and in revised form 30 September 1999  相似文献   

18.

Purpose:

To present and evaluate a method for registration of whole‐mount prostate digital histology images to ex vivo magnetic resonance (MR) images.

Materials and Methods:

Nine radical prostatectomy specimens were marked with 10 strand‐shaped fiducial markers per specimen, imaged with T1‐ and T2‐weighted 3T MRI protocols, sliced at 4.4‐mm intervals, processed for whole‐mount histology, and the resulting histological sections (3–5 per specimen, 34 in total) were digitized. The correspondence between fiducial markers on histology and MR images yielded an initial registration, which was refined by a local optimization technique, yielding the least‐squares best‐fit affine transformation between corresponding fiducial points on histology and MR images. Accuracy was quantified as the postregistration 3D distance between landmarks (3–7 per section, 184 in total) on histology and MR images, and compared to a previous state‐of‐the‐art registration method.

Results:

The proposed method and previous method had mean (SD) target registration errors of 0.71 (0.38) mm and 1.21 (0.74) mm, respectively, requiring 3 and 11 hours of processing time, respectively.

Conclusion:

The proposed method registers digital histology to prostate MR images, yielding 70% reduced processing time and mean accuracy sufficient to achieve 85% overlap on histology and ex vivo MR images for a 0.2 cc spherical tumor. J. Magn. Reson. Imaging 2012; 36:1402–1412. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The purpose of this study was to assess the value of technetium-99m methoxyisobutylisonitrile (MIBI) single-photon emission tomography (SPET) and an iterative reconstruction algorithm for the preoperative localisation of parathyroid adenomas (PTAs). Seventy-two patients (26 male, 46 female, mean age 58±16 years) with known primary hyperparathyroidism were examined preoperatively. First, a thyroid examination was performed to detect possible MIBI-accumulating thyroid lesions. Planar scans were then acquired 15 and 120 min and tomographic images 120 min after intravenous injection of 740 MBq 99mTc-MIBI, using a triple-head gamma camera (Picker Prism 3000). Additionally, 99mTc-MIBI/ 99mTc-pertechnetate subtraction scintigraphy of the early planar images was performed. The SPET data were evaluated using an iterative reconstruction (multiplicative iterative SPET reconstruction: MISR) as well as a standard algorithm (FBP: filtered back-projection with application of a 3-D low-pass postfilter). The weight of the resected PTAs ranged from 110 mg to 5 g. Using planar MIBI scans, correct localisation of the side of the PTA was possible in 81% of cases (58% for PTAs weighing less than 500 mg). Sensitivity increased to 94% using SPET and FBP, while with MISR it rose further, to 97%. Patients with PTAs weighing less than 500 mg showed a sensitivity of 88% with MISR and 81% with FBP. Furthermore, there was a clear improvement in image quality using MISR. None of the normal parathyroid glands were visualised. This study indicates that, in comparison with planar scintigraphy, 99mTc-MIBI SPET is a more sensitive and specific tool for topographical localisation of PTAs, especially those that are small. There is a further improvement in sensitivity and image quality when iterative reconstruction is used instead of FBP. Received 8 August 1999 and in revised form 20 January 2000  相似文献   

20.
The purpose of this study was to investigate the relationship between technetium-99m hexakis-2-methoxyisobutylisonitrile (99mTc-MIBI) accumulation in tumours and response to radiotherapy in non-small cell lung cancer patients in comparison with the findings obtained using thallium-201 chloride (201Tl).Simultaneous dual single-photon emission tomography (SPET) imaging with 600 MBq 99mTc-MIBI and 111 MBq 201Tl was performed in 31 patients with biopsy- or sputum cytology-proven lung cancer. SPET images were acquired 15 min (early) and 2 h (delayed) after injection, and the early ratio, delayed ratio and retention index were measured. The tumours were classified into two groups on the basis of follow-up computed tomography (CT): responders (at least 50% reduction in tumour size) and non-responders (little or no change in tumour size).The mean (± SD) values of early ratio, delayed ratio and retention index using 99mTc-MIBI SPET were 3.0±1.1, 2.7±1.0 and –9.5±12.7, respectively, in responders and 2.4±0.7, 2.0±0.5 and –18.4±9.0, respectively, in non-responders. The corresponding values using 201Tl chloride SPET were 3.7±1.0, 4.7±1.5 and 24.2±22.1 in responders and 3.3±1.2, 4.0±1.3 and 20.4±20.5 in non-responders. Using 99mTc-MIBI, the delayed ratio and retention index in responders were significantly higher than those in non-responders (P<0.01 and P<0.05, respectively). The results of this study indicate that patients with higher delayed ratio and retention index values using 99mTc-MIBI SPET are likely to respond better to radiotherapy than those with lower values. 99mTc-MIBI SPET may give an indication of the short-term response to radiotherapy in patients with non-small cell lung cancer. Received 1 November 1999 and in revised form 8 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号