首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In functional experiments, we have investigated the effect exerted by neurotransmitters released from capsaicin-sensitive primary afferent nerve terminals in the isolated guinea-pig common bile duct. In resting preparations, capsaicin (0.1 microM) produced a quick contraction (45.1+/-4% of KCl 80mM) which was abolished by either atropine (1 microM) or tetrodotoxin (0.5 microM). The tachykinin receptor-selective antagonists GR 82334 (NK1 receptor-selective; 3 microM), MEN 11420 (NK2 receptor-selective; 1 microM) and SR 142801 (NK3 receptor-selective; 0.1 microM) administered separately failed to reduce the capsaicin-evoked contraction, whereas any combination of the three antagonists was effective: GR 82334 plus MEN 11420, 36+/-7% reduction; GR 82334 plus SR 142801, 48+/-4% reduction; MEN 11420 plus SR 142801, 55+/-3% reduction; GR 82334 plus MEN 11420 plus SR 142801, 57+/-5% reduction. Neither the CGRP1 receptor antagonist h-CGRP (8-37) (1.5 microM) nor the P2X purinoceptor antagonist PPADS (50 microM) affected the contractile response to capsaicin. The effect of capsaicin (0.1 microM) was abolished by pretreatment with capsaicin itself (10 microM for 15 min). Human calcitonin gene-related peptide (h-CGRP; 0.1 microM) mimicked the effect of capsaicin on resting preparations (contractile response =28% of KCl 80 mM). In preparations precontracted with a submaximal concentration of KCl (24 mM), and in the presence of atropine (1 microM), GR 82334 (3 microM) and MEN 11420 (3 microM), capsaicin (1 microM) produced a tetrodotoxin-insensitive long-lasting relaxation (45+/-3% reduction of tone, at 4min from administration), which was unaffected by the nitric oxide (NO) synthase inhibitor, L-NOARG (100 microM). h-CGRP (10-50 nM) produced a similar sustained relaxation of precontracted preparations (59+/-4% reduction of tone). h-CGRP (8-37) (1.5 microM) almost completely reversed the relaxations produced by both capsaicin and h-CGRP. Application of electrical field stimulation (EFS: trains of stimuli of 10Hz; 0.25ms pulse width; supramaximal voltage; for 60s) to precontracted preparations produced a sustained, tetrodotoxin (1 microM)-sensitive relaxation (32+/-4% reduction of tone). L-NOARG (100 microM) greatly reduced (69+/-5% inhibition) the EFS-elicited relaxation. A complete reversal of the relaxant response to EFS into a contraction was obtained by administering L-NOARG to preparations in which a functional blockade of capsaicin-sensitive primary afferent neurons had been achieved by incubating the tissue with capsaicin (10 microM) for 15 min. At immunohistochemistry, tachykinin- and CGRP-immunoreactivities (TK-IR/CGRP-IR) were detected in varicose nerve fibers throughout the common bile duct, while TK-IR cell bodies were observed in the terminal portion (ampulla) only. In vivo pretreatment with capsaicin (50 mg/kg; 6-7 days before) decreased the number of CGRP-IR nerves, whereas the TK-IR neural network was apparently unchanged. In conclusion, our data provide functional evidence for the presence of capsaicin-sensitive primary afferent nerve endings in the guinea-pig terminal biliary tract, whose stimulation by capsaicin or EFS produces the release of tachykinins and CGRP. In addition, morphological evidence is provided that the bulk of TK-IR material in the biliary tract is contained in intrinsic neuronal elements, while CGRP in this tissue is of extrinsic origin only. Tachykinins, probably released in small amounts by capsaicin, act by activating receptors of the NK1, NK2 and NK3 type, most probably located on intrinsic cholinergic neurons, which in turn release ACh to produce the final excitatory motor response. The contractile response to capsaicin obtained in the presence of the three tachykinin receptor antagonists could be due to the co-released CGRP and/or to other unknown neurotransmitters. CGRP produces either indirect excitatory or direct inhibitory responses by stimulation of CGRP2 and CGRP1 receptors, respectively.  相似文献   

2.
Bronchodilatation by tachykinins and capsaicin in the mouse main bronchus.   总被引:5,自引:2,他引:3  
1. The effect of sensory neuropeptides and capsaicin on basal and stimulated tone of mouse bronchial smooth muscle has been evaluated. 2. In basal conditions neither sensory neuropeptides (substance P, neurokinin A or calcitonin gene-related peptide (CGRP) nor capsaicin exerted any contractile effects. However, when a tonic contraction was induced with carbachol (1 microM) a prompt relaxation was induced by substance P (1- 100 nM) and by neurokinin A (1- 100 nM), with substance P being more potent. A second application of substance P was without effect. CGRP (10 nM) produced only a very small and erratic relaxation. Relaxation was also induced by capsaicin (1 microM), and this response could be evoked only once in each preparation. In 4 out of 6 preparations a cross-desensitization between substance P and capsaicin was observed. 3. The selective NK1 tachykinin agonist, [Pro9]-SP sulphone (1 microM), exerted potent bronchodilator actions on carbachol-contracted mouse bronchial preparations. In contrast, neither [beta Ala8]-NKA (4-10) nor [MePhe7]-NKB (both at a concentration of 1 microM), selective synthetic agonists for NK2 and NK3 receptors, exerted significant relaxant effects. Furthermore, the selective NK1 tachykinin antagonist, (+/-)-CP 96,345 (1 microM), abolished substance P (1 nM)- but not isoprenaline (0.1 microM)-induced relaxations. 4. Application of electrical field stimulation (EFS) (20 Hz, supramaximal voltage, 0.5 ms for 10 s) to carbachol-contracted preparations evoked a transient contraction followed by a relaxation. The tetrodotoxin-sensitive slow component of this relaxation was reduced following capsaicin desensitization. 5. In the presence of indomethacin (5 microM) the relaxation induced by substance P, capsaicin or EFS was suppressed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Piperine (1 microM), a congener of capsaicin, produced an initial contraction blocked the capsaicin-sensitive contractile response to mesenteric nerve stimulation and inhibited the twitch response induced by field stimulation in the isolated guinea-pig ileum. These three effects of piperine (1 microM) were rapidly desensitized and significantly antagonized by ruthenium red (0.5-1 microM), an inorganic dye known to antagonize the effects of capsaicin. The contractile effect of piperine was abolished by application of tetrodotoxin plus desensitization with substance P or by extrinsic denervation. The inhibitory effect of piperine (1 microM) on the twitch response was antagonized by desensitization with calcitonin gene-related peptide (CGRP). Moreover, cross-tachyphylaxis between piperine and capsaicin was observed, suggesting that a similar mechanism may be involved in the effects of these agents. The contractile effects induced by piperine (10 microM) and the subsequent inhibitory effects on the twitch response were not desensitized and largely persisted after extrinsic denervation. The contractile effects of piperine (10 microM) were not strongly inhibited by tetrodotoxin plus desensitization with substance P. It was concluded that the lower concentration of piperine caused contraction and inhibited the twitch responses by releasing substance P and CGRP, respectively, from sensory nerves, and blocked the response to mesenteric nerve stimulation by a mechanism similar to that of capsaicin. At higher concentrations, piperine had non-specific direct actions on the smooth muscle.  相似文献   

4.
Cardiotonic effects of evodiamine and rutaecarpine, constituents of the fruits of Evodia rutaecarpa Bentham Rutaceae, were evaluated on guinea pig isolated atria. Comparison with capsaicin, a vanilloid receptor agonist, revealed similar positive inotropic and chronotropic activity, as judged from antagonistic effects of the competitive vanilloid receptor (capsaicin receptor) antagonist capsazepine, the non-competitive vanilloid receptor antagonist ruthenium red, the calcitonin gene related peptide antagonist CGRP(8-37), the P2X purinoceptor antagonist PPADS, and various desensitization studies. Evodiamine and rutaecarpine produced transient positive inotropic and chronotropic effects on the guinea-pig isolated atria, followed by a desensitizing effect to additional administration. Dose-response relationships for evodiamine, rutaecarpine and capsaicin were obtained. All the compounds evoked positive inotropic and chronotropic effects in a concentration-dependent manner. Maximal contractions for evodiamine, rutaecarpine and capsaicin were observed at concentrations of 1 microM, 3 microM and 0.3 microM, respectively. The cardiotonic responses evoked by both evodiamine and rutaecarpine were shifted to the right by capsazepine, an established antagonist of vanilloid receptor (capsaicin-receptor). The effects of both evodiamine (1 microM) and rutaecarpine (3 microM) were abolished by pretreatment with a desensitizing dosage of capsaicin (1 microM), developing cross-tachyphylaxis between these compounds. The effects of evodiamine (1 microM), rutaecarpine (3 microM) and capsaicin (0.3 microM) were also significantly reduced by pretreatment with ruthenium red (10 microM) and CGRP (8-37) (10 microM). The effects of evodiamine, rutaecarpine and capsaicin were not affected by pretreatment with PPADS (100 microM), a highly selective P2X purinoceptor antagonist, and the possibility of the involvement of the P2X purinoceptor was excluded. These results suggest that the positive inotropic and chronotropic effects on the guinea-pig isolated right atria induced by both evodiamine and rutaecarpine could be attributed to their interaction with vanilloid receptors and the resultant release of CGRP, a cardiotonic neurotransmitter, from capsaicin-sensitive nerves as with capsaicin.  相似文献   

5.
Vascular effects of capsaicin in isolated perfused rat mesenteric bed   总被引:3,自引:0,他引:3  
The effects of intra- and extraluminal capsaicin administration were evaluated in isolated perfused rat mesenteric bed. Capsaicin (10 nM-1 microM) produced a potent concentration-dependent relaxation of the tonic vasoconstriction induced by norepinephrine (1 microM) but not by high-K+ (60 mM). The capsaicin-induced relaxation was nearly abolished in preparations pretreated in vitro with a high concentration of capsaicin (1 microM, for 10 min, 1 h before). Capsaicin-induced relaxation was reduced but not abolished in preparations obtained from rats pretreated neonatally with capsaicin. The capsaicin effects were unaffected by atropine, guanethidine, propranolol, hexamethonium or tetrodotoxin. The observation that capsaicin (0.1 microM)-induced relaxation was virtually abolished in presence of the proteolytic enzyme alpha-chymotrypsin (1 U/ml) supports the involvement of neuropeptide(s) in this response. Bolus injections of calcitonin gene-related peptide (CGRP) elicited a potent and rapidly ensuing relaxation which underwent tachyphylaxis. However, no cross-desensitization with capsaicin was observed. It is concluded that activation of capsaicin-sensitive sensory fibers could release neuropeptides locally with a potent effect on intestinal blood flow.  相似文献   

6.
In the present study, the vasodilator actions of methanandamide and capsaicin in the rat isolated mesenteric arterial bed and small mesenteric arterial segments were investigated. Methanandamide elicited concentration-dependent relaxations of preconstricted mesenteric arterial beds (pEC(50)=6.0+/-0.1, E(max)=87+/-3%) and arterial segments (pEC(50)=6.4+/-0.1, E(max)=93+/-3%). In arterial beds, in vitro capsaicin pre-treatment blocked vasorelaxation to 1 and 3 microM methanandamide, and reduced to 12+/-7% vasorelaxation to 10 microM methanandamide. Methanandamide failed to relax arterial segments pre-treated in vitro with capsaicin. In arterial beds from rats treated as neonates with capsaicin to cause destruction of primary afferent nerves, methanandamide at 1 and 3 microM did not evoke vasorelaxation, and relaxation at 10 microM methanandamide was reduced to 26+/-4%. Ruthenium red (0.1 microM), an inhibitor of vanilloid responses, attenuated vasorelaxation to methanandamide in arterial beds (pEC(50)=5.6+/-0.1, E(max)=89+/-1%). Ruthenium red at 1 microM abolished the response to 1 microM methanandamide, and greatly attenuated relaxation at 3 and 10 microM methanandamide in arterial beds. In arterial segments, ruthenium red (0.15 microM) blocked vasorelaxation to methanandamide, but not to CGRP. In arterial segments, the vanilloid receptor antagonist capsazepine (1 microM) inhibited, and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8 - 37) (3 microM) abolished, methanandamide-induced relaxations. CGRP(8 - 37), but not capsazepine, attenuated significantly relaxation to exogenous CGRP. These data show that capsaicin and ruthenium red attenuate vasorelaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments. In addition, CGRP(8 - 37) and capsazepine antagonize responses to methanandamide in mesenteric arterial segments. In conclusion, vanilloid receptors on capsaicin-sensitive sensory nerves play an important role in the vasorelaxant action of methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments.  相似文献   

7.
In the presence of ouabain (1 mM), acetylcholine and KCl (5 mM) evoked endothelium-independent relaxations in rat hepatic arteries. Treatment with capsaicin (10 microM), scopolamine (1 microM) or CGRP(8 - 37) (3 microM) prevented these relaxations. Acetylcholine-induced relaxations in intact arterial segments in the presence of indomethacin (10 microM) and N(G)-nitro-L-arginine (0.3 mM) were only partially inhibited by ouabain plus BaCl(2) (30 microM). However, ouabain plus BaCl(2) almost abolished such relaxations in capsaicin-pre-treated preparations. In arteries without endothelium, the neurosecretagogue alpha-latrotoxin (1 nM) induced complete relaxations, which were abolished by CGRP(8 - 37) or pre-treatment with capsaicin. alpha-Latrotoxin also induced a smooth muscle hyperpolarization (12+/-2 mV), which was abolished by CGRP(8 - 37). The ability of ouabain to disclose a CGRP-mediated neurogenic relaxation must be considered when this agent is used as a pharmacological tool. The results further suggest that CGRP is a nerve-derived hyperpolarizing factor in the rat hepatic artery.  相似文献   

8.
The contracting or inhibitory effects of pollen-extract components, diamines and derivatives of feruloylputrescine (FP) were investigated on the isolated bladder or urethral smooth muscles of mice. Among the nine diamines (NH2.(CH2)n.NH2, n = 2-10) tested, five of them with shorter carbon chains (n = 2-6) (0.1-30.0 mM) only slightly contracted the bladder strips and to some extent inhibited the noradrenaline (NA, 1.77 microM)-induced contraction of urethral strips. 1,5-Diaminopentane (C5), a component of the pollen-extract, inhibited most effectively the NA-induced contraction of urethral strips with an IC50 value of 2.3 mM (95% confidence limit: 2.0-2.6 mM). FP, also a component of the pollen-extract, inhibited the NA-induced contraction of urethral strips in a non-competitive manner, producing 32.5 +/- 5.5% (N = 5) inhibition at 378 microM. Among the derivatives of FP, feruloylcadaverine inhibited urethral contraction most potently, producing 46.3 +/- 7.1% (N = 5) inhibition at 359 microM. These derivatives had no effect on bladder contraction. In contrast, four diamines with longer carbon chains (n = 7-10) contracted the bladder strips (3-30 mM) and potentiated the NA-induced contraction of urethral strips (10 microM-3 mM). Thus, the components of the pollen-extract, FP and C5, potently inhibited urethral contraction, which may facilitate the discharge of urine in vivo.  相似文献   

9.
Yang WM  Liu JK  Qing C  Liu YD  Ding ZH  Shen ZQ  Chen ZH 《Planta medica》2003,69(8):715-719
The contraction and desensitization induced by albaconol and the influence of capsazepine, capsaicin and extracellular Ca2+ were investigated to see whether the actions were mediated via a specific VR receptor in guinea pig trachea spiral strips in vitro. Both albaconol and capsaicin were contractors of tracheal smooth muscle, but albaconol was not so potent as capsaicin, with -log (M) EC50 values of 4.23 +/- 0.18 (n = 10) and 7.33 +/- 0.21 (n = 10) respectively. 2.5 microM capsazepine competitively antagonized the contractile response to albaconol and capsaicin. Albaconol increased the contraction induced by a low dose of capsaicin (10(-10) to 10(-9) M), but non-competitively antagonized the contraction induced by a high dose of capsaicin (10(-8) to 10(-3) M). Either albaconol (1 or 100 mM) or capsaicin (3 or 10 microM) was able to desensitize the isolated guinea pig bronchi to subsequent addition of albaconol. Capsazepine (5.0 microM) significantly prevented the desensitization induced by either albaconol (1 or 100mM) or capsaicin (3 or 10 microM). Extracellular Ca2+ was essential for albaconol to induce excitation, but it did not affect albaconol- or capsaicin-induced desensitization. In summary, the results from the present study suggest that albaconol induces contraction and desensitization of guinea pig trachea in vitro as a partial agonist for VR.  相似文献   

10.
In this study we have characterized the role of sensory fibers and of the sensory peptides, neurokinin A (NKA) and calcitonin gene-related peptide (CGRP), on the contractile responses evoked by single pulse electrical field stimulation (EFS) in the hamster urinary bladder. EFS of the hamster isolated urinary bladder produced twitch contractions which were unaffected by atropine but abolished by tetrodotoxin. The P2 purinoreceptor antagonist PPADS (30 microM) inhibited twitches by 66+/-4% on its own and by 78+/-3% in the presence of atropine. The selective tachykinin NK2 receptor antagonist nepadutant produced a slight but consistent reduction of twitch amplitude (-21+/-3%) at 1 microM. Addition of nepadutant to atropine and PPADS did not further increase their inhibitory effect. The application of hCGRP (10-300 nM) produced a concentration-dependent inhibition of twitches (Emax -38+/-3%, EC50=12 nM) and a small reduction of tone (0.5+/-0.09 mN). Similar effects were obtained with capsaicin (0.1-10 microM) which inhibited EFS-evoked contractions with an EC50 of 100.0 nM and a maximal effect of 34+/-4% inhibition at 1 microM. Under submaximal parameters of stimulation NKA (10 nM) increased the amplitude of twitches by 45+/-6% and produced a concentration-dependent tonic contraction (EC50=55.9 nM). The CGRP1 receptor subtype antagonist, hCGRP(8-37), increased by 29+/-8% the EFS-evoked contractions and significantly reduced the response to 0.1 microM CGRP. Capsaicin (10 microM) increased both CGRP-LI and NKA-LI release from superfused slices of hamster urinary bladder by about sixfold and by about 70%, over baseline, respectively. A second application of capsaicin was ineffective, indicating a complete desensitization of sensory nerve efferent function. In the hamster urinary bladder the sensory neuropeptides NKA and CGRP are co-released by sensory fibers after stimulation either by EFS or capsaicin. However, the role of CGRP appears functionally predominant.  相似文献   

11.
1. The effect of histamine and histamine H1- and H2-receptor agonists on isolated myometrium strips of premenopausal women has been examined. The effect of acetylcholine was also determined. 2. Histamine, 2-pyridylethylamine, 4-methylhistamine and acetylcholine, but not dimaprit, produced a concentration-related contractile response in human isolated myometrial strips. Histamine also produced a further contraction in human isolated myometrial strips precontracted with KCl (55 mM). 3. The contractile response to histamine was antagonized by the histamine H1-receptor antagonist, clemizole (0.1 microM) but was potentiated by the histamine H2-receptor antagonist, ranitidine (10 microM). Clemizole (0.1 nM to 10 nM) competitively antagonized the contractile effect of 2-pyridylethylamine (- log KB = 10.5 +/- 0.5). The concentration-response curve for acetylcholine was displaced to the right by atropine 0.1 microM. 4. Atropine (0.1 microM), propranolol (0.1 microM), prazosin (0.1 microM) and indomethacin (1 microM) failed to modify the contractile response to histamine. 5. In human isolated myometrial strips precontracted with KCl (55 mM), clemizole at 1 microM completely abolished the contractile response to histamine and revealed a concentration-dependent relaxation. Dimaprit alone and 4-methylhistamine (in the presence of clemizole), produced concentration-related relaxation with a magnitude similar to that in response to histamine. The relaxant response to dimaprit was antagonized by ranitidine. 6. It is concluded that human isolated uterine strips possess histamine H1- and H2-receptors: the former mediating contraction and the latter relaxation. The predominant response to histamine in this tissue is contraction.  相似文献   

12.
The relaxant effect of capsaicin (300 nM) has been studied on mucosa-free circular strips of the human sigmoid colon in vitro. The response of precontracted preparations to capsaicin (sub-maximal relaxation) was reduced by over 50% by the nitric oxide synthase inhibitor N(G)-nitro- L-arginine (L-NOARG; 20 microM or 100 microM) or by the guanylate cyclase inhibitor 1 H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), but not by tetrodotoxin (1 microM) or the P(2) purinoceptor antagonist pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid (PPADS; 50 microM). L-NOARG or ODQ caused moderate contraction of the circular muscle, indicating a tonic "nitrergic" control. Anandamide (1-100 microM), an endogenous cannabinoid and capsaicin VR(1) receptor stimulant, failed to either mimic or modify the response to capsaicin (300 nM).It is proposed that capsaicin causes the release of smooth muscle relaxant substance(s) from afferent nerve endings in the gut wall, in a tetrodotoxin-resistant manner. Nitric oxide (possibly released from capsaicin-sensitive afferents) plays an important role in the capsaicin-evoked response. No evidence has been found for an involvement of PPADS-sensitive P(2) purinoceptors in the response to capsaicin or for a stimulation or inhibition of capsaicin-sensitive receptors by anandamide in the human sigmoid colon.  相似文献   

13.
Mechanisms underlying acetylcholine-induced endothelium-independent vasodilation were studied in the rat mesenteric vascular bed isolated from Wistar rats. In preparations without endothelium, and contracted by perfusion with Krebs solution containing methoxamine (2-7 microM), perfusion of acetylcholine (1-100 microM) for 1 min produced a concentration-dependent vasodilation. Denervation of denuded preparations by cold storage (4 degrees C for 72 h) abolished the acetylcholine-induced vasodilation; 10 and 100 nM atropine abolished 1 and 10 microM acetylcholine-induced vasodilation, but it inhibited only 20% of vasodilation by 100 microM acetylcholine. The acetylcholine-induced atropine-resistant vasodilation was inhibited by 10 and 100 microM hexamethonium, 5 microM guanethidine, 50 microM bretylium, in vitro 6-hydroxydopamine (2 mM for 20 min, twice), 1 microM capsaicin and 0.5 microM calcitonin gene-related peptide (CGRP)-(8-37) (CGRP receptor antagonist). These findings suggest that the acetylcholine-induced endothelium-independent nicotinic vasodilation requires the presence of intact adrenergic nerves, and is mediated by endogenous CGRP released from CGRP-containing nerves.  相似文献   

14.
1. The effects of high K+ ion concentration on the isometric tension in dilator muscle strips of the rat and porcine iris were examined. A high K+ solution, prepared by the replacement of Na+ in the medium with equimolar K+, was applied in the presence of 1 microM phentolamine, 1 microM propranolol and 1 or 10 microM atropine. High K+ (greater than 20 mM) induced a biphasic response; an initial phasic contraction followed by relaxation rather than tonic contraction. 2. An additional application of a Ca2+ antagonist, 1 microM nifedipine or nicardipine, almost completely blocked the K(+)-induced initial contraction and enhanced the following relaxation. The effect of K+ under these conditions was concentration-dependent in the range 20 to 80 mM. The maximum amplitude of the atropine-resistant relaxation induced by high K+ corresponds to 50-75% of that produced by acetylcholine in the absence of atropine. A similar K(+)-induced relaxation was observed in the porcine iris dilator. 3. The atropine-resistant relaxation in the rat iris dilator was not affected by pretreatment with 10 microM ouabain. The relaxation induced by 40 or 80 mM K+ in the porcine dilator was slightly enhanced or not affected, respectively, in the presence of 1 microM ouabain. Application of 10 microM ouabain per se induced relaxation in the porcine iris dilator. 4. The low Na+ ion concentration present in high K+ solutions was not responsible for the K(+)-induced relaxation since the complete replacement of Na in the medium with Tris did not affect significantly the relaxation produced by high K(+)-containing solutions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. The airway and pulmonary vascular effects of adrenomedullin were studied in the guinea-pig isolated trachea, main bronchi and pulmonary artery in vitro and compared to the effects of calcitonin gene-related peptide (CGRP). 2. In tracheal rings, CGRP (1 nM to 1 microM) potentiated the cholinergic contractions induced by electrical field stimulation (EFS) at 5 Hz in a concentration-dependent manner. At a concentration of 1 microM, CGRP slightly decreased the responses to log EFS frequency, producing 50% of the maximum contraction from a control value of 0.77 +/- 0.10 Hz to 0.54 +/- 0.05 Hz without a significant effect on the concentration-response curves to acetylcholine (ACh). In contrast, adrenomedullin (1 nM to 1 microM) did not alter either EFS-induced cholinergic or ACh-induced contractions. 3. In bronchial strips, CGRP (1 nM to 1 microM) slightly reduced both the non-adrenergic non-cholinergic (NANC) contraction induced by EFS at 10 Hz and the substance P (1 microM)-induced contraction in a concentration-dependent manner, whereas adrenomedullin (1 nM to 1 microM) was without effect. 4. Neither CGRP (1 microM) nor adrenomedullin (1 microM) altered NANC relaxation induced by EFS at 5 Hz in tracheal rings precontracted with histamine (10 microM). 5. Adrenomedullin (1 nM to 1 microM) and CGRP (1 nM to 1 microM) induced a concentration-dependent relaxation of the histamine (10 microM)- and prostaglandin F2 alpha (10 microM)-precontracted pulmonary arterial rings with intact endothelium with a similar potency. 6. Neither removal of the endothelium nor NG-nitro-L-arginine methyl ester (100 microM) altered the vasorelaxant effects of adrenomedullin (1 nM to 1 microM) and CGRP (1 nM to 1 microM). 7. The putative CGRP receptor antagonist, CGRP8-37 (1 microM to 10 microM) concentration-dependently attenuated the CGRP (3 nM to 30 nM)-induced vasorelaxant actions, whereas it had no effect on the relaxation of vessel rings induced by adrenomedullin (3 nM to 30 nM). 8. These results suggest that adrenomedullin is a potent vasodilator of the pulmonary artery without any bronchomotor effect in the guinea-pig lung, and that the vasorelaxant actions of adrenomedullin are not mediated via the activation of CGRP1 receptors.  相似文献   

16.
1. The effects of pinacidil were investigated on changes in cellular Ca2+ concentration ([Ca2+]i) and tension in intact and chemically skinned smooth muscle strips of the rabbit mesenteric artery. 2. High K+ (128 mM) produced a large phasic followed by a tonic increase in [Ca2+]i and tension in intact muscle strips. Pinacidil at 10 microM but not 1 microM, inhibited the phasic and tonic contractions induced by 128 mM K+ without a corresponding change in [Ca2+]i. 3. In beta-escin-treated skinned smooth muscle, the minimum Ca2+ concentration that produced contraction was 0.1 microM and the maximum contraction was obtained at 10 microM. Pinacidil at 10 microM but not 1 microM, shifted the pCa-tension relation curve to the right and also inhibited the maximum contraction induced by Ca2+. The concentrations of Ca2+ required for half maximal tension were 0.9 microM in control and 1.5 microM in the presence of 10 microM pinacidil. Calmodulin (2 microM) increased the contraction induced by 0.3 microM Ca2+ (but not by 10 microM Ca2+) in the skinned strips. Pinacidil (10 microM) inhibited the contraction induced by 0.3 microM or 10 microM Ca2+ in the presence of 2 microM calmodulin. 4. Noradrenaline (NA, 10 microM) with guanosine triphosphate (GTP, 3 microM), guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S, 3 microM) or 12-O-tetradecanoylphorbol-13-acetate (TPA, 0.1 microM) all enhanced the contraction induced by 0.3 microM Ca2+. Pinacidil (10 microM) inhibited the contraction induced by 0.3 microM Ca2+ more strongly in the presence of the above agents than in their absence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. Bradykinin (1 nm-1 microM) produced a contraction of bladder strips excised from the dome of the guinea-pig urinary bladder, an effect which was greatly enhanced by removal of the mucosal layer or by thiorphan (10 microM). All subsequent experiments were performed in mucosa-free strips and in the presence of thiorphan. 2. In carbachol (5 microM)-contracted strips, bradykinin produced a concentration (1 nm-1 microM)-dependent transient relaxation. 3. Kallidin was slightly more potent than bradykinin in producing a contraction and a relaxation of the carbachol-induced tone. By contrast, [des-Arg9]-bradykinin, a selective B1 receptor agonist was barely effective up to 1 microM. 4. The contractile response to bradykinin was: (a) unaffected by either tetrodotoxin (1 microM), in vitro capsaicin desensitization (10 microM for 30 min) or apamin (0.1 microM); (b) antagonized by indomethacin (5 microM), the prostaglandin receptor antagonist SC-19220 (100 microM) or the B2 receptor antagonist [D-Arg0, Hyp3, Thi5,8, Phe7]-bradykinin (10 micron) and (c) almost abolished by nifedipine (1 microM). 5. The antagonism of the contractile response to bradykinin produced by indomethacin and SC-19220 was non-additive while that produced by indomethacin and the B2 receptor antagonist was additive. 6. The relaxant response to bradykinin was unaffected by tetrodotoxin, in vitro capsaicin desensitization or indomethacin but antagonized in a competitive manner by the B2 receptor antagonist. Further, this response was abolished by apamin (0.1 microM) but unaffected by glibenclamide (1 microM). 7. Bradykinin (10 microM) produced a consistent release of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) but not substance P-LI from the guinea-pig bladder muscle. CGRP-LI release by bradykinin was greatly reduced in bladders exposed to indomethacin. [des-Arg9]-bradykinin (10 microM) was ineffective. 8. We conclude that: (a) bradykinin-induced contraction involves activation of both B2 receptors and prostanoid synthesis, via distinct mechanisms which act by inducing calcium influx via nifedipine-sensitive channels; (b) bradykinin-induced relaxation involves activation of B2 receptors and opening of apamin-sensitive potassium channels; (c) bradykinin stimulates sensory nerves in this tissue largely via prostanoid production.  相似文献   

18.
1. Isolated left atria from reserpine-pretreated guinea-pigs, electrically driven (3 Hz) in the presence of atropine (1 microM), phentolamine (0.3 microM) and propranolol (1 microM), responded to a train of stimuli (10 Hz for 2.5s) with a delayed neurogenic positive inotropic response which was insensitive to hexamethonium (10 microM) but abolished by either tetrodotoxin (1 microM), omega-conotoxin (0.1 microM), in vitro capsaicin desensitization or desensitization to calcitonin gene-related peptide (CGRP). 2. In these experimental conditions, gamma-aminobutyric acid (GABA) produced a concentration-related (10 microM-1 mM) positive inotropic response similar to that produced by electrical field stimulation. The effect of GABA was competitively antagonized by bicuculline methiodide (10 microM), a GABAA receptor antagonist. 3. The selective GABAA receptor agonists, muscimol and homotaurine mimicked the positive inotropic effect of GABA while baclofen, the selective GABAB receptor agonist, did not. 4. The action of GABA (1 mM) was abolished by either tetrodotoxin (1 microM), omega-conotoxin (0.1 microM), in vitro capsaicin desensitization or desensitization to CGRP, while it was unaffected by hexamethonium. In contrast, the inotropic response to CGRP was unaffected by tetrodotoxin, omega-conotoxin, bicuculline methiodide, hexamethonium or in vitro capsaicin desensitization, but was abolished by CGRP desensitization. 5. In the spontaneously beating guinea-pig right atrium, GABA (1 microM) produced a small and transient positive chronotropic effect that was no longer observed after in vitro desensitization with capsaicin (1 microM). 6. In the guinea-pig isolated perfused heart from reserpine-pretreated animals (with atropine, phentolamine and propranolol in the perfusion medium), GABA (1 microM) produced a transient tachycardia and a small increase in coronary flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Electrical field stimulation (EFS, 2.5 Hz, 60 V, 1 ms, trains of 5 sec every 5 min) of the rat external urethral sphincter (EUS) produced contractile responses characterized by a "slow" tonic contraction on which was superimposed a series of phasic "twitch-like" contractions. Both responses were abolished by tetrodotoxin (0.6 microM), and their amplitude was significantly lower in samples taken from denervated (15 days before) sphincters. The tonic contraction showed duration, voltage, and frequency dependency, whereas the twitches were markedly duration dependent. No correlation was found between the amplitude of the tonic and that of the twitch-like contractions. Phentolamine (3 microM) reduced by 95% the amplitude of the tonic contraction produced by maximal parameters, whereas it did not affect the twitches. On the other hand, hexamethonium (10 microM) was ineffective on both components. Dantrolene (10 microM) inhibited the twitch response, whereas it did not influence the tonic component. Preincubation with d-tubocurarine (0.2 mM) or succinylcholine (2 mM) significantly inhibited the amplitude of twitches produced by EFS (0.1 Hz, 60 V) up to a duration of 50 microseconds. Stimulus width higher than 50 microseconds, resulted in twitches that were resistant to neuromuscular blocking agents but sensitive to dantrolene (10 microM). Our results indicate that the rat external urethral sphincter is a reliable and easy "in vitro" model for studying the activity of drugs capable of interfering with the nerve-mediated activity of the striated and smooth muscle portion of the urinary bladder outlet.  相似文献   

20.
1. The effect of calcitonin gene-related peptide (CGRP) on airway smooth muscle is controversial. The aim of this study was to determine whether the action of CGRP on tracheal strips of guinea-pigs is modulated by epithelium and whether this peptide-induced action involves other mediators including nitric oxide (NO) and endothelin (ET)-1. 2. CGRP produced a weak dose-dependent increase in guinea-pig tracheal tension in vitro (-logEC50 = 8.5 +/- 0.1, maximum contraction = 8.3 +/- 1.2% of 50 mM KCl-induced contraction, n = 6). In epithelium-depleted preparations, CGRP (10(-7) M)-induced contraction was significantly potentiated from 9.0 +/- 1.9% to 41.1 +/- 6.0% (n = 6). 3. L-NG-nitro-arginine methyl ester (L-NAME, 10(-4) M), which inhibits NO synthesis, enhanced the contractile response to CGRP from 9.0 +/- 1.9% to 31.2 +/- 1.1% (n = 6). Indomethacin (10(-5) M) also enhanced the response to CGRP, although the effect was weak (13.4 +/- 3.2%, n = 6). 4. Anti-ET-1 serum changed the CGRP-induced contraction into a relaxation. After incubation of the trachea with ET-1 (10(-7) M) to attenuate ET-1-induced responses, the CGRP-induced contraction also changed into a relaxation. BQ-123 (an ETA receptor antagonist) and BQ-788 (an ETB receptor antagonist) caused the same conversion of the CGRP response, from contraction to relaxation, although the relaxing effect elicited by BQ-788 was more potent than that by BQ-123. Maximum inhibitory responses were -31.0 +/- 3.3% and -13.0 +/- 2.3% of 50 mM KCl-induced contraction, respectively (n = 6). 5. In primary culture, guinea-pig tracheal epithelial cells released ET-1, and CGRP (10(-5) M) significantly increased the release of ET-1. 6. These data suggest that the action of CGRP is modulated by airway epithelium and this mechanism involves the release of NO and ET-1. Especially, the majority of contractile action elicited by CGRP consists of an action of ET-1 via the predominant ETB receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号