首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rothmund–Thomson fibroblasts had replicative lifespans and growth rates within the range for normal fibroblasts; however, they show elevated levels of the stress-associated p38 MAP kinase, suggestive of stress during growth. Treatment with the p38 MAP kinase inhibitor SB203580 increased both lifespan and growth rate, as did reduction of oxidative stress using low oxygen in some strains. At replicative senescence p53, p21WAF1 and p16INK4A levels were elevated, and abrogation of p53 using shRNA knockdown allowed the cells to bypass senescence. Ectopic expression of human telomerase allowed Rothmund–Thomson fibroblasts to bypass senescence. However, activated p38 was still present, and continuous growth for some telomerised clones required either a reduction in oxidative stress or SB203580 treatment. Overall, the evidence suggests that replicative senescence in Rothmund–Thomson cells resembles normal senescence in that it is telomere driven and p53 dependent. However, the lack of RECQL4 leads to enhanced levels of stress during cell growth that may lead to moderate levels of stress-induced premature senescence. As replicative senescence is believed to underlie human ageing, a moderate level of stress-induced premature senescence and p38 activity may play a role in the relatively mild ageing phenotype seen in Rothmund–Thomson.

Electronic supplementary material

The online version of this article (doi:10.1007/s11357-012-9476-9) contains supplementary material, which is available to authorized users.  相似文献   

2.
Davis T  Kipling D 《Biogerontology》2005,6(6):371-385
Studies on telomere and telomerase biology are fundamental to the understanding of human ageing and age-related diseases such as cancer. However, human studies of whole body ageing are hampered by the lack of suitable fully reflective animal model systems, the wild-type mouse model being unsuitable due to differences in telomere biology. Here we summarise recent data on the biology of telomeres, telomerase, and the tumour suppressor protein p53 in various animals, and examine their possible roles in replicative senescence, ageing, and tumourigenesis. The advantages and disadvantages of various animals as model systems for whole body ageing in humans are discussed.  相似文献   

3.
Eukaryotic chromosomes terminate with long stretches of short, guanine-rich repeats. These repeats are added de novo by a specialized enzyme, telomerase. In humans telomeres shorten during differentiation, presumably due to the absence of telomerase activity in somatic cells. This phenomenon forms the basis for several models of telomere role in cellular senescence. Barley (Hordeum vulgare L.) telomeres consist of thousands of TTTAGGG repeats, closely resembling other higher eukaryotes. In vivo differentiation and aging resulted in reduction of terminal restriction fragment length paralleled by a decrease of telomere repeat number. Dedifferentiation in callus culture resulted in an increase of the terminal restriction fragment length and in the number of telomere repeats. Long-term callus cultures had very long telomeres. Absolute telomere lengths were genotype dependent, but the relative changes due to differentiation, dedifferentiation, and long-term callus culture were consistent among genotypes. A model is presented to describe the potential role of the telomere length in regulation of a cell's mitotic activity and senescence.  相似文献   

4.
Telomere shortening and telomerase activation in human somatic cells have been implicated in cell immortalization and cellular senescence. To further study the role of telomerase in immortalization, we assayed telomere length and telomerase activity in primary mouse fibroblasts, in spontaneously immortalized cell clones, and in mouse tissues. In the primary cell cultures, telomere length decreased with increased cell doublings and telomerase activity was not detected. In contrast, in spontaneously immortalized clones, telomeres were maintained at a stable length and telomerase activity was present. To determine if telomere shortening occurs in vivo, we assayed for telomerase and telomere length in tissues from mice of different ages. Telomere length was similar among different tissues within a newborn mouse, whereas telomere length differed between tissues in an adult mouse. These findings suggest that there is tissue-specific regulation of mouse telomerase during development and aging in vivo. In contrast to human tissues, most mouse tissues had active telomerase. The presence of telomerase in these tissues may reflect the ease of immortalization of primary mouse cells relative to human cells in culture.  相似文献   

5.
Werner's syndrome (WS) is a valuable model of accelerated ageing and results from mutations in a recQ helicase (wrn). WS fibroblasts show a mutator phenotype, replication fork stalling, increased rates of mean telomeric loss and accelerated cellular senescence. Senescence has been proposed as a candidate mechanism for the ageing of mitotic tissue. However, some mitotic tissues (such as the immune system) seem unaffected in WS. Is this evidence against a role for cell senescence in ageing? Two experiments resolve this paradox (i) the demonstration that the abbreviated replicative lifespan of WS fibroblasts can be corrected by the ectopic expression of telomerase and (ii) the demonstration that T cells derived from WS patients have the mutator phenotype characteristic of the disease but show no reduction in replicative potential. Since T cells can upregulate telomerase naturally these findings are consistent with a model in which the only wrn-mediated deletions that have a significant effect on replicative lifespan are those at or near the telomere. These data are thus supportive of a role for senescence in the ageing of the immune system. Emerging data on divisional counting mechanisms have the potential to produce many other apparent WS "paradoxes". Accordingly, we propose a general model for the phenotypic presentation of WS, which includes a modification of the Olovnikov model of telomere erosion. Somewhat unexpectedly, this predicts that accelerated senescence should not be observed in all telomerase-negative WS cell types.  相似文献   

6.
Historically, the findings from cellular lifespan studies have greatly affected aging research. The discovery of replicative senescence by Hayflick developed into research on telomeres and telomerase, while stress-induced senescence became known as a telomere-independent event. Senescence-inducing signals comprise several tumor suppressors or cell cycle inhibitors, e.g., p53, cyclin-dependent kinase inhibitor p16 Ink4a and others. Stress-induced senescence serves as a physiological barrier to oncogenesis in vivo, while it activates senescence-associated secretary phenotype, inducing chronic inflammation. Thus, beside telomere length, p16, p53 and inflammatory cytokines have been utilized as biomarkers for cellular senescence. Telomere lengths in human leukocytes correlate well with events of aging-related lifestyle diseases, indicating the importance of cellular senescence in organismal aging. As such, the development of senescence research will have significant future clinical applications, e.g., senolysis. Geriatr Gerontol Int 2021; 21: 125–130 .  相似文献   

7.
Acquisition of an immortal phenotype by circumvention of the normal senescence program can be an important step in tumor development and progression. The regulation of life-span checkpoints is complex and abrogation of these processes can occur at different levels. To better understand these mechanisms in long-term cultured lymphocytes we have characterized two human long-term cultured IL-2-dependent T cell lines regarding telomere length, telomerase activity, and the expression of selected cell cycle regulators (pRb, p53, cyclin E, cyclin D1, cyclin D2, cyclin D3, cdk4, p16(INK4a), p21(WAF1), p27(KIP1), c-myc, bcl-2, and NPAT). We compared these cell lines with a primary T lymphoblast population with a limited life span from the same donor. Both T cell lines with extraordinary growth capacity showed telomere length stabilization, high telomerase activity and demonstrated wild-type pattern of pRb and p53 but strong p16(INK4a) protein expression. The growth inhibitory activity of p16(INK4a) seemed to be abrogated by enhanced expression of cyclin D2, cdk4, and c-myc in one T cell line and overexpression of cyclin E in the second T cell line.  相似文献   

8.
Nuclear reprogramming requires the removal of epigenetic modifications imposed on the chromatin during cellular differentiation and division. The mammalian oocyte can reverse these alterations to a state of totipotency, allowing the production of viable cloned offspring from somatic cell nuclei. To determine whether nuclear reprogramming is complete in cloned animals, we assessed the telomerase activity and telomere length status in cloned embryos, fetuses, and newborn offspring derived from somatic cell nuclear transfer. In this report, we show that telomerase activity was significantly (P < 0.05) diminished in bovine fibroblast donor cells compared with embryonic stem-like cells, and surprisingly was 16-fold higher in fetal fibroblasts compared with adult fibroblasts (P < 0.05). Cell passaging and culture periods under serum starvation conditions significantly decreased telomerase activity by approximately 30-50% compared with nontreated early passage cells (P < 0.05). Telomere shortening was observed during in vitro culture of bovine fetal fibroblasts and in very late passages of embryonic stem-like cells. Reprogramming of telomerase activity was apparent by the blastocyst stage of postcloning embryonic development, and telomere lengths were longer (15-23 kb) in cloned fetuses and offspring than the relatively short mean terminal restriction fragment lengths (14-18 kb) observed in adult donor cells. Overall, telomere lengths of cloned fetuses and newborn calves ( approximately 20 kb) were not significantly different from those of age-matched control animals (P > 0.05). These results demonstrate that cloned embryos inherit genomic modifications acquired during the donor nuclei's in vivo and in vitro period but are subsequently reversed during development of the cloned animal.  相似文献   

9.
10.
11.
The melanocyte is a neural crest-derived cell that localizes in humans to several organs including the epidermis, eye, inner ear and leptomeninges. In the skin, melanocytes synthesize and transfer melanin pigments to surrounding keratinocytes, leading to skin pigmentation and protection against solar exposure. We have investigated the process of replicative senescence and accompanying irreversible cell cycle arrest, in melanocytes in culture. As was found in other cell types, progressive telomere shortening appears to trigger replicative senescence in normal melanocytes. In addition, senescence is associated with increased binding of the cyclin-dependent kinase inhibitor (CDK-I) p16(INK4a) to CDK4, down-regulation of cyclin E protein levels (and consequent loss of cyclin E/CDK2 activity), underphosphorylation of the retinoblastoma protein RB and subsequent increased levels of E2F4-RB repressive complexes. In contrast to fibroblasts, however, the CDK-Is p21(Waf-1) and p27(Kip-1) are also down-regulated. These changes appear to be important for replicative senescence because they do not occur in melanocytes that overexpress the catalytic subunit of the enzyme telomerase (hTERT), or in melanomas, which are tumors that originate from melanocytes or melanoblasts. In contrast to unmodified melanocytes, hTERT overexpressing (telomerized) melanocytes displayed telomerase activity, stable telomere lengths and an extended replicative life span. However, telomerized melanocytes show changes in cell cycle regulatory proteins, including increased levels of cyclin E, p21(Waf-1) and p27(Kip-1). Cyclin E, p21(Waf-1) and p27(Kip-1) are also elevated in many primary melanomas, whereas p16(INK4a) is mutated or deleted in many invasive and metastatic melanomas. Thus, the molecular mechanisms leading to melanocyte senescence and transformation differ significantly from fibroblasts. This suggests that different cell types may use different strategies to halt the cell cycle in response to telomere attrition and thus prevent replicative immortality.  相似文献   

12.
Although human and rodent telomeres have been studied extensively, very little is known about telomere dynamics in other vertebrates. Moreover, our current dependence on mice as a model for human tumorigenesis and aging poses a problem because human and mouse telomere biology is very different. To explore whether chickens might provide a more useful model, we have examined telomerase activity and telomere length in chicken tissues as well as in primary cell cultures. Although chicken telomeres resemble human telomeres in that they are 8–20 kb in length, the distribution of telomerase activity in chickens resembles what is found in mice. Active enzyme is present in germline tissue as well as in a wide range of somatic tissues. Because chicken cells exhibit extremely low rates of spontaneous immortalization, this finding indicates that constitutive telomerase expression does not necessarily lead to an increased immortalization frequency. Finally, we found that telomerase activity is greatly down-regulated when primary cultures are established from chicken embryos. Although this down-regulation explains the telomere loss and replicative senescence that we observed in fibroblast cultures, it raises questions concerning how relevant studies of senescence in primary cell cultures are to aging in whole animals.  相似文献   

13.
Primitive human hematopoietic cells have low endogenous telomerase activity, yet telomeres are not maintained. In contrast, ectopic telomerase expression in fibroblasts and other cells leads to telomere length maintenance or elongation. It is unclear whether this disparity can be attributed to telomerase level or stems from fundamentally different telomere biology. Here, we show that telomerase overexpression does not prevent proliferation-associated telomere shortening in human hematopoietic cells, pointing to the existence of cell type-specific differences in telomere dynamics. Furthermore, we observed eventual stabilization of telomere length without detectable changes in telomerase activity during establishment of two leukemic cell lines from normal cord blood cells, indicating that additional cooperating events are required for telomere maintenance in immortalized human hematopoietic cells.  相似文献   

14.
Although human atherosclerosis is associated with aging, direct evidence of cellular senescence and the mechanism of senescence in vascular smooth muscle cells (VSMCs) in atherosclerotic plaques is lacking. We examined normal vessels and plaques by histochemistry, Southern blotting, and fluorescence in situ hybridization for telomere signals. VSMCs in fibrous caps expressed markers of senescence (senescence-associated beta-galactosidase [SAbetaG] and the cyclin-dependent kinase inhibitors [cdkis] p16 and p21) not seen in normal vessels. In matched samples from the same individual, plaques demonstrated markedly shorter telomeres than normal vessels. Fibrous cap VSMCs exhibited markedly shorter telomeres compared with normal medial VSMCs. Telomere shortening was closely associated with increasing severity of atherosclerosis. In vitro, plaque VSMCs demonstrated morphological features of senescence, increased SAbetaG expression, reduced proliferation, and premature senescence. VSMC senescence was mediated by changes in cyclins D/E, p16, p21, and pRB, and plaque VSMCs could reenter the cell cycle by hyperphosphorylating pRB. Both plaque and normal VSMCs expressed low levels of telomerase. However, telomerase expression alone rescued plaque VSMC senescence despite short telomeres, normalizing the cdki/pRB changes. In vivo, plaque VSMCs exhibited oxidative DNA damage, suggesting that telomere damage may be induced by oxidant stress. Furthermore, oxidants induced premature senescence in vitro, with accelerated telomere shortening and reduced telomerase activity. We conclude that human atherosclerosis is characterized by senescence of VSMCs, accelerated by oxidative stress-induced DNA damage, inhibition of telomerase and marked telomere shortening. Prevention of cellular senescence may be a novel therapeutic target in atherosclerosis.  相似文献   

15.
According to the 'Hayflick limit', human fetal fibroblasts have a uniform, limited replicative lifespan of about 50 population doublings in cell culture. This concept was extrapolated to diverse cells in the body. It seemed to decrease with the age of the cell donor and, as a form of cell senescence, was thought to underlie the aging process. More discriminating analysis, however, showed that the fibroblasts decayed in a stochastic manner from the time of their explantation, at a rate that increased with the number of population doublings in culture. There was no consistent relation to the age of the donor. Despite the contradictory evidence, the original version of the Hayflick limit retained its general acceptance. Cell senescence was attributed to the absence of telomerase in the fibroblasts, which resulted in shortening of telomeres at each division until they fell below a critical length needed for further division. However, it is well established that stem cells in renewing tissues undergo many more than 50 divisions in a lifetime, without apparent senescence. Contrary to early findings of no telomerase in most tissues, their stem cells retain telomerase and presumably telomere length despite many divisions in vivo. Massive accumulation of lipofuscin granules occurs under stress in long term crowded cultures, but the granules dissipate on subculture or neoplastic transformation. The overall results indicate a critical disjunction between cell senescence in vitro and aging in vivo. By contrast, cell culture has been useful in showing a need for telomere capping in maintaining cell stability and viability. It may also provide information about the biochemical mechanism of lipofuscin production.  相似文献   

16.
Replicative senescence of human diploid fibroblasts (HDFs) or melanocytes is caused by the exhaustion of their proliferative potential. Stress-induced premature senescence (SIPS) occurs after many different sublethal stresses including H(2)O(2), hyperoxia, or tert-butylhydroperoxide. Cells in replicative senescence share common features with cells in SIPS: morphology, senescence-associated beta-galactosidase activity, cell cycle regulation, gene expression and telomere shortening. Telomere shortening is attributed to the accumulation of DNA single-strand breaks induced by oxidative damage. SIPS could be a mechanism of accumulation of senescent-like cells in vivo. Melanocytes exposed to sublethal doses of UVB undergo SIPS. Melanocytes from dark- and light- skinned populations display differences in their cell cycle regulation. Delayed SIPS occurs in melanocytes from light-skinned populations since a reduced association of p16(Ink-4a) with CDK4 and reduced phosphorylation of the retinoblastoma protein are observed. The role of reactive oxygen species in melanocyte SIPS is unclear. Both replicative senescence and SIPS are dependent on two major pathways. One is triggered by DNA damage, telomere damage and/or shortening and involves the activation of the p53 and p21(waf-1) proteins. The second pathway results in the accumulation of p16(Ink-4a) with the MAP kinase signalling pathway as possible intermediate. These data corroborate the thermodynamical theory of ageing, according to which the exposure of cells to sublethal stresses of various natures can trigger SIPS, with possible modulations of this process by bioenergetics.  相似文献   

17.
Constitutive telomerase expression promotes mammary carcinomas in aging mice   总被引:15,自引:0,他引:15  
Telomerase is up-regulated in the vast majority of human cancers and serves to halt the progressive telomere shortening that ultimately blocks would-be cancer cells from achieving a full malignant phenotype. In contrast to humans, the laboratory mouse possesses long telomeres and, even in early generation telomerase-deficient mice, the level of telomere reserve is sufficient to avert telomere-based checkpoint responses and to permit full malignant progression. These features in the mouse provide an opportunity to determine whether enforced high-level telomerase activity can serve functions that extend beyond its ability to sustain telomere length and function. Here, we report the generation and characterization of transgenic mice that express the catalytic subunit of telomerase (mTERT) at high levels in a broad variety of tissues. Expression of mTERT conferred increased telomerase enzymatic activity in several tissues, including mammary gland, splenocytes, and cultured mouse embryonic fibroblasts. In mouse embryonic fibroblasts, mTERT overexpression extended telomere lengths but did not prevent culture-induced replicative arrest, thus reinforcing the view that this phenomenon is not related to occult telomere shortening. Robust telomerase activity, however, was associated with the spontaneous development of mammary intraepithelial neoplasia and invasive mammary carcinomas in a significant proportion of aged females. These data indicate that enforced mTERT expression can promote the development of spontaneous cancers even in the setting of ample telomere reserve.  相似文献   

18.
Telomere shortening is a trigger of cellular senescence. Biliary epithelial cells in damaged small bile ducts in primary biliary cirrhosis (PBC) show senescent features such as the expression of senescence-associated beta-galactosidase and the increased expression of p16(INK4a) and p21(WAF1/Cip1). We investigated whether the telomere shortening is involved in the pathogenesis of biliary cellular senescence in PBC. We analyzed the telomere length of biliary epithelial cells using quantitative fluorescence in situ hybridization in livers taken from the patients with PBC (n = 13) and control livers (n = 13). We also assessed immunohistochemically the prevalence of DNA damage and the expression of p16(INK4a) and p21(WAF1/Cip1). The study showed a significant decrease in telomere length in biliary epithelial cells in the damaged small bile ducts and bile ductules in PBC compared with normal-looking bile ducts and bile ductules in PBC, chronic viral hepatitis, and normal livers (P < 0.01). gammaH2AX-DNA-damage-foci were detected in biliary epithelial cells in damaged small bile ducts and bile ductules in PBC but were absent in biliary epithelial cells in chronic viral hepatitis and normal livers. The expression of p16(INK4a) and p21(WAF1/Cip1) was increased corresponding to telomere shortening and gammaH2AX-DNA-damage-foci in the damaged small bile ducts in PBC. CONCLUSION: Telomere shortening and an accumulation of DNA damage coincide with increased expression of p16(INK4a) and p21(WAF1/Cip1) in the damaged bile ducts, characterize biliary cellular senescence, and may play a role in the following progressive bile duct loss in PBC.  相似文献   

19.
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome in which patients undergo premature ageing and have a predisposition to malignancy. X-linked and autosomal (dominant and recessive) forms of the disease are recognized. The gene responsible for X-linked DC (DKC1) encodes a highly conserved protein called dyskerin that is believed to be essential in ribosome biogenesis and may also be involved in telomerase RNP assembly. Here we show that in X-linked DC, peripheral blood cells have dramatically reduced telomere lengths but normal levels of telomerase activity. We also find that subjects with autosomal DC have significantly shorter telomeres than age-matched normal controls suggesting that both forms of the disease are associated with rapid telomere shortening in hemopoietic stem cells. The further characterization of these genes will not only lead to a better understanding of the biology of DC but may also provide further insights into the maintenance of telomeres and the biology of aplastic anemia, ageing, and cancer.  相似文献   

20.
Telomere maintenance in clinical medicine   总被引:2,自引:0,他引:2  
Telomeres, the ends of linear chromosomes, shorten with each round of DNA replication. Loss of telomeric DNA can lead to senescence, a state in which cells no longer divide, and crisis, which triggers cell death. To prevent these phenomena, cancer and stem cells must maintain their telomeres, for example, by expressing telomerase, an enzyme that can extend telomeres. As our knowledge of telomere maintenance increases, opportunities arise for translating telomere biology into clinical medicine. Areas of current investigation include the development of diagnostic and prognostic markers for cancer; the development of chemotherapeutic agents based on telomerase inhibition, an immune response to telomerase, or telomerase-based gene therapy; and engineering rejuvenated tissues by restoring telomerase expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号