首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attenuated Salmonella enterica serovar Typhi has been studied as an oral vaccine vector. Despite success with attenuated S. enterica serovar Typhimurium vectors in animals, early clinical trials of S. enterica serovar Typhi expressing heterologous antigens have shown that few subjects have detectable immune responses to vectored antigens. A previous clinical study of phoP/phoQ-deleted S. enterica serovar Typhi expressing Helicobacter pylori urease from a multicopy plasmid showed that none of eight subjects had detectable immune responses to the vectored antigen. In an attempt to further define the variables important for engendering immune responses to vectored antigens in humans, six volunteers were inoculated with 5 x 10(7) to 8 x 10(7) CFU of phoP/phoQ-deleted S. enterica serovar Typhimurium expressing the same antigen. Two of the six volunteers had fever; none had diarrhea, bacteremia, or other serious side effects. The volunteers were more durably colonized than in previous studies of phoP/phoQ-deleted S. enterica serovar Typhi. Five of the six volunteers seroconverted to S. enterica serovar Typhimurium antigens and had strong evidence of anti-Salmonella mucosal immune responses by enzyme-linked immunospot studies. Three of six (three of five who seroconverted to Salmonella) had immune responses in the most sensitive assay of urease-specific immunoglobulin production by blood mononuclear cells in vitro. One of these had a fourfold or greater increase in end-point immunoglobulin titer in serum versus urease. Attenuated S. enterica serovar Typhimurium appears to be more effective than S. enterica serovar Typhi for engendering immune responses to urease. Data suggest that this may be related to a greater stability of antigen-expressing plasmid in S. enterica serovar Typhimurium and/or prolonged intestinal colonization. Specific factors unique to nontyphoidal salmonellae may also be important for stimulation of the gastrointestinal immune system.  相似文献   

2.
目的探讨由2种幽门螺杆菌(Hp)抗原组合的双价疫苗在防治Hp感染中的作用以及减毒鼠伤寒沙门菌作为传递Hp抗原的活疫苗载体的可行性.方法PCR技术扩增尿素酶A亚单位(ureA)和过氧化氢酶(katA)基因片段,构建表达UreA/KatA融合蛋白的重组质粒,重组质粒宿主菌经IPTG诱导,用SDS-PAGE和Westernblot分析UreA/KatA的表达情况.将该重组质粒转入减毒鼠伤寒沙门菌SL3261株中构建重组口服活疫苗株,经口服免疫C57BL/6小鼠,再用Hp悉尼株进行攻击,用快速尿素酶试验和细菌定量培养对胃粘膜中Hp的定植及生长情况进行观察.结果SDS-PAGE电泳图上显示1条相对分子质量(Mr)约108×103的新生蛋白带,占细菌总蛋白的5%,并能与抗GST抗体发生特异性反应.动物实验结果显示,经UreA/KatA双价疫苗免疫的小鼠能有效防御Hp的感染.结论表达UreA/KatA融合蛋白的双价减毒沙门菌疫苗株能诱导抗Hp保护性免疫反应,有望在Hp感染及其相关性疾病的防治中发挥积极作用.  相似文献   

3.
The involvement of nitric oxide (NO) in host defense and cytoprotective functions in murine salmonellosis has been reported. Salmonella mutants with the altered sigma factor RpoS (sigmaS) are less virulent and are susceptible to various stresses. This study investigated the role of the rpoS gene of Salmonella enterica serovar Typhi in NO-dependent host defense in vitro and in vivo. Wild-type mice and mice deficient in inducible NO synthase (iNOS) were infected intraperitoneally or orally with serovar Typhi strains. iNOS-deficient mice were more susceptible to infection by both wild-type and rpoS mutant strains of serovar Typhi and showed extensive apoptotic liver damage compared with wild-type mice. Intracellular killing of Salmonella was analyzed with RAW 264 macrophage-like cells and primary peritoneal macrophages from wild-type and iNOS-deficient mice after cells were infected with the serovar Typhi parent or rpoS mutant strain. The rpoS mutant was more susceptible to killing by macrophages than was the wild-type strain. Also, the wild-type strain produced more extensive apoptotic changes in macrophages than did rpoS mutant. These effects were nullified in RAW 264 cells treated with an NOS inhibitor and in iNOS-deficient primary macrophages. Peroxynitrite susceptibility assays of these strains were also performed. The rpoS mutant Typhi strain was more sensitive to in vitro peroxynitrite treatment than was the parent strain. Together these data show that NO has a significant host defense function during serovar Typhi infection, and that Salmonella RpoS, because it reacts to the presence of NO or its reactive derivatives, is thought to have a role in the pathogenicity of serovar Typhi.  相似文献   

4.
5.
Human papillomavirus (HPV) vaccines based on L1 virus-like particles (VLPs) can prevent HPV-induced genital neoplasias, the precursors of cervical cancer. However, most cervical cancers occur in developing countries, where the implementation of expensive vaccines requiring multiple injections will be difficult. A live Salmonella-based vaccine could be a lower-cost alternative. We previously demonstrated that high HPV type 16 (HPV16)-neutralizing titers are induced after a single oral immunization of mice with attenuated Salmonella enterica serovar Typhimurium strains expressing a codon-optimized version of HPV16 L1 (L1S). To allow the testing of this type of vaccine in women, we constructed a new L1-expressing plasmid, kanL1S, and tested kanL1S recombinants of three Salmonella enterica serovar Typhi vaccine strains shown to be safe in humans, i.e., Ty21a, the actual licensed typhoid vaccine, and two highly immunogenic typhoid vaccine candidates, Ty800 and CVD908-htrA. In an intranasal mouse model of Salmonella serovar Typhi infection, Ty21a kanL1S was unique in inducing HPV16-neutralizing antibodies in serum and genital secretions, while anti-Salmonella responses were similar to those against the parental Ty21a vaccine. Electron microscopy examination of Ty21a kanL1S lysates showed that L1 assembled in capsomers and capsomer aggregates but not well-ordered VLPs. Comparison to the neutralizing antibody response induced by purified HPV16 L1 VLP immunizations in mice suggests that Ty21a kanL1S may be an effective prophylactic HPV vaccine. Ty21a has been widely used against typhoid fever in humans with a remarkable safety record. These finds encourage clinical testing of Ty21a kanL1S as a combined typhoid fever/cervical cancer vaccine with the potential for worldwide application.  相似文献   

6.
Protective immunity against infection with Bacillus anthracis is almost entirely based on a response to the protective antigen (PA), the binding moiety for the two other toxin components. We cloned the PA gene into an auxotrophic mutant of Salmonella enterica serovar Typhimurium as a fusion with the signal sequence of the hemolysin (Hly) A gene of Escherichia coli to allow the export of PA via the Hly export system. To stabilize the export cassette, it was also integrated into the chromosome of the live Salmonella carrier. When S. enterica serovar Typhimurium with the chromosomally integrated PA gene was given intravenously to A/J mice, they developed high levels of antibody to PA. These mice were protected against intraperitoneal challenge with 100 or 1,000 50% lethal doses of B. anthracis strain STI. This work contributes to the development of a Salmonella-based orally delivered anthrax vaccine.  相似文献   

7.
Salmonella enterica serotype Typhi differs from nontyphoidal Salmonella serotypes by its strict host adaptation to humans and higher primates. Since fimbriae have been implicated in host adaptation, we investigated whether the serotype Typhi genome contains fimbrial operons which are unique to this pathogen or restricted to typhoidal Salmonella serotypes. This study established for the first time the total number of fimbrial operons present in an individual Salmonella serotype. The serotype Typhi CT18 genome, which has been sequenced by the Typhi Sequencing Group at the Sanger Centre, contained a type IV fimbrial operon, an orthologue of the agf operon, and 12 putative fimbrial operons of the chaperone-usher assembly class. In addition to sef, fim, saf, and tcf, which had been described previously in serotype Typhi, we identified eight new putative chaperone-usher-dependent fimbrial operons, which were termed bcf, sta, stb, ste, std, stc, stg, and sth. Hybridization analysis performed with 16 strains of Salmonella reference collection C and 22 strains of Salmonella reference collection B showed that all eight putative fimbrial operons of serotype Typhi were also present in a number of nontyphoidal Salmonella serotypes. Thus, a simple correlation between host range and the presence of a single fimbrial operon seems at present unlikely. However, the serotype Typhi genome differed from that of all other Salmonella serotypes investigated in that it contained a unique combination of putative fimbrial operons.  相似文献   

8.
Zhao Z  Xue Y  Wu B  Tang X  Hu R  Xu Y  Guo A  Chen H 《Infection and immunity》2008,76(5):2157-2163
Salmonella enterica serovar Choleraesuis strain C500 is a live, attenuated vaccine that has been used in China for over 40 years to prevent piglet paratyphoid. We compared the protective efficacies of subcutaneous (s.c.) and oral vaccination of BALB/c mice with C500 expressing the recombinant filamentous hemagglutinin type I domain and pertactin region 2 domain antigen (rF1P2) of Bordetella bronchiseptica. Protective efficacy against both S. enterica serovar Choleraesuis infection in an oral fatal challenge model and B. bronchiseptica infection in a model of fatal acute pneumonia was evaluated. Both the s.c. and oral vaccines conferred complete protection against fatal infection with the virulent parent S. enterica serovar Choleraesuis strain (C78-1). All 20 mice vaccinated s.c. survived intranasal challenge with four times the 50% lethal dose of virulent B. bronchiseptica (HH0809) compared with 4 of 20 vector-treated controls and 1 of 18 phosphate-buffered saline-treated controls that survived, but no significant protection against HH0809 was observed in orally vaccinated animals. Both the s.c. and oral vaccines elicited rF1P2-specific serum immunoglobulin G (IgG) and IgA antibodies. However, lung homogenates from s.c. vaccinated animals had detectably high levels of rF1P2-specific IgG and IgA; a much lower level of rF1P2-specific IgG was detected in samples from orally vaccinated mice, and the latter showed no evidence of local IgA. Furthermore, a more abundant and longer persistence of vaccine organisms was observed in the lungs of mice immunized s.c. than in those of mice immunized orally. Our results suggest that s.c. rather than oral vaccination is more efficacious in protecting mice from fatal challenge with B. bronchiseptica.  相似文献   

9.
Two Salmonella enterica serovar Typhi strains that express and export a truncated version of Plasmodium falciparum circumsporozoite surface protein (tCSP) fused to Salmonella serovar Typhi cytolysin A (ClyA) were constructed as a first step in the development of a preerythrocytic malaria vaccine. Synthetic codon-optimized genes (t-csp1 and t-csp2), containing immunodominant B- and T-cell epitopes present in native P. falciparum circumsporozoite surface protein (PfCSP), were fused in frame to the carboxyl terminus of the ClyA gene (clyA::t-csp) in genetically stabilized expression plasmids. Expression and export of ClyA-tCSP1 and ClyA-tCSP2 by Salmonella serovar Typhi vaccine strain CVD 908-htrA were demonstrated by immunoblotting of whole-cell lysates and culture supernatants. The immunogenicity of these constructs was evaluated using a "heterologous prime-boost" approach consisting of mucosal priming with Salmonella serovar Typhi expressing ClyA-tCSP1 and ClyA-tCSP2, followed by parenteral boosting with PfCSP DNA vaccines pVR2510 and pVR2571. Mice primed intranasally on days 0 and 28 with CVD 908-htrA(pSEC10tcsp2) and boosted intradermally on day 56 with PfCSP DNA vaccine pVR2571 induced high titers of serum NANP immunoglobulin G (IgG) (predominantly IgG2a); no serological responses to DNA vaccination were observed in the absence of Salmonella serovar Typhi-PfCSP priming. Mice primed with Salmonella serovar Typhi expressing tCSP2 and boosted with PfCSP DNA also developed high frequencies of gamma interferon-secreting cells, which surpassed those produced by PfCSP DNA in the absence of priming. A prime-boost regimen consisting of mucosal delivery of PfCSP exported from a Salmonella-based live-vector vaccine followed by a parenteral PfCSP DNA boosting is a promising strategy for the development of a live-vector-based malaria vaccine.  相似文献   

10.
We evaluated the efficacy of mutants with a deletion of the stress response protease gene as candidates for live oral vaccine strains against Salmonella infection through infection studies with mice by using a Salmonella enterica serovar Typhimurium mutant with a disruption of the ClpXP or Lon protease. In vitro, the ClpXP protease regulates flagellum synthesis and the ClpXP-deficient mutant strain exhibits hyperflagellated bacterial cells (T. Tomoyasu et al., J. Bacteriol. 184:645-653, 2002). On the other hand, the Lon protease negatively regulates the efficacy of invading epithelial cells and the expression of invasion genes (A. Takaya et al., J. Bacteriol. 184:224-232, 2002). When 5-week-old BALB/c mice were orally administered 5 x 10(8) CFU of the ClpXP- or Lon-deficient strain, bacteria were detected with 10(3) to 10(4) CFU in the spleen, mesenteric lymph nodes, Peyer's patches, and cecum 1 week after inoculation and the bacteria then decreased gradually in each tissue. Significant increases of lipopolysaccharide-specific immunoglobulin G (IgG) and secretory IgA were detected at week 4 and maintained until at least week 12 after inoculation in serum and bile, respectively. Immunization with the ClpXP- or Lon-deficient strain protected mice against oral challenge with the serovar Typhimurium virulent strain. Both the challenged virulent and immunized avirulent salmonellae were completely cleared from the spleen, mesenteric lymph nodes, Peyer's patches, and even cecum 5 days after the challenge. These data indicate that Salmonella with a disruption of the ATP-dependent protease ClpXP or Lon can be useful in developing a live vaccine strain.  相似文献   

11.
Attenuated Salmonella enterica serovar Typhi live vector vaccine strains are highly immunogenic in mice following intranasal but not orogastric inoculation. To elucidate the relationship between organs within which vaccine organisms are found and the induction of specific serum immunoglobulin G (IgG) antibodies, we examined the in vivo distribution of serovar Typhi vaccine strain CVD 908-htrA following intranasal administration. Vaccine organisms were cultured from the nasal lymphoid tissue (NALT), lungs, and Peyer's patches 2 min after intranasal inoculation. Vaccine organisms persisted longer in NALT than in other organs. By decreasing the volume of intranasal inoculum containing 10(9) CFU (from a single 30- or 10-microl dose to four 2.5-microl doses given over the course of 1 h), we were able to significantly reduce the number of vaccine organisms isolated from the lungs (P < 0.05) without reducing the number of vaccine organisms in NALT. Reducing the number of vaccine organisms in the lungs resulted in a significant decrease in the serum tetanus antitoxin response elicited by CVD 908-htrA expressing tetanus toxin fragment C under the control of the redox-responsive nir15 promoter. In contrast, a similar construct expressing tetanus toxin fragment C under control of the constitutive lpp promoter stimulated a strong serum IgG tetanus antitoxin response with both inoculation regimens. The data suggest that following intranasal inoculation, NALT is a sufficient inductive site for elicitation of an immune response against both the live vector and heterologous antigen and, as occurs following oral inoculation of humans, attenuated serovar Typhi vaccine organisms elicit serum IgG responses.  相似文献   

12.
Typhoid fever remains a major health problem in developing countries. Young children are at high risk, and a vaccine effective for this age group is urgently needed. Purified capsular polysaccharide from Salmonella enterica serovar Typhi (Vi) is licensed as a vaccine, providing 50 to 70% protection in individuals older than 5 years. However, this vaccine is ineffective in infants. Vi conjugated to a carrier protein (i.e., an exoprotein A mutant from Pseudomonas aeruginosa [rEPA]) is highly immunogenic, provides long-term protection, and shows more than 90% protective efficacy in children 2 to 5 years old. Here, we describe an alternative glycoconjugate vaccine for S. Typhi, Vi-CRM(197), where Vi was obtained from Citrobacter freundii WR7011 and CRM(197), the mutant diphtheria toxin protein, was used as the carrier. We investigated the optimization of growth conditions for Vi production from C. freundii WR7011 and the immunogenicity of Vi-CRM(197) conjugates in mice. The optimal saccharide/protein ratio of the glycoconjugates was identified for the best antibody production. We also demonstrated the ability of this new vaccine to protect mice against challenge with Vi-positive Salmonella enterica serovar Typhimurium.  相似文献   

13.
Heat shock proteins (Hsps) represent dominant antigens in numerous microbial infections, suggesting a potential use of pathogen-derived Hsps for vaccination. The present study evaluates the immunogenicity and protective efficacy of groEL (Hsp60) of Salmonella enterica serovar Typhi against lethal challenge by S. Typhi Ty2 and Salmonella enterica serovar Typhimurium in mice. The groEL gene was cloned and expressed in Escherichia coli BL21 and purified by affinity chromatography. Immunization of mice with groEL resulted in a significant increase in antibody titers. Antibody isotyping revealed that groEL immunization induces both IgG1 and IgG2a antibodies. There was a significant increase in lymphocyte proliferation, interleukin-4 and interferon-gamma levels in cells isolated from immunized mice as compared to control. Immunization of mice with recombinant groEL protein with or without adjuvant conferred 70-90% protection against lethal infections either by S. Typhi Ty2 or S. Typhimurium. Passive immunization with anti-groEL sera also protected 50% mice against lethal infection.  相似文献   

14.
Infection with Salmonella spp. is a significant source of disease globally. A substantial proportion of these infections are caused by Salmonella enterica serovar Typhimurium. Here, we characterize the role of the enterobacterial common antigen (ECA), a surface glycolipid ubiquitous among enteric bacteria, in S. Typhimurium pathogenesis. Construction of a defined mutation in the UDP-N-acetylglucosamine-1-phosphate transferase gene, wecA, in two clinically relevant strains of S. Typhimurium, TML and SL1344, resulted in strains that were unable to produce ECA. Loss of ECA did not affect the gross cell surface ultrastructure, production of lipopolysaccharide (LPS), flagella, or motility. However, the wecA mutant strains were attenuated in both oral and intraperitoneal mouse models of infection (P<0.001 for both routes of infection; log rank test), and virulence could be restored by complementation of the wecA gene in trans. Despite the avirulence of the ECA-deficient strains, the wecA mutant strains were able to persistently colonize systemic sites (spleen and liver) at moderate levels for up to 70 days postinfection. Moreover, immunization with the wecA mutant strains provided protection against a subsequent lethal oral or intraperitoneal challenge with wild-type S. Typhimurium. Thus, wecA mutant (ECA-negative) strains of Salmonella may be useful as live attenuated vaccine strains or as vehicles for heterologous antigen expression.  相似文献   

15.
Pseudomonas aeruginosa is a leading cause of nosocomial pneumonia. We compared the efficacies of oral and intraperitoneal (i.p.) vaccinations of BALB/c mice with attenuated Salmonella enterica serovar Typhimurium SL3261 expressing P. aeruginosa serogroup O11 O antigen to protect against P. aeruginosa infection in an acute fatal pneumonia model. Oral and i.p. vaccines elicited O11-specific serum immunoglobulin G (IgG) antibodies, but IgA was observed only after oral immunization. Challenge of orally vaccinated mice with an O11 strain (9882-80) at 6 and 12 times the 50% lethal dose showed increased survival in mice that received the vaccine compared to phosphate-buffered saline (PBS)- and vector-treated controls; no difference in survival was seen with a heterologous strain, 6294 (serogroup O6). In addition, significant protection against 9882-80 was not observed in i.p. vaccinated animals. Bronchoalveolar lavage fluid taken from immunized mice harbored O11-specific IgA and IgG in orally immunized mice but only modest levels of IgG in i.p. vaccinated mice. To correlate protection, opsonophagocytosis assays were performed with pooled sera from orally immunized animals. Efficient killing of five O11 clinical isolates was observed, while no killing was noted with 6294, indicating that the recombinant SL3261 oral vaccine induces an O11-specific reaction. We next determined the ability of orally vaccinated animals to clear bacteria from their lungs. Following P. aeruginosa challenge, the numbers of viable bacteria were significantly fewer in orally vaccinated animals than in PBS- and vector-treated controls. Our results suggest that oral immunization with recombinant SL3261 is efficacious in protection against pneumonia caused by P. aeruginosa.  相似文献   

16.
Systemic and mucosal antibody responses against both the major subunit of colonization factor antigen I (CFA/I) of enterotoxigenic Escherichia coli (ETEC) and the somatic lipopolysaccharide expressed by recombinant bivalent Salmonella vaccine strains were significantly enhanced by coadministration of a detoxified derivative with preserved adjuvant effects of the ETEC heat-labile toxin, LT((R192G)). The results further support the adjuvant effects of LT((R192G)) and represent a simple alternative to improve responses against passenger antigens expressed by orally delivered Salmonella vaccine strains.  相似文献   

17.
To stimulate both local and systemic immune responses against Trypanosoma cruzi, Salmonella enterica serovar Typhimurium aroA was exploited as a DNA delivery system for cruzipain (SCz). In a murine model we compared SCz alone (GI) or coadministered with Salmonella carrying a plasmid encoding granulocyte-macrophage colony-stimulating factor (GII), as well as protocols in which SCz priming was followed by boosting with recombinant cruzipain (rCz) admixed with either CpG-ODN (GIII) or MALP-2, a synthetic derivative of a macrophage-activating lipopeptide of 2 kDa from Mycoplasma fermentans (GIV). The results showed that protocols that included four oral doses of SCz (GI) elicited mainly a mucosal response characterized by immunoglobulin A (IgA) secretion and proliferation of gut-associated lymphoid tissue cells, with weak systemic responses. In contrast, the protocol that included a boost with rCz plus CpG (GIII) triggered stronger systemic responses in terms of Cz-specific serum IgG titers, splenocyte proliferation, gamma interferon (IFN-γ) secretion, and delayed-type hypersensitivity response. Trypomastigote challenge of vaccinated mice resulted in significantly lower levels of parasitemia compared to controls. Protection was abolished by depletion of either CD4+ or CD8+ T cells. Parasite control was also evident from the reduction of tissue damage, as revealed by histopathologic studies and serum levels of enzymes that are markers of muscle injury in chronic Chagas' disease (i.e., creatine kinase, aspartate aminotransferase, and lactate dehydrogenase). Enhanced release of IFN-γ and interleukin-2 was observed in GI and GII upon restimulation of splenocytes in the nonparasitic phase of infection. Our results indicate that Salmonella-mediated delivery of Cz-DNA by itself promotes the elicitation of an immune response that controls T. cruzi infection, thereby reducing parasite loads and subsequent damage to muscle tissues.  相似文献   

18.
Recombinant Salmonella strains expressing foreign heterologous genes have been extensively studied as live oral vaccine delivery vectors. We have investigated the mucosal and systemic immune responses following oral immunization with a recombinant Salmonella enterica serovar Typhimurium expressing the hemagglutinin HagB from Porphyromonas gingivalis, a suspected etiological agent of adult periodontal disease. We have previously shown a primary mucosal and systemic response following oral immunization with chi4072/pDMD1 and recall responses following boosting at 14 weeks after primary immunization. In this study, we examined the effects of earlier boosting as well as the effects of deliberately induced immunity to the Salmonella carrier strain on subsequent immune responses. Mice boosted at week 7 following immunization, a point which corresponded to the peak of the primary response, generally showed lower responses than those boosted at week 14. When mice were preimmunized with the Salmonella carrier alone and then immunized with the recombinant strain 7 or 14 weeks later, significant reductions were seen for serum immunoglobulin G (IgG) antibodies at week 14 and for salivary IgA at week 7. No reductions were seen in serum IgA or vaginal wash IgA antibodies. Mice appear to be refractory to boosting with orally administered salmonellae at 7 weeks. Deliberate immunization with the carrier strain did not appreciably affect recall responses at 14 weeks, with the exception of the serum IgG responses, nor did it affect colonization of the Peyer's patches.  相似文献   

19.
Live-attenuated Salmonella species are effective carriers of microbial antigens and DNA vaccines. In a mouse model, the immunoglobulin M (IgM) and total antibody levels directed toward the lipopolysaccharide of Salmonella enterica serovar Typhi were significantly enhanced at day 21 after oral immunization with live-attenuated serovar Typhi (strain Ty21a) when ampicillin was concomitantly administered (P < 0.05 and P < 0.005, respectively). The heat-killed Ty21a-stimulated lymphocyte proliferation indices for the ampicillin group at day 21 were significantly higher than those for the normal saline (NS) group (P < 0.005, P < 0.001, and P < 0.01) for all three doses of antigen (10(4), 10(5), and 10(6) heat-killed Ty21a per well, respectively). The 50% lethal doses for mice from the ampicillin and NS groups immunized with Ty21a with pBR322 after wild-type serovar Typhi challenge on day 24 were 3.4 x 10(7) and 5.0 x 10(6) CFU, respectively. The fecal bacterial counts for the ampicillin group at days 1, 3, and 5 were significantly lower than those for the NS group (P < 0.01, P < 0.01, and P < 0.05, respectively), and there was a trend toward recovery of Ty21a in a larger number of mice from the ampicillin group than from the NS group. Furthermore, the IgG2a levels directed toward tetanus toxoid were significantly enhanced at days 7 and 21 after oral immunization with Ty21a that carried the fragment c of tetanus toxoid when ampicillin was concomitantly administered (P < 0.05 and P < 0.005, respectively), and the IgM and total hepatitis B surface antibody levels were significantly enhanced at days 7 (P < 0.005 and P < 0.05, respectively) and 21 (P < 0.01 and P < 0.05, respectively) after oral immunization with Ty21a that carried the DNA vaccine that encodes hepatitis B surface antigen when ampicillin was concomitantly administered. The present observation may improve the efficacy of the protein antigens and DNA vaccines carried in live-attenuated bacteria, and further experiments should be carried out to determine the best antibiotics and dosage regimen to be used, as well as the best carrier system for individual protein antigens and DNA vaccines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号