首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules which associate with cadherins to form adherens junctions (AJs) in epithelial cells and fibroblasts. Nectin-1 and -3 are members of the nectin family which most strongly trans-interact, causing cell-cell adhesion. The trans-interaction between nectin-1 and -3 induces the activation of both Cdc42 and Rac small G proteins in epithelial cells. We studied the roles of Cdc42 and Rac activated in this way in L fibroblasts stably expressing both nectin-1 and E-cadherin (nectin-1-EL cells). RESULTS: The trans-interaction between nectin-1 and -3 induced the activation of Cdc42 and Rac in nectin-1-EL cells. Cdc42, and presumably Rac, activated in this way, induced the activation of c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK). Cdc42 or Rac was not essential for the association of nectin-1 and E-cadherin to form AJs. Reorganization of the actin cytoskeleton was not required for the association of nectin-1 and E-cadherin. CONCLUSION: These results indicate that Cdc42 and Rac activated by the trans-interaction of nectins selectively induce the activation of JNK, but are not essential for the association of nectins and cadherin to form AJs in fibroblasts.  相似文献   

2.
Rho GTPases, Cdc42 and Rac1, play pivotal roles in cell migration by efficiently integrating cell-substrate adhesion and actin polymerization. Although it has been suggested that integrins stimulate these Rho GTPases via some of integrin binding proteins such as focal adhesion kinase (FAK) and paxillin, the precise molecular mechanism is largely unknown. In this study, we showed that the over-expression of RP1 corresponding to the first CH domain (CH1) of affixin, an integrin-linked kinase (ILK)-binding protein, induced a significant actin reorganization in MDCK cells by activating Cdc42/Rac1. Affixin full length and RP1 co-immunoprecipitated with alphaPIX, a Cdc42/Rac1-specific guanine nucleotide exchanging factor (GEF), and they co-localized at the tips of lamellipodia in motile cells. The involvement of alphaPIX in the RP1-induced Cdc42 activation was demonstrated by the significant dominant negative effect of a point mutant of alphaPIX, alphaPIX (L383R, L384S), lacking GEF activity. Our data strongly support that ILK and affixin provide a novel signalling pathway that links integrin signalling to Cdc42/Rac1 activation.  相似文献   

3.
BACKGROUND: Intermediate filament (IF) is one of the three major cytoskeletal filaments. Vimentin is the most widely expressed IF protein component. The Rho family of small GTPases, such as Cdc42, Rac and Rho, are thought to control the organization of actin filaments as well as other cytoskeletal filaments. RESULTS: We determined if the vimentin filaments can be regulated by p21-activated kinase (PAK), one of targets downstream of Cdc42 or Rac. In vitro analyses revealed that vimentin served as an excellent substrate for PAK. This phosphorylated vimentin lost the potential to form 10 nm filaments. We identified Ser25, Ser38, Ser50, Ser65 and Ser72 in the amino-terminal head domain as the major phosphorylation sites on vimentin for PAK. The ectopic expression of constitutively active PAK in COS-7 cells induced vimentin phosphorylation. Fibre bundles or granulates of vimentin were frequent in these transfected cells. However, the kinase-inactive mutant induced neither vimentin phosphorylation nor filament reorganization. CONCLUSION: Our observations suggest that PAK may regulate the reorganization of vimentin filaments through direct vimentin phosphorylation.  相似文献   

4.
BACKGROUND: Invadopodia are membrane protrusions into the extracellular matrix by aggressive tumour cells. These structures are associated with sites of matrix degradation and invasiveness of malignant tumour cells in an in vitro fibronectin degradation/invasion assay. The Rho family small G proteins, consisting of the Rho, Rac and Cdc42 subfamilies, are implicated in various cell functions, such as cell shape change, adhesion, and motility, through reorganization of the actin cytoskeleton. We studied the roles of the Rho family small G proteins in invadopodia formation. RESULTS: We first demonstrated that invadopodia of RPMI7951 human melanoma cells extended into the matrix substratum on a vertical view using a laser scanning confocal microscope system. We confirmed that invadopodia were rich in actin filaments (F-actin) and visualized clearly with F-actin staining on a vertical view as well as on a horizontal view. We then studied the roles of Rho, Rac, and Cdc42 in invasiveness of the same cell line. In the in vitro fibronectin degradation/invasion assay, a dominant active mutant of Cdc42 enhanced dot-like degradation, whereas a dominant active mutant of Rac enhanced diffuse-type degradation. Furthermore, frabin, a GDP/GTP exchange protein for Cdc42 with F-actin-binding activity, enhanced both dot-like and diffuse-type degradation. However, a dominant active mutant of Rho did not affect the fibronectin degradation. Moreover, inhibition of phosphatidylinositol-3 kinase (PI3K) disrupted the Rac and Cdc42-dependent actin structures and blocked the fibronectin degradation. CONCLUSION: These results suggest that Cdc42 and Rac play important roles in fibronectin degradation and invasiveness in a coordinate manner through the frabin-Cdc42/Rac-PI3K signalling pathway.  相似文献   

5.
T-cell migration and movement is a critical component of a fully functional immune system. Activation-inducible lymphocyte immunomediatory molecule/inducible co-stimulator (AILIM/ICOS), which is a member of CD28 co-stimulatory receptor family, induces both activated T-cell migration underneath tumor necrosis factor alpha-treated human umbilical vein endothelial cell layers and also the morphological polarization of activated T cells. In our current study, we have investigated the signaling mechanisms underlying the morphological polarization of activated T cells, initiated by AILIM/ICOS signaling. AILIM/ICOS signaling induces the activation of phosphoinositide-3 (PI3)-kinase, the product of which, phosphatidylinositol 3,4,5-trisphosphate (PIP3), was found to be localized in the lamellipodia at the front part of the cells. Phosphorylated Akt is also co-localized with PIP3 and filamentous actin in lamellipodia and the PI3-kinase/Akt signaling cascade has critical roles in T-cell polarization and lamellipodia formation via the re-organization of the actin cytoskeleton. Rho family members and their downstream effectors, Rho-associated kinase and p21-activated kinase (PAK), are also involved in AILIM/ICOS-mediated elongation. The PAK family members are serine/threonine kinase downstream effectors of both Rac and Cdc42. PAK3 is induced by the activation of T cells, whereas PAK1 is constitutively expressed in both naive and activated T cells. During the elongation, not only PAK1 but also PAK3 play an essential role through the phosphorylation of their conservative autophosphorylation sites and catalytic domain. Ser-244 phosphorylation, which is a putative Akt phosphorylation site, on PAK3 but not on PAK1 also regulates the morphological polarization of activated T cells by AILIM/ICOS signaling. Both the PI3-kinase/Akt and Rho family cascades operate coordinately to induce the forward migration of activated T cells by AILIM/ICOS signaling.  相似文献   

6.
It is well known that the cell cycle is controlled by several cyclin/cyclin-dependent kinase (Cdk) complexes whose expression and phosphorylation states vary with orderly periodicity. During the cell cycle, activity of the cyclin/Cdk complexes can be regulated directly or indirectly by a number of molecules, including protein kinases and phosphatases, p53, and Cdk inhibitors. Here, we show that the addition of glial cell line-derived neurotrophic factor (GDNF) induced G2/M cell cycle delay in human SK-N-MC neuroectodermal tumor cells that express RET tyrosine kinase, accompanying actin reorganization. Cell cycle delay at G2/M was characterized by accelerated and prolonged Cdc2 phosphorylation and stabilization of cyclin B1 and Wee1 kinase expression. Interestingly, we found that phosphorylation and/or expression of Cdc2, cyclinB1, and Wee1 was controlled by the Rac1/c-Jun NH2-terminal kinase (JNK) pathway. Immunohistochemical analysis suggested that the G2/M cell cycle delay may be necessary to prevent the mitotic progression of SK-N-MC cells with perturbed actin cytoskeletons.  相似文献   

7.
The Wnt/planar cell polarity (PCP) pathway plays a critical role in wing, eye, and sensory bristle development of Drosophila and in convergent extension (CE) movements during vertebrate gastrulation. In Drosophila, Jun N-terminal kinase (JNK) and Rho-associated kinase (ROK) participate in RhoA-mediated PCP pathway during eye and wing development. In mammalian cells, Rac1 and Cdc42 but not RhoA are required for JNK activation by Wnt/PCP signals. However, there has been no evidence that Rho GTPases regulate JNK activation in Wnt/PCP pathway during Xenopus CE movements. Here, we report that Xenopus RhoA (XRhoA), but not Xenopus Cdc42 (XCdc42), is essential for JNK activation downstream of the Wnt/PCP pathway during Xenopus CE movements, and the phenotypic effect of loss of XRhoA function was rescued by Xenopus JNK1 (XeJNK1). In addition, XRhoA rescues the inhibition of CE movements by the DEP domain deletion mutant of Xenopus Dsh (Xdsh-DeltaDEP), which has dominant negative (DN) effects on JNK activation, and the PDZ domain deletion mutant of Xdsh (Xdsh-DeltaPDZ). Moreover, we demonstrate that Xenopus Rho-associated kinase alpha (xROKalpha), which is expressed mainly in mesoderm and ectoderm that undergo extensive cell rearrangements, regulates CE movements without affecting gene expression, and injection of xROKalpha rescued the inhibition of CE movements caused by DN XRhoA. Finally, we show that ROKalpha and JNK synergistically rescued embryos overexpressing DN XRhoA, which exhibit gastrulation defects, although ROKalpha is not required for JNK activation. Together, these data suggest that JNK and ROKalpha function in the noncanonical Wnt/RhoA pathway to regulate Xenopus CE movements.  相似文献   

8.
Transient intracellular expression of ExoT in CHO cells stimulated cell rounding and actin reorganization. Biochemical studies showed that ExoT was a GTPase-activating protein for RhoA, Rac1, and Cdc42. Together, these data show that ExoT interferes with Rho signal transduction pathways, which regulate actin organization, exocytosis, cell cycle progression, and phagocytosis.  相似文献   

9.
Mucosal hyperplasia is a characteristic component of otitis media. The present study investigated the participation of signaling via the Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase in middle ear mucosal hyperplasia in animal models of bacterial otitis media. Otitis media was induced by the inoculation of nontypeable Haemophilus influenzae into the middle ear cavity. Western blotting revealed that phosphorylation of JNK isoforms in the middle ear mucosa preceded but paralleled mucosal hyperplasia in this in vivo rat model. Nuclear JNK phosphorylation was observed in many cells of both the mucosal epithelium and stroma by immunohistochemistry. In an in vitro model of primary rat middle ear mucosal explants, bacterially induced mucosal growth was blocked by the Rac/Cdc42 inhibitor Clostridium difficile toxin B, the mixed-lineage kinase inhibitor CEP11004, and the JNK inhibitor SP600125. Finally, the JNK inhibitor SP600125 significantly inhibited mucosal hyperplasia during in vivo bacterial otitis media in guinea pigs. Inhibition of JNK in vivo resulted in a diminished proliferative response, as shown by a local decrease in proliferating cell nuclear antigen protein expression by immunohistochemistry. We conclude that activation of JNK is a critical pathway for bacterially induced mucosal hyperplasia during otitis media, influencing tissue proliferation.  相似文献   

10.
Regulation of cell function by rho family GTPases   总被引:7,自引:0,他引:7  
Rho GTPases act as molecular switches to control many basic cellular activities that are also critical to the specialized functions of phagocytic leukocytes. Our laboratory has studied the regulation of Rho GTPase function, how these GTPases interact with specific effectors to modulate cell function, and how these events are coordinated in the stimulated cell. Areas of major interest include NADPH oxidase regulation by Rac2, Rac- and Cdc42-mediated control of the actin-myosin cytoskeleton via p21-activated kinase (PAK), and modulation of the apoptotic program by Rho GTPases and PAK.  相似文献   

11.
The biological response to tumor necrosis factor (TNF) involves activation of MAP kinases. Here we report a mechanism of MAP kinase activation by TNF that is mediated by the Rho GTPase family members Rac/Cdc42. This signaling pathway requires Src-dependent activation of the guanosine nucleotide exchange factor Vav, activation of Rac/Cdc42, and the engagement of the Rac/Cdc42 interaction site (CRIB motif) on mixed-lineage protein kinases (MLKs). We show that this pathway is essential for full MAP kinase activation during the response to TNF. Moreover, this MLK pathway contributes to inflammation in vivo.  相似文献   

12.
Cryptosporidium parvum invasion of epithelial cells involves host cell membrane alterations which require a remodeling of the host cell actin cytoskeleton. In addition, an actin plaque, possibly associated with the dense-band region, forms within the host cytoplasm at the host-parasite interface. Here we show that Cdc42 and RhoA, but not Rac1, members of the Rho family of GTPases, are recruited to the host-parasite interface in an in vitro model of human biliary cryptosporidiosis. Interestingly, activation of Cdc42, but not RhoA, was detected in the infected cells. Neural Wiskott-Aldrich syndrome protein (N-WASP) and p34-Arc, actin-regulating downstream effectors of Cdc42, were also recruited to the host-parasite interface. Whereas cellular expression of a constitutively active mutant of Cdc42 promoted C. parvum invasion, overexpression of a dominant negative mutant of Cdc42, or depletion of Cdc42 mRNA by short interfering RNA-mediated gene silencing, inhibited C. parvum invasion. Expression of the WA fragment of N-WASP to block associated actin polymerization also inhibited C. parvum invasion. Moreover, inhibition of host cell Cdc42 activation by dominant negative mutation inhibited C. parvum-associated actin remodeling, membrane protrusion, and dense-band formation. In contrast, treatment of cells with a Rho inhibitor, exoenzyme C3, or cellular overexpression of dominant negative mutants of RhoA and Rac1 had no effect on C. parvum invasion. These data suggest that C. parvum invasion of target epithelia results from the organism's ability to activate a host cell Cdc42 GTPase signaling pathway to induce host cell actin remodeling at the attachment site.  相似文献   

13.
We studied the mechanisms underlying calpain inhibition-mediated human neutrophil migration. MAPKs, including ERK, p38, and JNK, MEK1/2, MAPK kinase 3/6 (MKK3/6), PI-3K/Akt, c-Raf, and p21-activated kinase (PAK; an effector molecule of Rac) were rapidly (within 30 s) activated in neutrophils upon exposure to calpain inhibitors (PD150606 and N-acetyl-Leu-Leu-Nle-CHO) but not PD145305 (inactive analog of PD150606). Following activation of these pathways, neutrophils displayed active migration (chemotaxis), which was sustained for more than 45 min. The studies with pharmacological inhibitors suggest that calpain inhibition-mediated neutrophil migration is mediated by activation of MEK/ERK, p38, JNK, PI-3K/Akt, and Rac. NSC23766 (Rac inhibitor) and pertussis toxin (PTX) suppressed calpain inhibitor-induced phosphorylation of distinct signaling molecules (PAK, c-Raf, MEK1/2, ERK, MKK3/6, p38, JNK, and Akt) as well as cell migration, suggesting that the PTX-sensitive G protein and Rac axis may be a possible key target of calpain inhibitors. Differentiated neutrophil-like HL-60 cells but not undifferentiated cells displayed cell migration and activation of MAPKs and PI-3K/Akt on calpain inhibition. These findings suggest that constitutively active calpain negatively regulates activation of the distinct signaling pathways and cell migration in resting neutrophils, and this regulatory system develops during differentiation into mature neutrophils.  相似文献   

14.
Small GTP-binding proteins of the Rho-family, Rho, Rac, and Cdc42, have been traditionally linked to the regulation of the cellular actin-based cytoskeleton. Rac and Cdc42 can also control the activity of JNK, thus acting in a molecular pathway transmitting extracellular signals to the nucleus. Interestingly, Rho can also regulate gene expression, albeit by a not fully understood mechanism. Here, we found that activated RhoA can stimulate c-jun expression and the activity of the c-jun promoter. As the complexity of the signaling pathways controlling the expression of c-jun has begun to be unraveled, this finding provided a unique opportunity to elucidate the biochemical routes whereby RhoA regulates nuclear events. We found that RhoA can initiate a linear kinase cascade leading to the activation of ERK6 (p38 gamma), a recently identified member of the p38 family of MAPKs. Furthermore, we present evidence that RhoA, PKN, MKK3/MKK6, and ERK6 (p38 gamma) are components of a novel signal transduction pathway involved in the regulation of gene expression and cellular transformation.  相似文献   

15.
Genetic studies have highlighted the key role of Scrib in the development of Metazoans. Deficiency in Scrib impairs many aspects of cell polarity and cell movement although the mechanisms involved remain unclear. In mammals, Scrib belongs to a protein complex containing betaPIX, an exchange factor for Rac/Cdc42, and GIT1, a GTPase activating protein for ARF6 implicated in receptor recycling and exocytosis. Here we show that the Scrib complex associates with PAK, a serine-threonine kinase family crucial for cell migration. PAK colocalizes with members of the Scrib complex at the leading edge of heregulin-treated T47D breast cancer cells. We demonstrate that the Scrib complex is required for epithelial cells and primary mouse embryonic fibroblasts to efficiently respond to chemoattractant cues. In Scrib-deficient cells, the pool of cortical PAK is decreased, thereby precluding its proper activation by Rac. Loss of Scrib also impairs the polarized distribution of active Rac at the leading edge and compromises the regulated activation of the GTPase in T47D cells and mouse embryonic fibroblasts. These data underscore the role of Scrib in cell migration and show the strong impact of Scrib in the function of PAK and Rac, two key molecules implicated in this process.  相似文献   

16.
BACKGROUND: Frabin is an actin filament (F-actin)-binding protein that shows GDP/GTP exchange activity for Cdc42 small G protein (Cdc42). Frabin furthermore induces indirect activation of Rac small G protein (Rac) in intact cells. We have recently shown that in nonepithelial cells, frabin induces the formation of both filopodia- and lamellipodia-like processes through the activation of Cdc42 and Rac, respectively. In epithelial cells such as MDCK cells, Cdc42 and Rac regulate cell-cell adherens junctions (AJs) via the accumulation of F-actin and E-cadherin, although neither Cdc42 nor Rac induces the formation of filopodia or lamellipodia. In this study, we have examined the effects of frabin on the reorganization of the actin cytoskeleton in MDCK cells. RESULTS: Frabin induces the formation of microspikes at the basal area of the lateral membranes through the activation of Cdc42 and Rac in MDCK cells, although a dominant active mutant of Cdc42 or Rac alone, or both, did not induce the formation of microspikes. Furthermore, frabin weakly increased the accumulation of F-actin and E-cadherin at cell-cell AJs and the formation of stress fibres through the activation of Cdc42 and Rac, under conditions where the dominant active mutant of Cdc42 or Rac markedly showed these effects. The Cdc42- and Rac-induced formation of stress fibres was dependent on the activation of Rho small G protein. CONCLUSION: These results indicate that the frabin-dependent spatial activation of Cdc42 and Rac is important for the formation of microspikes.  相似文献   

17.
The mitogen-activated protein kinase-extracellular signal-regulated kinase signaling element (MAPK-ERK) plays a critical role in natural killer (NK) cell lysis of tumor cells, but its upstream effectors were previously unknown. We show that inhibition of phosphoinositide-3 kinase (PI3K) in NK cells blocks p21-activated kinase 1 (PAK1), MAPK kinase (MEK) and ERK activation by target cell ligation, interferes with perforin and granzyme B movement toward target cells and suppresses NK cytotoxicity. Dominant-negative N17Rac1 and PAK1 mimic the suppressive effects of PI3K inhibitors, whereas constitutively active V12Rac1 has the opposite effect. V12Rac1 restores the activity of downstream effectors and lytic function in LY294002- or wortmannin-treated, but not PD98059-treated, NK cells. These results document a specific PI3K-->Rac1-->PAK1-->MEK-->ERK pathway in NK cells that effects lysis.  相似文献   

18.
Leukocyte chemoattractants are known to stimulate signaling pathways that involve Rho family GTPases. Direct evidence for the regulation of the leukocyte cytoskeleton by Rho GTPases and their effector targets is limited. The p21-activated kinases (PAKs) are specific targets of activated GTP-bound Rac and Cdc42, and have been proposed as regulators of chemoattractant-driven actin cytoskeletal changes in fibroblasts. PAK1 colocalizes with F-actin to cortical actin structures in stimulated fibroblasts, and activated PAK1 mutants induce membrane ruffling and polarized cytoskeletal rearrangements. We investigated whether PAK1 was associated with remodeling of the actin cytoskeleton in activated human neutrophils. We monitored the redistribution of PAK1 and F-actin into the actin cytoskeleton after stimulation of human neutrophils with the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fMLP) or the particulate stimulus, opsonized zymosan (OZ). PAK1 exhibited a similar distribution as F-actin in fMLP-stimulated leukocytes, localizing in membrane ruffles and to lamellipodia at the leading edge of polarized cells. Addition of OZ induced phagocytic uptake of this particulate stimulus, and PAK1 re-localized to the F-actin-rich pseudopodia and phagocytic cups associated with this process. Once the OZ was internalized, there was little PAK1 localized around the ingested particles, suggesting that PAK1 may be regulating the cytoskeletal extensions and events required for engulfment of bacteria, but not the subsequent steps of internalization. Localization of PAK1 and F-actin in cytoskeletal structures was abolished by the actin polymerization inhibitor cytochalasin D and the phosphatidylinositol 3-kinase inhibitor wortmannin. Our data suggest that PAK1 may regulate a subset of cytoskeletal dynamics initiated by chemoattractant and phagocytic stimuli in human neutrophils.  相似文献   

19.
In addition to direct activation of caspase-1 and induction of apoptosis by SipB, invasive Salmonella stimulates multiple signaling pathways that are key regulators of host cell survival. Nevertheless, little is known about the relative contributions of these pathways to Salmonella-mediated death of macrophages. We studied human monocytic U937 cells and found that apoptosis was induced by invading wild-type Salmonella typhimurium but not by phagocytosed, serum-opsonized, noninvasive Salmonella mutants. Pretreating U937 cells with inhibitors of tyrosine kinases or phosphatidylinositol-3 kinase (PI-3K) completely blocked phagocytosis of opsonized Salmonella mutants but did not affect invasion by wild-type Salmonella or the apoptosis caused by invasion. However, pretreatment with GGTI-298, a geranylgeranyltransferase-1 inhibitor that prevents prenylation of Cdc42 and Rac1, suppressed Salmonella-induced apoptosis by approximately 70%. Transduction of Tat fusion constructs containing dominant-negative Cdc42 or Rac1 significantly inhibited Salmonella-induced cell death, indicating that the cytotoxicity of Salmonella requires activation of Cdc42 and Rac. In contrast to phagocytosis of opsonized bacteria, invasion by S. typhimurium stimulated Cdc42 and Rac1, regardless of the activities of tyrosine- or PI-3K. Moreover, Salmonella infection activated Akt protein in a tyrosine-kinase or PI-3K-dependent manner, and a reduced expression of Akt by antisense transfection rendered the cells more sensitive to apoptosis induced by opsonized Salmonella. These results indicate that direct activation of Cdc42 and Rac1 by invasive Salmonella is a prerequisite of Salmonella-mediated death of U937 cells, whereas the simultaneous activation of Akt by tyrosine kinase and PI-3K during receptor-mediated phagocytosis protects cells from apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号