首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The cortical afferents to the cortex of the anterior ectosylvian sulcus (SEsA) were studied in the cat, using the retrograde axonal transport of horseradish peroxidase technique. Following injections of the enzyme in the cortex of both banks, fundus and both ends (postero-dorsal and anteroventral) of the anterior ectosylvian sulcus, retrograde labeling was found in: the primary, secondary, and tertiary somatosensory areas (SI, SII and SIII); the motor and premotor cortices; the primary, secondary, anterior and suprasylvian fringe auditory areas; the lateral suprasylvian (LS) area, area 20 and posterior suprasylvian visual area; the insular cortex and cortex of posterior half of the sulcus sylvius; in area 36 of the perirhinal cortex; and in the medial bank of the presylvian sulcus in the prefrontal cortex. Moreover, these connections are topographically organized. Considering the topographical distribution of the cortical afferents, three sectors may be distinguished in the cortex of the SEsA. 1) The cortex of the rostral two-thirds of the dorsal bank. This sector receives cortical projections from areas SI, SII and SIII, and from the motor cortex. It also receives projections from the anterolateral subdivision of LS, and area 36. 2) The cortex of the posterior third of the dorsal bank and of the posterodorsal end. It receives cortical afferents principally from the primary, secondary and anterior auditory areas, from SI, SII and fourth somatosensory area, from the anterolateral subdivision of LS, vestibular cortex and area 36. 3) The cortex of the ventral bank and fundus. This sulcal sector receives abundant connections from visual areas (LS, 20, posterior suprasylvian, 21 and 19), principally from the lateral posterior and dorsal subdivisions of LS. It also receives abundant connections from the granular insular cortex, caudal part of the cortex of the sylvian sulcus and suprasylvian fringe. Less abundant cortical afferents were found to arise in area 36, second auditory area and prefrontal cortex. The abundant sensory input of different modalities which appears to converge in the cortex of the anterior ectosylvian sulcus, and the consistent projection from this cortex to the deep layers of the superior colliculus, make this cortical region well suited to play a role in the control of the orientation movements of the eyes and head toward different sensory stimuli.Supported by FISSS grants 521/81 and 1250/84  相似文献   

2.
Summary The interconnections of the auditory cortex with the parahippocampal and cingulate cortices were studied in the cat. Injections of the anterograde and retrograde tracer WGA-HRP were performed, in different cats (n = 9), in electrophysiologically identified auditory cortical fields. Injections in the posterior zone of the auditory cortex (PAF or at the PAF/AI border) labeled neurons and axonal terminal fields in the cingulate gyrus, mainly in the ventral bank of the splenial sulcus (a region that can be considered as an extension of the cytoarchitectonic area Cg), and posteriorly in the retrosplenial area. Labeling was also present in area 35 of the perirhinal cortex, but it was sparser than in the cingulate gyrus. Following WGA-HRP injection in All, no labeling was found in the cingulate gyrus, but a few neurons and terminals were labeled in area 35. In contrast, no or very sparse labeling was observed in the cingulate and perirhinal cortices after WGA-HRP injections in the anterior zone of the auditory cortex (AI or AAF). A WGA-HRP injection in the cingulate gyrus labeled neurons in the posterior zone of the auditory cortex, between the posterior ectosylvian and the posterior suprasylvian sulci, but none was found more anteriorly in regions corresponding to AI, AAF and AII. The present data indicate the existence of preferential interconnections between the posterior auditory cortex and the limbic system (cingulate and parahippocampal cortices). This specialization of posterior auditory cortical areas can be related to previous observations indicating that the anterior and posterior regions of the auditory cortex differ from each other by their response properties to sounds and their pattern of connectivity with the auditory thalamus and the claustrum.Abbreviations AAF anterior auditory cortical field - aes anterior ectosylvian sulcus - AI primary auditory cortical field - AII secondary auditory cortical field - ALLS anterior-lateral lateral suprasylvian visual area - BF best frequency - C cerebral cortex - CC corpus callosum - CIN cingulate cortex - CL claustrum - DLS dorsal lateral suprasylvian visual area - DP dorsoposterior auditory area - E entorhinal cortex - IC inferior colliculus - LGN lateral geniculate nucleus - LV pars lateralis of the ventral division of the MGB - LVe lateral ventricule - MGB medial geniculate body - OT optic tract - OV pars ovoidea of the ventral division of the MGB - PAF posterior auditory cortical field - pes posterior ectosylvian sulcus - PLLS posterior-lateral lateral suprasylvian visual area - PS posterior suprasylvian visual area - PU putamen - RE reticular complex of thalamus - rs rhinal sulcus - SC superior colliculus - SS suprasylvian sulcus - T temporal auditory cortical field - TMB tetramethylbenzidine - VBX ventrobasal complex of thalamus, external nucleus - VL pars ventrolateralis of the ventral division of the MGB - VLS ventrolateral suprasylvian visual area - VPAF ventroposterior auditory cortical field - WGA-HRP wheat germ agglutinin labeled with horseradish peroxidase - wm white matter  相似文献   

3.
Summary The origin and laminar arrangement of the homolateral and callosal projections to the anterior (AAF), primary (AI), posterior (PAF) and secondary (AII) auditory cortical areas were studied in the cat by means of electrophysiological recording and WGA-HRP tracing techniques. The transcallosal projections to AAF, AI, PAF and AII were principally homotypic since the major source of input was their corresponding area in the contralateral cortex. Heterotypic transcallosal projections to AAF and AI were seen, originating from the contralateral AI and AAF, respectively. PAF received heterotypic commissural projections from the opposite ventroposterior auditory cortical field (VPAF). Heterotypic callosal inputs to AII were rare, originating from AAF and AI. The neurons of origin of the transcallosal connections were located mainly in layers II and III (70–92%), and less frequently in deep layers (V and VI, 8–30%). Single unit recordings provided evidence that both homotypic and heterotypic transcallosal projections connect corresponding frequency regions of the two hemispheres. The regional distribution of the anterogradely labeled terminals indicated that the homotypic and heterotypic auditory transcallosal projections are reciprocal. The present data suggest that the transcallosal auditory interconnections are segregated in 3 major parallel components (AAF-AI, PAF-VPAF and AII), maintaining a segregation between parallel functional channels already established for the thalamocortical auditory interconnections. For the intrahemispheric connections, the analysis of the retrograde tracing data revealed that AAF and AI receive projections from the homolateral cortical areas PAF, VPAF and AII, whose neurons of origin were located mainly in their deep (V and VI) cortical layers. The reciprocal interconnections between the homolateral AAF and AI did not show a preferential laminar arrangement since the neurons of origin were distributed almost evenly in both superficial (II and III) and deep (V and VI) cortical layers. On the contrary, PAF received inputs from the homolateral cortical fields AAF, AI, AII and VPAF, originating predominantly from their superficial (II and III) layers. The homolateral projections reaching AII originated mainly from the superficial layers of AAF and AI, but from the deep layers of VPAF and PAF. The laminar distribution of anterogradely labeled terminal fields, when they were dense enough for a confident identification, was systematically related to the laminar arrangement of neurons of origin of the reciprocal projection: a projection originating from deep layers was associated with a reciprocal projection terminating mainly in layer IV, whereas a projection originating from superficial layers was associated with a reciprocal projection terminating predominantly outside layer IV. This laminar distribution indicates that the homolateral auditory cortical interconnections have a feed-forward/feed-back organization, corresponding to a hierarchical arrangement of the auditory cortical areas, according to criteria previously established in the visual system of primates. The principal auditory cortical areas could be ranked into 4 distinct hierarchical levels. The tonotopically organized areas AAF and AI represent the lowest level. The second level corresponds to the non-tonotopically organized area AII. Higher, the tonotopically organized areas VPAF and PAF occupy the third and fourth hierarchical levels, respectively.Abbreviations AAF anterior auditory cortical area - AI primary auditory cortical area - AII secondary auditory cortical area - BF best frequency - C cerebral cortex - CA caudate nucleus - CL claustrum - D dorsal nucleus of the dorsal division of the MGB - ea anterior ectosylvian sulcus - ep posterior ectosylviansulcus - IC internal capsule - LGN lateral geniculate nucleus - LV pars lateralis of the ventral division of the MGB - LVe lateral ventricule - M pars magnocellularis of the medial division of the MGB - MGB medial geniculate body - MGBv ventral division of the MGB - OT optic tract - OV pars ovoidea of the ventral division of the MGB - PAF posterior auditory cortical area - PH parahippocampal cortex - PO lateral part of the posterior group of thalamic nuclei - PU putamen - RE reticular complex of thalamus - rs rhinal sulcus - SG suprageniculate nucleus of the dorsal division of the MGB - ss suprasylvian sulcus - TMB tetrametylbenzidine - VBX ventrobasal complex - VLa ventrolateral complex - VL ventro-lateral nucleus of the ventral division of the MGB - WGA-HRP wheat germ agglutinin conjugated to horse-radish peroxidase - WM white matter - VPAF ventro-posterior auditory cortical area  相似文献   

4.
Neurophysiological studies have recently documented multisensory properties in ‘unimodal’ visual neurons of the cat posterolateral lateral suprasylvian (PLLS) cortex, a retinotopically organized area involved in visual motion processing. In this extrastriate visual area, a region has been identified where both visual and auditory stimuli were independently effective in activating neurons (bimodal zone), as well as a second region where visually-evoked activity was significantly facilitated by concurrent auditory stimulation but was unaffected by auditory stimulation alone (subthreshold multisensory region). Given their different distributions, the possible corticocortical connectivity underlying these distinct forms of crossmodal convergence was examined using biotinylated dextran amine (BDA) tracer methods in 21 adult cats. The auditory cortical areas examined included the anterior auditory field (AAF), primary auditory cortex (AI), dorsal zone (DZ), secondary auditory cortex (AII), field of the rostral suprasylvian sulcus (FRS), field anterior ectosylvian sulcus (FAES) and the posterior auditory field (PAF). Of these regions, the DZ, AI, AII, and FAES were found to project to the both the bimodal zone and the subthreshold region of the PLLS. This convergence of crossmodal inputs to the PLLS suggests not only that complex auditory information has access to this region but also that these connections provide the substrate for the different forms (bimodal versus subthreshold) of multisensory processing which may facilitate its functional role in visual motion processing.  相似文献   

5.
We examined the ability of mature cats to accurately orient to, and approach, an acoustic stimulus during unilateral reversible cooling deactivation of primary auditory cortex (AI) or 1 of 18 other cerebral loci. After attending to a central visual stimulus, the cats learned to orient to a 100-ms broad-band, white-noise stimulus emitted from a central speaker or 1 of 12 peripheral sites (at 15 degrees intervals) positioned along the horizontal plane. Twenty-eight cats had two to six cryoloops implanted over multiple cerebral loci. Within auditory cortex, unilateral deactivation of AI, the posterior auditory field (PAF) or the anterior ectosylvian sulcus (AES) resulted in orienting deficits throughout the contralateral field. However, unilateral deactivation of the anterior auditory field, the second auditory cortex, or the ventroposterior auditory field resulted in no deficits on the orienting task. In multisensory cortex, unilateral deactivation of neither ventral or dorsal posterior ectosylvian cortices nor anterior or posterior area 7 resulted in any deficits. No deficits were identified during unilateral cooling of the five visual regions flanking auditory or multisensory cortices: posterior or anterior ii suprasylvian sulcus, posterior suprasylvian sulcus or dorsal or ventral posterior suprasylvian gyrus. In motor cortex, we identified contralateral orienting deficits during unilateral cooling of lateral area 5 (5L) or medial area 6 (6m) but not medial area 5 or lateral area 6. In a control visual-orienting task, areas 5L and 6m also yielded deficits to visual stimuli presented in the contralateral field. Thus the sound-localization deficits identified during unilateral deactivation of area 5L or 6m were not unimodal and are most likely the result of motor rather than perceptual impairments. Overall, three regions in auditory cortex (AI, PAF, AES) are critical for accurate sound localization as assessed by orienting.  相似文献   

6.
Quantitative analysis of layer-to-layer distribution of neurons and macrogliocytes in zones AI, AII, Ep and Ins of cat brain was performed in specimens stained after Einarson. Zones of auditory cortex were shown not to differ in density of neuron distribution. In every zone the neuron number in layers II, III and VI was significantly higher than in layers IV and V and in layers III and IV of zones AI and AII the number of neurons with macroglial satellites was almost twices higher than in the same layers of zones Ep and Ins. Fraction of neurons with different number of satellites shows significant diversities as well. In layers IV, V and VI of zones AI and AII both total number of macrogliocytes and perineuronal satellites was significantly higher than in zones Ep and Ins. The number of perineuronal satellitocytes correlates both with neuron axonal length and the level of the cell functional activity.  相似文献   

7.
1. Cats anaesthetized with chloralose were used. Potentials evoked by electrical stimulation of the vestibular, cochlear, facial, trigeminal and chorda tympani nerves were recorded with micro-electrodes in the cortex in the anterior syprasylvian sulcus.2. Negative focal potentials with a latency of 3 msec were evoked by stimulation of the contralateral and ipsilateral vestibular nerves. These potentials were located in the lower and upper banks of the sulcus at a level just caudal to the projection of the Group I muscle afferents to the lower bank.3. The cochlear projections were located mainly in the lower bank partially overlapping the vestibular and the Group I fields.4. Trigeminal responses were recorded in both banks of the sulcus but were of largest amplitude and shortest latency rostrally in the upper bank. The potentials evoked by the chorda tympani had a similar distribution but were of low amplitude.5. The hypothesis is suggested, that the cortex in the anterior suprasylvian sulcus plays a role in the orientation of the body and head towards auditory stimuli.  相似文献   

8.
In acute experiments on immobilized cats, using a method of topographical recording of homotopic and heterotopic transcallosal responses, the functional organization of the callosal connections of the auditory cortex was investigated. It was established that the homotopic potentials of the primary projection field (AI) have the greatest amplitude, minimal temporal parameters, and the maximal stability of these characteristics as compared with the associative fields of the auditory cortex (AII, AIV, Ep). The heterotropic transcallosal responses in field AI appeared during stimulation of the analogous field, while in field Ep, they were recorded both during stimulation of the analogous field, and of fields AI and AII of the opposite hemisphere. It is hypothesized that the structure of the transcallosal connections of the primary projection fields of the auditory cortex is characterizised by homotopy, whereas in the associative auditory fields the role of heterotopic transcallosal interactions increases. It is possible that such a structure of the transcallosal connections assures a significant role for interhemispheric interactions in the mechanisms of spatial audition.Translated from Fiziologicheskii Zhurnal SSSR imeni I. M. Sechenova, Vol. 73, No. 7, pp. 860–867, July, 1987.  相似文献   

9.
1. Cats anaesthetized with chloralose and paralysed with Flaxedil were used. The projections of muscle, joint and skin afferents to the cortical fold hidden in the anterior suprasylvian sulcus were investigated with micro-electrode recording techniques.2. Electrical stimulation of Group I muscle afferents from the contralateral forelimb evoked a negative focal potential (latency 5 msec) in a locus of 1-2 mm diameter found in the lower bank of the fold. In one experiment a response to Group I muscle afferents from the contralateral hind limb was observed. The Group I potentials disappeared after sectioning of the dorsal columns at C3.3. Groups II and III muscle afferents, low threshold skin afferents and joint afferents also evoked potentials in the Group I locus. It was concluded that the joint afferents originated mainly in the Ruffini endings of the joint capsule.4. Groups II and III muscle afferents, low threshold skin and low threshold joint afferents projected to the upper bank of the suprasylvian fold. A certain somatotopic arrangement was observed.5. The possibility of connexions between the cortex of the anterior suprasylvian fold and the primary somato-sensory projection areas was discussed, as well as the organization of the loci in the fold in terms of cell colonies with different properties.  相似文献   

10.
Cortical afferent input to the principalis region of the rhesus monkey   总被引:7,自引:0,他引:7  
H Barbas  M M Mesulam 《Neuroscience》1985,15(3):619-637
The sources of ipsilateral cortical afferent projections to regions along both banks of the principalis sulcus in the prefrontal cortex were studied with horseradish peroxidase in macaque monkeys. The principalis cortex receives a substantial proportion of its projections from neighboring prefrontal regions. However, differences were noted in the distribution of labeled cells projecting to the various principalis regions. These differences were most marked with respect to the relative proportion of cells originating in visual, auditory, somatosensory, premotor and limbic cortical areas. The findings indicate that the caudal ventral principalis region receives projections from both visual and visuomotor regions, whereas the anterior tip of the principalis appears to be the major target of projections from auditory association regions. The ventral bank at the middle extent of the principalis was the only case with a significant proportion of labeled cells in somatosensory association and premotor regions. There was a consistent increase in the proportion of labeled cells in limbic cortical areas projecting to more rostral principalis sites, irrespective of whether the injection was placed in the dorsal or ventral bank. These findings suggest that the caudal principalis region has a visual-visuomotor and the rostral, an auditory-limbic bias with respect to the long projections they receive.  相似文献   

11.
In ferret cortex, the rostral portion of the suprasylvian sulcus separates primary somatosensory cortex (SI) from the anterior auditory fields. The boundary of the SI extends to this sulcus, but the adjoining medial sulcal bank has been described as “unresponsive.” Given its location between the representations of two different sensory modalities, it seems possible that the medial bank of the rostral suprasylvian sulcus (MRSS) might be multisensory in nature and contains neurons responsive to stimuli not examined by previous studies. The aim of this investigation was to determine if the MRSS contained tactile, auditory and/or multisensory neurons and to evaluate if its anatomical connections were consistent with these properties. The MRSS was found to be primarily responsive to low-threshold cutaneous stimulation, with regions of the head, neck and upper trunk represented somatotopically that were primarily connected with the SI face representation. Unlike the adjoining SI, the MRSS exhibited a different cytoarchitecture, its cutaneous representation was largely bilateral, and it contained a mixture of somatosensory, auditory and multisensory neurons. Despite the presence of multisensory neurons, however, auditory inputs exerted only modest effects on tactile processing in MRSS neurons and showed no influence on the averaged population response. These results identify the MRSS as a distinct, higher order somatosensory region as well as demonstrate that an area containing multisensory neurons may not necessarily exhibit activity indicative of multisensory processing at the population level.  相似文献   

12.
Summary We have previously described a visual area situated in the cortex surrounding the deep infolding of the anterior ectosylvian sulcus of the cat (Mucke et al. 1982). Using orthograde and retrograde transport methods we now report anatomical evidence that this anterior ectosylvian visual area (AEV) is connected with a substantial number of both cortical and subcortical regions. The connections between AEV and other cortical areas are reciprocal and, at least in part, topographically organized: the rostral AEV is connected with the bottom region of the presylvian sulcus, the lower bank of the cruciate sulcus, the rostral part of the ventral bank of the splenial sulcus, the rostral portion of the lateral suprasylvian visual area (LS) and the lateral bank of the posterior rhinal sulcus; the caudal AEV is connected with the bottom region of the presylvian sulcus, the caudal part of LS, the ventral part of area 20 and the lateral bank of the posterior rhinal sulcus. Subcortically, AEV has reciprocal connections with the ventral medial thalamic nucleus (VM), with the medial part of the lateralis posterior nucleus (LPm), as well as with the lateralis medialis-suprageniculate nuclear (LM-Sg) complex. These connections are also topographically organized with more rostral parts of AEV being related to more ventral portions of the LPm and LM-Sg complex. AEV also projects to the caudate nucleus, the putamen, the lateral amygdaloid nucleus, the superior colliculus, and the pontine nuclei. It is concluded that AEV is a visual association area which functionally relates the visual with both the motor and the limbic system and that it might play a role in the animal's orienting and alerting behavior.Abbreviations Ac aqueductus cerebri - AEs anterior ectosylvian sulcus - ALLS anterolateral lateral suprasylvian area - AMLS anteromedial lateral suprasylvian area - ASs anterior suprasylvian sulcus - Cd caudate nucleus - CL central lateral nucleus - Cl claustrum - Cos coronal sulcus - Crs cruciate sulcus - DLS dorsal lateral suprasylvian area - GI stratum griseum intermediale - GP stratum griseum profundum - IC inferior colliculus - LAm lateral amygdaloid nucleus - LGNd dorsal nucleus of lateral geniculate body - LGNv ventral nucleus of lateral geniculate body - Llc nucleus lateralis intermedius, pars caudalis - LM nucleus lateralis medialis - LPl nucleus lateralis posterior, pars lateralis - LPm nucleus lateralis posterior, pars medialis - Ls lateral sulcus - MD nucleus mediodorsalis - MG medial geniculate body - MSs middle suprasylvian sulcus - Ndl nucleus dorsolateralis pontis - Nl nucleus lateralis pontis - Np nucleus peduncularis pontis - Npm nucleus paramedianus pontis - Nrt nucleus reticularis tegmenti pontis - Nv nucleus ventralis pontis - Ped cerebral peduncle - PEs posterior ectosylvian sulcus - Pg periaqueductal gray - PLLS posterolateral lateral suprasylvian area - PMLS posteromedial lateral suprasylvian area - PSs presylvian sulcus - Pul pulvinar - Put putamen - R red nucleus - Sg suprageniculate nucleus - SN substantia nigra - Sps splenial sulcus - Syls sylvian sulcus - T trapezoid body - VA ventral anterior nucleus - VL ventral lateral nucleus - VLS ventral lateral suprasylvian area - VM ventral medial nucleus - VPL ventral posterolateral nucleus - VPM ventral posteromedial nucleus Sponsored by Max-Planck-Society during part of the studySponsored by Thyssen FoundationSponsored by Alexander von Humboldt-Foundation  相似文献   

13.
Summary Unilateral stereotaxic lesions were made in the anterior thalamic nuclei of the cat, and the ensuing terminal degeneration traced to the medial cortex by the methods of Nauta-Gygax and Fink-Heimer. The anterodorsal nucleus projects to the retrosplenial, postsubicular and presubicular areas. These projections appear to be organized in the dorsoventral direction. The posterior portion of the retrosplenial area receives no fibers from the anterodorsal nucleus. Fibers from this nucleus are distributed largely in layer I and in layer III and the deep portion of layer II of the posterior limbic cortex. The anteroventral nucleus sends fibers to the cingular area and parts of the retrosplenial, postsubicular and presubicular areas. These projections appear to be organized in a topical manner mediolaterally. When the lesion involves the parvocellular part of the nucleus, degeneration spreads to the lower lip, bank and fundus of the splenial sulcus. There appears to be an anteroposterior organization in the cortical projections of the anteroventral nucleus. Fibers from the anteroventral nucleus are distributed most profusely in layers IV and III and in the superficial portion of layer I of the posterior limbic cortex. The anteromedial nucleus sends fine fibers to the anterior limbic region and to the cingular, retrosplenial, postsubicular and presubicular areas. The cortical projections of the anteromedial nucleus appear to be topographically organized in the dorsoventral direction. Fibers from the anteromedial nucleus are distributed largely in cortical layers V and VI of the anterior and posterior limbic regions.Abbreviations used in Figures a anterior - AD anterodorsal nucleus - AM anteromedial nucleus - AMD dorsolateral part of anteromedial nucleus - AMV ventromedial part of anteromedial nucleus - AV anteroventral nucleus - AVM magnocellular part of anteroventral nucleus - AVP parvocellular part of anteroventral nucleus - CC corpus callosum - Cg cingular area - CM medial central nucleus - Il infralimbic area - LA anterior limbic region - LD dorsal lateral nucleus - MD dorsal medial nucleus - Of orbitofrontal region - p posterior - Pr presubicular area - Prag precentral agranular area - Ps postsubicular area - Pt paratenial nucleus - Pv anterior paraventricular nucleus - R reuniens nucleus - Rs retrosplenial area - Rt thalamic reticular nucleus - SC cruciate sulcus - SM stria medullaris - Sm submedial nucleus - SS splenial sulcus - VA ventral anterior nucleus - VL ventral lateral nucleus - VM ventral medial nucleus  相似文献   

14.
Pupillary constriction was evoked by systematic stimulation using a microelectrode in the upper medial bank of the middle suprasylvian sulcus in the parieto-occipital cortex of the cat. The pupillo-constrictor area corresponded to the rostral and middle parts of the posterior medial lateral suprasylvian (PMLS) area. This pupillo-constrictor area extended by 2-3 mm along the middle suprasylvian sulcus. It is suggested that this pupillo-constrictor area overlaps or lies in close proximity of a part of the region in PMLS area related to lens accommodation, in which unit activity temporally related to lens accommodation was recorded and from which lens accommodation was evoked by electric stimulation.  相似文献   

15.
Investigation of eye movement-related activities and photic responsiveness using behaving cats demonstrated distinctive representations of eye movement signals in different areas of the lateral suprasylvian cortex: visual reafference in the medial bank of the middle suprasylvian sulcus and non-visual signals (proprioceptive reafference or efference copy) in the lateral bank.  相似文献   

16.
The projections of the pulvinar-lateral posterior complex of the cat were studied using the autoradiographic tracing method and related to 15 previously defined cortical areas. The results indicate that each of three separate zones within the pulvinar-lateral posterior complex has a different pattern of projection. The most lateral zone, the pulvinar, sends fibers to at least seven cortical areas, most of which are known to have input from other visual areas within the brain: the splenial visual area, the cingulate gyrus, and areas 5, 7, 19, 20a and 21a. A zone located just medial to the pulvinar, the lateral division of the lateral posterior complex, projects to at least eight visual areas in the cortex: areas 17, 18, 19, 20a, 21a, 21b, the posteromedial lateral suprasylvian area and the ventral lateral suprasylvian area. The most medial zone, the intermediate division of the lateral posterior complex, projects to at least four cortical areas: 20a, the posterior suprasylvian area, the posterolateral lateral suprasylvian area and the dorsal lateral suprasylvian area. Of the 15 cortical areas that receive fibers from the pulvinar-lateral posterior complex, only three (areas 19, 20a and 21a) receive projections from more than one of these thalamic zones, and only one of the cortical areas (20a) receives fibers from all three zones.Thus, the data support the division of the pulvinar lateral posterior complex into three zones on the basis of their unique and largely non-overlapping projections to the visual cortex.  相似文献   

17.
On anatomical and physiological grounds a zone of cat cortex deep in the medial bank of the suprasylvian sulcus (the Clare-Bishop area) is known to receive strong visual projections both from the lateral geniculate body and area 17. We have mapped receptive fields of single cells in this area in eight cats.Active responses to visual stimuli were found over most of the medial bank of the suprasylvian sulcus extending to the depths and over to the lowest part of the lateral bank. The area is clearly topographically arranged. The first responsive cells, recorded over the lateral convexity and 2-3 mm down the medial bank, had receptive fields in the far periphery of the contralateral visual fields. The receptive fields tended to be large, but showed considerable variation in size and scatter in their positions. As the electrode advanced down the bank, fields of successively recorded cells gradually tended to move inwards, so that in the depths of the sulcus the inner borders of many of the fields reached the vertical mid line. Here the fields were smaller, though they still varied very much in size.Receptive fields were larger than in 17, 18, or 19, but otherwise were not obviously different from the complex and lower-order hypercomplex fields in those areas. No simple fields, or concentric fields of the retino-geniculate type, were seen. Cells with common receptive-field orientation were grouped together, but whether or not the grouping occurs in columns was not established.Most cells were driven independently by the two eyes. Fields in the two eyes seemed to be identical in organization. Cells dominated by the contralateral eye were much more common than ipsilaterally dominated ones, but when cells with parafoveal and peripheral fields were considered separately, the asymmetry was seen to apply mainly to cells with peripheral fields.  相似文献   

18.
Spatial organization of corticopallidal projectional system was studied in 11 outbred dogs by method based on horse radish peroxidase transport. It was demonstrated that globus pallidum receives projections predominantly from neocortical zones (motor, premotor, somatosensory, parietal and auditory and from insular field of mesocortex. Mesocortical (prelimbic, orbital and insular) and allocortical (entorhinal, piriform and periamygdalar) including archicortex (subicular part of hippocampal formations) fields project onto ventral pallidum. Entopeduncular nucleus receives projections from neocortical zones (motor, premotor, somatosensory, parietal and auditory), mesocortex (prelimbic, orbital, insular and cingular fields) and allocortex (entorhinal and periamygdalar fields). The data obtained indicate specificity of distribution of cortical afferent projectional fibres in each of nuclei studied which allows to consider globes pallidum as motor zone and ventral pallidum as limbic zone of paladial complex. As projections from functionally different cortical fields were revealed in entopeduncular nucleus it may be suggested that this is the exact site for interaction of functionally different information, including the one received from the cortex.  相似文献   

19.
Summary Stereotaxic injection of horseradish peroxidase into the superior colliculus produced retrograde labelling of layer V pyramides in the Clare Bishop area and the lateral bank of the suprasylvian sulcus, in area 17,18 and 19. Single labelled cells were also found scattered in the splenial, the suprasplenial, the lateral and the suprasylvian gyri. In the cruciate sulcus no labelled cells were observed. Autoradiographically, the lateral bank of the suprasylvian sulcus was also shown to give rise to fibres to the superior colliculus.  相似文献   

20.
The purpose of our study was to quantify the magnitude of principal and secondary pathways emanating from the middle suprasylvian (MS) region of visuoparietal cortex and terminating in area 18 of primary visual cortex. These pathways transmit feedback signals from visuoparietal cortex to primary visual cortex. (1) WGA-HRP was injected into area 18 to identify inputs from visual structures. In terms of numbers of neurons, feedback projections to area 18 from MS sulcal cortex (areas PMLS, AMLS and PLLS) comprise 26% of inputs from all visual structures. Of these neurons, between 21% and 34.9% are located in upper layers 2–4 and the dominant numbers are located in deep layers 5 and 6. Areas 17 (11.8%) and 19 (11.2%) provide more modest cortical inputs, and another eight areas provide a combined total of 4.3% of inputs. The sum of neurons in all subcompartments of the lateral geniculate nucleus (LGN) accounts for another 34.8% of the input to area 18, whereas inputs from the lateral division of the lateral-posterior nucleus (LPl) account for the final 11.9%. (2) Injection of tritiated-(3H)-amino acids into MS sulcal cortex revealed substantial direct projections from MS cortex that terminated in all layers of area 18, but with a markedly lower density in layer 4. Projections from MS cortex to both areas 17 and 19 are of similar density and characteristics, whereas those to other cortical targets have very low densities. Quantification also revealed minor-to-modest axon projections to all components of LGN and a massive projection throughout the LP-Pul complex. (3) Superposition of the labeled terminal and cell fields identified secondary, compound feedback pathways from MS cortex to area 18. The largest secondary pathway is massive and it includes the LPl nucleus. Much more modest secondary pathways include areas 17 and 19, and LGN. The relative magnitudes of the secondary pathways suggest that the one through LPl exerts a major influence on area 18, whereas the others exert more modest or minor influences. MS cortex in the contralateral hemisphere also innervates area 18 directly. These data are important for interpreting the impact of deactivating feedback projections from visuoparietal cortex on occipital cortex.Abbreviations A layer A of LGN - A1 layer A1 of LGN - ALLS anterolateral visual area of the lateral suprasylvian sulcus (Palmer et al. 1978) - AMLS anteromedial visual area of the lateral suprasylvian sulcus (Palmer et al. 1978) - Aud auditory cortex of the middle ectosylvian gyrus - CC corpus callosum - Cg cingulate gyrus - Cm magnocellular layers of LGN - Cp parvocellular layers of LGN - LGN dorsal lateral geniculate nucleus - LP lateral posterior nucleus - LPl lateral division of the lateral posterior nucleus - LPm medial division of the lateral posterior nucleus (Graybiel and Berson 1980, Berson and Graybiel 1978; Raczkowski and Rosenquist 1983) - MIN medial interlaminar nucleus subdivision of LGN - MS cortex bounding the middle suprasylvian sulcus (areas AMLS, ALLS, PMLS, and PLLS) - OR optic radiation - PE posterior ectosylvian visual cortex - PLLS posterolateral visual area of the lateral suprasylvian sulcus (Palmer et al. 1978) - PMLS posteromedial visual area of the lateral suprasylvian sulcus (Palmer et al. 1978) - Pul pulvinar nucleus - SVA splenial visual area - V1 primary visual cortex - V2 secondary visual cortex - V3 third visual area - V5/MT fifth visual area/middle temporal area - WGA-HRP wheat germ agglutinin conjugated to horseradish peroxidase - Wing wing of LGN - 7 area 7 - 17 area 17 - 18 area 18 - 19 area 19  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号