首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are several skin diseases in which the lipid composition in the intercellular matrix of the stratum corneum is different from that of healthy human skin. It has been shown that patients suffering from atopic dermatitis have a reduced ceramide content in the stratum corneum, whereas in the stratum corneum of lamellar ichthyosis patients, the amount of free fatty acids is decreased and the ceramide profile is altered. Both patient groups also show elevated levels of transepidermal water loss indicative of an impaired barrier function. As ceramides and free fatty acids are essential for a proper barrier function, we hypothesized that changes in the composition of these lipids would be reflected in the lipid organization in stratum corneum of atopic dermatitis and lamellar ichthyosis patients. We investigated the lateral lipid packing using electron diffraction and the lamellar organization using freeze fracture electron microscopy. In atopic dermatitis stratum corneum, we found that, in comparison with healthy stratum corneum, the presence of the hexagonal lattice (gel phase) is increased with respect to the orthorhombic packing (crystalline phase). In lamellar ichthyosis stratum corneum, the hexagonal packing was predominantly present, whereas the orthorhombic packing was observed only occasionally. This is in good agreement with studies on stratum corneum lipid models that show that the presence of long-chain free fatty acids is involved in the formation of the orthorhombic packing. The results of this study also suggest that the ceramide composition is important for the lateral lipid packing. Finally, using freeze fracture electron microscopy, changes in the lamellar organization in stratum corneum of both patient groups could be observed.  相似文献   

2.
Skin barrier structure and function: the single gel phase model.   总被引:8,自引:0,他引:8  
A new model for the structure and function of the mammalian skin barrier is postulated. It is proposed that the skin barrier, i.e., the intercellular lipid within the stratum corneum, exists as a single and coherent lamellar gel phase. This membrane structure is stabilized by the very particular lipid composition and lipid chain length distributions of the stratum corneum intercellular space and has virtually no phase boundaries. The intact, i.e., unperturbed, single and coherent lamellar gel phase is proposed to be mainly located at the lower half of stratum corneum. Further up, crystalline segregation and phase separation may occur as a result of the desquamation process. The single gel phase model differs significantly from earlier models in that it predicts that no phase separation, neither between liquid crystalline and gel phases nor between different crystalline phases with hexagonal and orthorhombic chain packing, respectively, is present in the unperturbed barrier structure. The new skin barrier model may explain: (i) the measured water permeability of stratum corneum; (ii) the particular lipid composition of the stratum corneum intercellular space; (iii) the absence of swelling of the stratum corneum intercellular lipid matrix upon hydration; and (iv) the simultaneous presence of hexagonal and orthorhombic hydrocarbon chain packing of the stratum corneum intercellular lipid matrix at physiologic temperatures. Further, the new model is consistent with skin barrier formation according to the membrane folding model of Norlén (2001). This new theoretical model could fully account for the extraordinary barrier capacity of mammalian skin and is hereafter referred to as the single gel phase model.  相似文献   

3.
In several skin diseases, both the lipid composition and organization in the stratum corneum (SC) are altered which contributes to the impaired skin barrier function in patients. One of the approaches for skin barrier repair is treatment with topical formulations to normalize SC lipid composition and organization. Vernix caseosa (VC), a white cheesy cream on the skin during gestational delivery, has shown to enhance skin barrier repair. In this study, we examined how a fatty acid (FA) containing formulation mimicking the lipid composition of VC interacts with the lipid matrix in the SC. The formulation was applied on ex vivo human skin after SC removal. Subsequently, the ex vivo human skin generated SC during culture. The effect of FA containing formulations on the lipid organization and composition in the regenerated SC was analysed by Fourier transform infrared (FTIR) spectroscopy and liquid chromatography mass spectroscopy (LC/MS), respectively. FTIR results demonstrate that the FAs are intercalated in the lipid matrix of the regenerated SC and partition in the same lattice with the endogenous SC lipids, thereby enhancing the fraction of lipids forming an orthorhombic (very dense) packing in the SC. LC/MS data show that the topically applied FAs are elongated before intercalation in the lipid matrix and are thus involved in the lipid biosynthesis in the skin.  相似文献   

4.
The main function of the stratum corneum (SC) is for protection against external aggression. This is described as the barrier function. It mainly depends on the presence of a lipid matrix composed of ceramides, free fatty acids, cholesterol and its derivatives in the intercellular spaces. Previous studies have reported the application of Raman spectroscopy to reveal the organization of SC lipids and the state of their barrier functions. Several spectral features are directly informative about the lateral packing and the conformational order. In this work, in vivo Raman spectroscopy is used to asses the state of the SC lipid content and thus its barrier function, directly on the skin. To study the effect of natural aging on the organization of these lipids, spectra were collected from the internal side of the forearms of twenty volunteers aged from 22 to 64. Multivariate data processing enabled separation of the in vivo spectra according to the volunteers' ages. Spectral signatures show small variations, indicating a slight change in the lateral packing of SC lipids with aging of the skin.  相似文献   

5.
One of the prerequisites for the use of human skin equivalents for scientific and screening purposes is that their barrier function is similar to that of native skin. Using human epidermis reconstructed on de-epidermized dermis we demonstrated that the formation of the stratum corneum (SC) barrier in vitro proceeds similarly as in vivo as judged from the extensive production of lamellar bodies, their complete extrusion at the stratum granulosum/SC interface, and the formation of multiple broad lamellar structures in the intercorneocyte space. The presence of well-ordered lipid lamellar phases was confirmed by small-angle X-ray diffraction. Although the long periodicity lamellar phase was present in both the native and the reconstructed epidermis, the short periodicity lamellar phase was present only in native tissue. In addition, the SC lipids predominantly formed the hexagonal sublattice. Analysis of lipid composition revealed that all SC lipids are synthesized in vitro. Differences in SC lipid organization in reconstructed epidermis may be ascribed to the differences in fatty acid content and profile indicating that further improvement in culture conditions is required for generation of in vitro reconstructed epidermis with stratum barrier properties of the native tissue.  相似文献   

6.
Human skin equivalents (HSEs) mimic human skin closely, but show differences in their stratum corneum (SC) lipid properties. The aim of this study was to determine whether isolation of primary cells, which is needed to generate HSEs, influence the SC lipid properties of HSEs. For this purpose, we expanded explants of intact full thickness human skin and isolated epidermal sheets in vitro. We investigated whether their outgrowths maintain barrier properties of human skin. The results reveal that the outgrowths and human skin have a similar morphology and expression of several differentiation markers, except for an increased expression of keratin 16 and involucrin. The outgrowths show a decreased SC fatty acid content compared with human skin. Additionally, SC lipids of the outgrowths have a predominantly hexagonal packing, whereas human skin has the dense orthorhombic packing. Furthermore, the outgrowths have lipid lamellae with a slightly reduced periodicity compared with human skin. These results demonstrate that the outgrowths do not maintain all properties observed in human skin, indicating that changes in properties of HSEs are not caused by isolation of primary cells, but by culture conditions.  相似文献   

7.
The stratum corneum requires ceramides, cholesterol, and fatty acids to provide the cutaneous permeability barrier. The lipids are organized in intercellular membranes exhibiting short- and long-periodicity lamellar phases. In recent years, the phase behavior of barrier lipid mixtures has been studied in vitro. The relationship of human stratum corneum lipid composition to membrane organization in vivo, however, has not been clearly established. Furthermore, the special function of the different ceramide species in the stratum corneum is largely unknown. We examined lipid organization and composition of stratum corneum sheets from different subtypes of healthy human skin (normal, dry, and aged skin). Lipid organization was investigated using X-ray diffraction and demonstrated that the 4.4 nm peak attributed to the long periodicity phase was frequently missing for skin with a low Cer(EOS)/Cer(total) ratio, indicating an important part for Cer(EOS), which contains omega-hydroxy fatty acid (O) ester-linked to linoleic acid (E) and amide-linked to sphingosine (S). A deficiency in the 4. 4 nm peak was predominantly observed in young dry skin. In one case of aged skin, however, and less often in young normal skin this peak was also missing. Furthermore, the ceramide composition of samples without the 4.4 nm peak showed a deficiency of Cer(EOH), which contains 6-hydroxy-4-sphingenine (H), and an increase in Cer(NS) and Cer(AS), which contain nonhydroxy (N) or alpha-hydroxy fatty acids (A). In addition, a 3.4 nm peak attributed to crystalline cholesterol occurred in most cases of aged and dry skin, but was not observed in young normal skin. Our results do not indicate a definite pattern of correlation between lipid organization and types of human skin. They demonstrate, however, that Cer(EOS) and Cer(EOH) are key elements for the molecular organization of the long periodicity lamellar phase in the human stratum corneum.  相似文献   

8.
To investigate the effects of ultraviolet A (UVA) and B (UVB) on the skin barrier, functional, electron microscopic and lipid biochemical studies were performed on normal and UV-irradiated skin of volunteers. Skin reactivity against primary irritants was evaluated using the alkali resistance test, the dimethylsulfoxide test and the sodium lauryl sulfate test. In all 3 irritation models, UVA- and UVB-irradiated areas were more resistant to damage than normal skin, indicating improvement of the barrier function after UV irradiation. In a second series of experiments, biopsies were taken and processed for electron microscopic evaluation of the stratum corneum. UVB significantly increased the horny cell layers; UVA did not alter the thickness of the stratum corneum. Finally, stratum corneum lipids were extracted in vivo and quantified after high-performance thin-layer chromatography. UVB and, to some extent, UVA exposure increased the amount of all stratum corneum lipids. This was also observed in all major ceramide subfractions.  相似文献   

9.
Current transmission electron microscopy techniques do not permit simultaneous visualization of skin ultrastructure and stratum corneum extracellular lipids. We developed a new procedure, which entails application of high-pressure freezing followed by freeze-substitution with acetone containing uranyl acetate, followed by low temperature embedding in HM20. Electrospray ionization mass spectrometry showed that the amount of lipids lost during preparation was minimal. The ultrastructure of cryoprocessed skin was compared with that of conventionally prepared skin samples. Cryoprocessing, but not conventional processing, enabled visualization of lipid stacks within epidermal lamellar bodies, as well as the extracellular lipid domains of the stratum corneum and the ultrastructure within keratinocytes. Anti-filaggrin immunocytochemistry also showed, e.g., excellent preservation of filaggrin on cryoprocessed samples. Additionally, the cytosol of keratinocytes appeared to be organized in "microdomain"-like areas. Finally, the stratum corneum appeared more compact with smaller intercellular spaces and hence tighter cell-cell interactions, after cryoprocessing, than after conventional tissue preparation for transmission electron microscopy. We conclude here that only cryoprocessing preserves skin in a close to native state.  相似文献   

10.
In the superficial layer of the skin, the stratum corneum (SC), the lipids form two crystalline lamellar phases with periodicities of 6.4 and 13.4 nm (long-periodicity phase). The main lipid classes in SC are ceramides, free fatty acids and cholesterol. Studies with mixtures prepared with isolated ceramides revealed that cholesterol and ceramides are very important for the formation of the lamellar phases, and the presence of ceramide 1 is crucial for the formation of the long-periodicity phase. This observation and the broad-narrow-broad sequence of lipid layers in the 13.4-nm phase led us to propose a molecular model for this phase. This consists of one narrow central lipid layer with fluid domains on both sides of a broad layer with a crystalline structure. This model is referred to as 'the sandwich model'. While the presence of free fatty acids does not substantially affect the lipid lamellar organization, it is crucial for the formation of the orthorhombic sublattice, since the addition of free fatty acids to cholesterol/ceramide mixtures results in transition from a hexagonal to a crystalline lipid phase. Studies examining lipid organization in SC derived from dry or lamellar X-linked ichthyosis skin revealed that in native tissue the role of ceramide 1 and free fatty acids is similar to that observed with mixtures prepared with isolated SC lipids. From this we conclude that the results obtained with lipid mixtures can be used to predict the SC lipid organization in native tissue.  相似文献   

11.
BACKGROUND: The stratum corneum (SC) has an important barrier function. The effect of a mechanical stress applied to the SC is controversial on this important physiological parameter. OBJECTIVES AND METHODS: To assess both in vitro and in vivo the structure and function of human SC submitted to controlled strains, we measured the transepidermal water loss (TEWL), in vivo, on human skin submitted to controlled strains ranging from 0 to 20% extension imposed by a Densi-score device. We also looked at the structure of the SC by means of X-ray diffraction and transmission electron microscopy. RESULTS: Transmission electron microscopy and X-ray diffraction analysis were performed on harvested and stretched human SC. TEWL was not significantly influenced by the relative deformation applied to the skin. At high strain (60%) imposed in vitro to the SC, lipid bilayers and corneosomes were detached from corneocytes. Only rare corneosomes showed internal disruption. X-ray analysis did not reveal modifications in the supramolecular organization of intercellular lipids while stretching the SC. CONCLUSION: Submitting human SC to an extension force up to 20% elongation does not significantly alter the barrier function.  相似文献   

12.
Using electron microscopy, we investigated the effect of (i) a dilute surfactant and of water alone on the ultrastructure of stratum corneum lipids in pig skin exposed in vitro at 46 degrees C, and (ii) of water alone on human skin exposed in vivo at ambient temperature. For pig skin, the surfactant sodium dodecyl sulfate disrupts stratum corneum intercellular lamellar bilayers, leading to bilayer delamination and "roll-up" in a water milieu after 1 h, extensive bilayer disruption after 6 h, and nearly complete dissociation of corneocytes after 24 h. Corneodesmosomes show progressive degradation with exposure time. Water alone also disrupts the stratum corneum, but with a slower onset. Alterations in intercellular lamellar bilayers, but not intercellular lamellar bilayer roll-up, are detected after 2 h. Intercellular lamellar bilayer roll-up occurs after 6 h. Extensive dissociation of corneocytes occurs after 24 h of water exposure. Unlike sodium dodecyl sulfate, water exposure results in the formation of amorphous intercellular lipid. Corneodesmosome degradation parallels intercellular lamellar bilayer disruption; calcium appears to offer some protection. Similar disruption of intercellular lamellar bilayers occurs in human skin in vivo at ambient temperature. Our studies show that water can directly disrupt the barrier lipids and are consistent with surfactant-induced intercellular lamellar bilayer disruption being due at least in part to the deleterious action of water. Intercellular lamellar bilayer disruption by water would be expected to enhance permeability and susceptibility to irritants; accordingly, increased attention should be given to the potential dangers of prolonged water contact. For common in vitro procedures, such as skin permeation studies or isolation of stratum corneum sheets, exposure to water should also be minimized.  相似文献   

13.
To disrupt the barrier function of the skin, different in vivo methods have been established, e.g., by acetone wiping or tape-stripping. In this study, the acetone-induced barrier disruption of hairless mice was investigated in order to establish a reliable model to study beneficial, long-term effects on barrier recovery after topical application. For both treatments (i.e., acetone treatment and tape-stripping) the transepidermal water loss directly after disruption and the subsequent barrier recovery profile were similar. Histological assessment showed significant lower number of corneocyte layers in acetone-treated and tape-stripped skin compared to untreated skin, while there was no statistical difference between the two treatments. Lipid analysis of acetone-treated skin revealed that only small fraction of lipids were extracted consisting of predominantly nonpolar lipids. Importantly, the ratio of the barrier lipids, i.e., cholesterol, free fatty acids and ceramides, remained similar between control and acetone-treated skin. This reflects the undisrupted lipid organization, as determined by small-angle X-ray diffraction measurements: the long-periodicity lamellar phase was still present after acetone treatment. Our results contradict earlier studies which reported no mechanical stratum corneum removal, a substantial extraction of lipids and disruption in lipid organization. In conclusion, our studies demonstrate that barrier disruption due to acetone treatment is mainly due to removal of corneocytes.  相似文献   

14.
Summary We recently developed a pig skin model to determine the role of corneosomes (modified desmosomes in the stratum corneum) and extracellular lipids in desquamation. The present study provides control morphometric data on the morphological changes in desmosomes and corneosomes leading to desquamation in adult pig epidermis in vivo. The extracellular space within desmosomes gradually widened from the basal to the granular layer, and decreased slightly in the stratum corneum. Mid-dense line broadening, and increased electron density of the distal light layers, coincided with membrane-coating granule extrusion in the outer granular layer. Corneocyte attachment correlated with corneosome distribution. Compactum packing was relatively tight and corneosomes were numerous. Cohesion was mainly peripheral in the disjunctum, and corneosomes were restricted to corneocyte edges. Adhesion had a tongue-and-groove appearance with corneosomes riveting corneocyte peripheries into a lipped groove on adjoining cells. Cells shed by peeling radially towards the lipped groove, and corneosomes decreased from lower to upper disjunctum. Corneosome breakdown commenced with an electron lucent band forming between the plug and lipid envelope. The plug was then unzipped from the lipid envelope and degraded. Corneosomes did not form squamosomes.  相似文献   

15.
The stratum corneum, which is the outermost layer of the skin, functions as an important barrier to maintain biological homeostasis. The multilamellar structures formed by intercellular lipids present in the stratum corneum are considered to play an important role in barrier function. Most intercellular lipids are unbound and can be extracted by organic solvents, but some intercellular lipids are covalently bound to cornified envelope proteins. Decreases in unbound lipid levels reduce the barrier function of the stratum corneum, but the relationship between bound lipid and the barrier function of the stratum corneum is not well understood. In this study, we examined the relationship between the amount of covalently bound ceramide, the main bound lipid, and the barrier function of the stratum corneum. A single dose of UVB irradiation (2 x MED), or continuous UVB irradiation (0.5 x MED/day for 14 days) to the back, or feeding with an essential fatty acid-deficient (EFAD) diet for 8 weeks caused a significant elevation of TEWL and a significant reduction in covalently bound ceramides in hairless rats. Transmission electron microscopy revealed that the intercellular multilamellar structures in the stratum corneum of treated rats were incomplete (folding, defects, unclear images) compared to the structures seen in the stratum corneum of non-UVB-irradiated and non-EFAD rats. These results suggest that the amount of covalently bound ceramides is highly correlated with the barrier function of the skin, and that covalently bound ceramides play an important role in the formation of lamellar structures, and are involved in the maintenance of the barrier function of the skin.  相似文献   

16.
The skin barrier is fundamental to terrestrial life and its evolution; it upholds homeostasis and protects against the environment. Skin barrier capacity is controlled by lipids that fill the extracellular space of the skin's surface layer-the stratum corneum. Here we report on the determination of the molecular organization of the skin's lipid matrix in situ, in its near-native state, using a methodological approach combining very high magnification cryo-electron microscopy (EM) of vitreous skin section defocus series, molecular modeling, and EM simulation. The lipids are organized in an arrangement not previously described in a biological system-stacked bilayers of fully extended ceramides (CERs) with cholesterol molecules associated with the CER sphingoid moiety. This arrangement rationalizes the skin's low permeability toward water and toward hydrophilic and lipophilic substances, as well as the skin barrier's robustness toward hydration and dehydration, environmental temperature and pressure changes, stretching, compression, bending, and shearing.  相似文献   

17.
A topical acetone/diethylether (A/E) lipid extraction method was evaluated for its suitability for use in the study of stratum corneum lipids in various skin disorders. Its efficiency was compared in vitro with topical chloroform/methanol (C/M) extraction and with the classical integral C/M extraction (submerged tissue) of stratum corneum or whole epidermis. To estimate the depth of lipid removal by A/E extraction, light microscopic and freeze-fracture electron microscopic studies were carried out on A/E and C/M topically treated skin samples. The in vivo experiments consisted of topical A/E extraction and of classical C/M extraction of scrapings of the stratum corneum. Transepidermal water loss (TEWL) was measured before and after topical A/E extraction and after every scraping procedure, and correlated with TEWL values found after stripping of the stratum corneum. The total amount of lipid found with both topical extraction procedures was lower than that found with the integral extraction of the stratum corneum. Light microscopy showed that topical C/M extraction induced cell damage in the living epidermal cell layers. Great interindividual variation in overall lipid composition was shown in the in vitro experiments irrespective of the extraction protocol used. However, the ceramide (CER) profiles in a single skin sample from the same subject were similar irrespective of the protocol used, and a uniformity in the CER profiles was found in skin samples from different subjects. Similar results were obtained with in vivo topical A/E extractions: marked interindividual variation was seen in overall lipid composition, but not in the CER profile. Furthermore, the CER profiles found using the A/E extraction procedure both in vivo and in vitro were similar. The CER profiles were also found to be identical throughout the stratum corneum, as revealed by scraping experiments. Since the CER profiles are though to play a major role in the stratum corneum barrier function, the non-invasive A/E extraction of epidermal lipids seems to be suitable for clinical application.  相似文献   

18.
Water permeation of reaggregated stratum corneum with model lipids   总被引:2,自引:0,他引:2  
Corneocytes were prepared from stratum corneum after extraction of the lipids and then were reaggregated with model lipids to form a membrane. The transport of water through the membrane was found to be similar to earlier published values for reaggregated stratum corneum formed with the indigenous lipids. Similar values were also obtained when only partially saponified free fatty acids were present as lipids. These results support an earlier hypothesis, that the lipid barrier to water penetration of the stratum corneum is determined by the structural organization of the lipids, not by the exact chemical structure of individual species.  相似文献   

19.
In the studies described in this study, we introduce a novel ex vivo human skin barrier repair model. To develop this, we removed the upper layer of the skin, the stratum corneum (SC) by a reproducible cyanoacrylate stripping technique. After stripping the explants, they were cultured in vitro to allow the regeneration of the SC. We selected two culture temperatures 32°C and 37°C and a period of either 4 or 8 days. After 8 days of culture, the explant generated SC at a similar thickness compared to native human SC. At 37°C, the early and late epidermal differentiation programmes were executed comparably to native human skin with the exception of the barrier protein involucrin. At 32°C, early differentiation was delayed, but the terminal differentiation proteins were expressed as in stripped explants cultured at 37°C. Regarding the barrier properties, the SC lateral lipid organization was mainly hexagonal in the regenerated SC, whereas the lipids in native human SC adopt a more dense orthorhombic organization. In addition, the ceramide levels were higher in the cultured explants at 32°C and 37°C than in native human SC. In conclusion, we selected the stripped ex vivo skin model cultured at 37°C as a candidate model to study skin barrier repair because epidermal and SC characteristics mimic more closely the native human skin than the ex vivo skin model cultured at 32°C. Potentially, this model can be used for testing formulations for skin barrier repair.  相似文献   

20.
The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non‐continuous matrix, providing a better understanding of the limited barrier function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号