首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Leukodystrophies represent a heterogeneous group of rare hereditary diseases affecting the central nervous system. The underlying molecular defect remains unknown in almost 50% of cases. We previously assigned a new locus for leukodystrophy of unknown cause to chromosome 11q14.3 by identifying a de novo microdeletion in a sporadic case. We now report the precise molecular characterization of this microdeletion. Physical mapping of the region of interest allowed us to identify and analyze candidate gene(s) possibly implicated in leukodystrophy.  相似文献   

4.
5.
Array-based technologies have led to the identification of many novel microdeletion and microduplication syndromes demonstrating multiple congenital anomalies and intellectual disability (MCA/ID). We have used chromosomal microarray analysis for the evaluation of patients with MCA/ID and/or neonatal hypotonia. Three overlapping de novo microdeletions at 5q31.3 with the shortest region of overlap (SRO) of 370?kb were detected in three unrelated patients. These patients showed similar clinical features including severe neonatal hypotonia, neonatal feeding difficulties, respiratory distress, characteristic facial features, and severe developmental delay. These features are consistent with the 5q31.3 microdeletion syndrome originally proposed by Shimojima et al., providing further evidence that this syndrome is clinically discernible. The 370?kb SRO encompasses only four RefSeq genes including neuregulin 2 (NRG2) and purine-rich element binding protein A (PURA). NRG2 is one of the members of the neuregulin family related to neuronal and glial cell growth and differentiation, thus making NRG2 a good candidate for the observed phenotype. Moreover, PURA is also a good candidate because Pura-deficient mice demonstrate postnatal neurological manifestations.  相似文献   

6.
Intellectual Disability (ID) is a clinically heterogeneous condition that affects 2–3% of population worldwide. In recent years, exome sequencing has been a successful strategy for studies of genetic causes of ID, providing a growing list of both candidate and validated ID genes. In this study, exome sequencing was performed on 28 ID patients in 27 patient‐parent trios with the aim to identify de novo variants (DNVs) in known and novel ID associated genes. We report the identification of 25 DNVs out of which five were classified as pathogenic or likely pathogenic. Among these, a two base pair deletion was identified in the PUF60 gene, which is one of three genes in the critical region of the 8q24.3 microdeletion syndrome (Verheij syndrome). Our result adds to the growing evidence that PUF60 is responsible for the majority of the symptoms reported for carriers of a microdeletion across this region. We also report variants in several genes previously not associated with ID, including a de novo missense variant in NAA15. We highlight NAA15 as a novel candidate ID gene based on the vital role of NAA15 in the generation and differentiation of neurons in neonatal brain, the fact that the gene is highly intolerant to loss of function and coding variation, and previously reported DNVs in neurodevelopmental disorders.  相似文献   

7.
8.
Over the past decade chromosomal microarray analysis (array CGH) has allowed the discovery of many novel disease‐causing recurrent microdeletion and microduplication syndromes. Here we present three unrelated patients (2F; 1M) from three different countries, with developmental delay, intellectual disability, hypotonia, fatigue, and highly similar dysmorphic facial features. Shared facial features are a broad and wide forehead, similar shape of the eyes with long palpebral fissures, a bulbous tip of the nose and thick lips. Intellectual disabilities range from mild to severe. One female patient and the male patient were investigated in childhood for significant hypotonia thought to be suggestive of a neuromuscular disorder. The two female patients also show excessive fatigue with daytime somnolence. The patients carry overlapping, de novo microdeletions of chromosome 17q11.2, with sizes ranging from 0.97 to 1.18 Mb. The smallest region of overlap (SRO) between the three patients is 863 kb, and contains seven genes, five of which are predicted to exhibit haploinsufficiency (CDK5R1, PSMD11, RHOT1, SUZ12, ZNF207) although none has yet been associated with genetic syndromes. Of these five genes, the brain expressed CDK5R1 gene constitutes a good candidate for the developmental delay, while the RHOT1 gene, involved in mitochondrial trafficking, might underlie the hypotonia and the excessive fatigue.  相似文献   

9.
This report presents two families with interstitial 11q24.2q24.3 deletion, associated with malformations, hematologic features, and typical facial dysmorphism, observed in Jacobsen syndrome (JS), except for intellectual disability (ID). The smallest 700 Kb deletion contains only two genes: FLI1 and ETS1, and a long noncoding RNA, SENCR, narrowing the minimal critical region for some features of JS. Consistent with recent literature, it adds supplemental data to confirm the crucial role of FLI1 and ETS1 in JS, namely FLI1 in thrombocytopenia and ETS1 in cardiopathy and immune deficiency. It also supports that combined ETS1 and FLI1 haploinsufficiency explains dysmorphic features, notably ears, and nose anomalies. Moreover, it raises the possibility that SENCR, a long noncoding RNA, could be responsible for limb defects, because of its early role in endothelial cell commitment and function. Considering ID and autism spectrum disorder, which are some of the main features of JS, a participation of ETS1, FLI1, or SENCR cannot be excluded. But, considering the normal neurodevelopment of our patients, their role would be either minor or with an important variability in penetrance. Furthermore, according to literature, ARHGAP32 and KIRREL3 seem to be the strongest candidate genes in the 11q24 region for other Jacobsen patients.  相似文献   

10.
Deletion of chromosome 3q29, which is associated with mental retardation and autism, was recently identified as being present in excess or occurring de novo in schizophrenia cases, being present in approximately 1/1,000 cases and 1/40,000 unscreened controls. Of the ~20 genes in the commonly deleted region two are prominent candidates for involvement in the behavioral features of the microdeletion syndrome: DLG1 and PAK2. We report the result of mutation screening of the entire protein coding sequence of both genes in a sample of 234 unrelated cases and 272 unrelated controls from the UK. We find no evidence for any amino acid changing genetic variants in PAK2. We observe several rare and singleton non‐synonymous genetic variations at DLG1, however there is no excess of these variants in cases when compared to controls. Our sample was underpowered to detect very rare or low‐penetrance disease relevant alleles in the studied genes. Therefore very rare, low‐to‐moderate penetrance protein coding mutations or non‐coding mutations at DLG1 and/or PAK2, or a nearby gene, may reproduce the behavioral characteristics of the 3q29 microdeletion. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Microdeletions in the 22q11 region are associated with a wide range of overlapping phenotypes. The main manifestations of the syndrome include palatal anomalies such as cleft palate or velopharyngeal insufficiency, conotruncal heart defects, hypocalcemia, immune disorders, and minor facial anomalies. Because of the wide variability, facial changes appear to be the most constant manifestation of the syndrome and characteristic for informed physicians. The purpose of this study is to report the preliminary results of a detailed analysis of anthropometric data (35 measurements) in 15 patients (7 females and 8 males between 5 and 38 years of age, all white Europeans) with a 22q11 microdeletion. Objective anthropometric study showed that 19 measurements and 7 indexes were significantly different between 22q11 patients and normative database. The typical face showed a short forehead with an anterior vertical excess. Downslanting eyes and large binocular width were the most common anomalies in the orbital area. The nose showed anomalies with a large root, a short tip, and a narrow alar base. There was a narrowing of the mouth and thin lips. Ears were small and slightly disharmonic for the children. Statistical comparison between children (10 cases) and adults (5 cases) showed that craniofacial assessment was more demonstrative in children than in adults. © 2001 Wiley‐Liss. Inc.  相似文献   

12.
Several genome‐wide association studies (GWASs) in Caucasian populations have identified 12 loci that are significantly associated with migraine. More evidence suggests that serotonin receptors are also involved in migraine pathophysiology. In the present study, a case–control study was conducted in a cohort of 581 migraine cases and 533 ethnically matched controls among a Chinese population. Eighteen polymorphisms from serotonin receptors and GWASs were selected, and genotyping was performed using a Sequenom MALDI‐TOF mass spectrometry iPLEX platform. The genotypic and allelic distributions of MEF2D rs2274316 and ASTN2 rs6478241 were significantly different between migraine patients and controls. Univariate and multivariate analysis revealed significant associations of polymorphisms in the MEF2D and ASTN2 genes with migraine susceptibility. MEF2D, PRDM16 and ASTN2 were also found to be associated with migraine without aura (MO) and migraine with family history. And, MEF2D and ASTN2 also served as genetic risk factors for the migraine without family history. The generalized multifactor dimensionality reduction analysis identified that MEF2D and HTR2E constituted the two‐factor interaction model. Our study suggests that the MEF2D, PRDM16 and ASTN2 genes from GWAS are associated with migraine susceptibility, especially MO, among Chinese patients. It appears that there is no association with serotonin receptor related genes.  相似文献   

13.
The clinical use of array comparative genomic hybridization in the evaluation of patients with multiple congenital anomalies and/or mental retardation has recently led to the discovery of a number of novel microdeletion and microduplication syndromes. We present four male patients with overlapping molecularly defined de novo microdeletions of 16q24.3. The clinical features observed in these patients include facial dysmorphisms comprising prominent forehead, large ears, smooth philtrum, pointed chin and wide mouth, variable cognitive impairment, autism spectrum disorder, structural anomalies of the brain, seizures and neonatal thrombocytopenia. Although deletions vary in size, the common region of overlap is only 90 kb and comprises two known genes, Ankyrin Repeat Domain 11 (ANKRD11) (MIM 611192) and Zinc Finger 778 (ZNF778), and is located approximately 10 kb distally to Cadherin 15 (CDH15) (MIM 114019). This region is not found as a copy number variation in controls. We propose that these patients represent a novel and distinctive microdeletion syndrome, characterized by autism spectrum disorder, variable cognitive impairment, facial dysmorphisms and brain abnormalities. We suggest that haploinsufficiency of ANKRD11 and/or ZNF778 contribute to this phenotype and speculate that further investigation of non-deletion patients who have features suggestive of this 16q24.3 microdeletion syndrome might uncover other mutations in one or both of these genes.  相似文献   

14.
15.
Intellectual disability affects about 3% of individuals globally, with∼50% idiopathic. We designed an exonic-resolution array targeting all known submicroscopic chromosomal intellectual disability syndrome loci, causative genes for intellectual disability, and potential candidate genes, all genes encoding glutamate receptors and epigenetic regulators. Using this platform, we performed chromosomal microarray analysis on 165 intellectual disability trios (affected child and both normal parents). We identified and independently validated 36 de novo copy-number changes in 32 trios. In all, 67% of the validated events were intragenic, involving only exon 1 (which includes the promoter sequence according to our design), exon 1 and adjacent exons, or one or more exons excluding exon 1. Seventeen of the 36 copy-number variants involve genes known to cause intellectual disability. Eleven of these, including seven intragenic variants, are clearly pathogenic (involving STXBP1, SHANK3 (3 patients), IL1RAPL1, UBE2A, NRXN1, MEF2C, CHD7, 15q24 and 9p24 microdeletion), two are likely pathogenic (PI4KA, DCX), two are unlikely to be pathogenic (GRIK2, FREM2), and two are unclear (ARID1B, 15q22 microdeletion). Twelve individuals with genomic imbalances identified by our array were tested with a clinical microarray, and six had a normal result. We identified de novo copy-number variants within genes not previously implicated in intellectual disability and uncovered pathogenic variation of known intellectual disability genes below the detection limit of standard clinical diagnostic chromosomal microarray analysis.  相似文献   

16.
《Genetics in medicine》2014,16(1):40-44
PurposeHypocalcemia is a common endocrinological condition in 22q11.2 deletion syndrome. Neonatal hypocalcemia may affect neurodevelopment. We hypothesized that neonatal hypocalcemia would be associated with rare, more severe forms of intellectual disability in 22q11.2 deletion syndrome.MethodsWe used a logistic regression model to investigate potential predictors of intellectual disability severity, including neonatal hypocalcemia, neonatal seizures, and complex congenital heart disease, e.g., interrupted aortic arch, in 149 adults with 22q11.2 deletion syndrome. Ten subjects had moderate-to-severe intellectual disability.ResultsThe model was highly significant (P < 0.0001), showing neonatal seizures (P = 0.0018) and neonatal hypocalcemia (P = 0.047) to be significant predictors of a more severe level of intellectual disability. Neonatal seizures were significantly associated with neonatal hypocalcemia in the entire sample (P < 0.0001), regardless of intellectual level. There was no evidence for the association of moderate-to-severe intellectual disability with other factors such as major structural brain malformations in this sample.ConclusionThe results suggest that neonatal seizures may increase the risk for more severe intellectual deficits in 22q11.2 deletion syndrome, likely mediated by neonatal hypocalcemia. Neonatal hypocalcemia often remains unrecognized until the postseizure period, when damage to neurons may already have occurred. These findings support the importance of early recognition and treatment of neonatal hypocalcemia and potentially neonatal screening for 22q11.2 deletions.Genet Med16 1, 40–44.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号