首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The CREM system in human spermatogenesis   总被引:3,自引:0,他引:3  
  相似文献   

4.
5.
6.
The gene for estrogen receptor-alpha (ERalpha) was disrupted in embryonic stem cells by homologous recombination and these cells were used to generate mice with a targeted mutation in the ERalpha gene (alphaERKO mice). It was found that males homozygous for the mutation are infertile, indicating that estrogen signaling through this nuclear hormone receptor is required for male reproductive function. Although spermatogenesis appears normal in juvenile and young adult alphaERKO mice, the sperm produced are unable to fertilize eggs in vitro. To determine whether ERalpha is required by somatic or germ cells in the male reproductive tract, we transplanted germ cells from homozygous mutant (ERalpha(-/-)) males to the testes of wild-type (ERalpha(+/+)) males depleted of germ cells by busulfan treatment. The recipients ('surrogate fathers') sired offspring heterozygous for the mutation (ERalpha(+/-)) and carrying the coat-color marker of the infertile donor males. This indicated that ERalpha(-/-) germ cells are able to produce sperm competent to fertilize when they are supported by ERalpha(+/+) somatic cells. When ERalpha(+/-) offspring produced by germ cell transplantation were mated to produce ERalpha(-/-) males, these mice were found to have the same phenotype as originally reported for alphaERKO males. These studies showed that male germ cells do not require ERalpha for regulation of their own genes for development and function, and strongly imply that somatic cells of the male reproductive tract require ERalpha to support the production of sperm that are capable of fertilization.  相似文献   

7.
8.
9.
10.
Polyadenylation, the process of eukaryotic mRNA 3' end formation, is essential for gene expression and cell viability. Polyadenylation of male germ cell mRNAs is unusual, exhibiting increased alternative polyadenylation, decreased AAUAAA polyadenylation signal use, and reduced downstream sequence element dependence. CstF-64, the RNA-binding component of the cleavage stimulation factor (CstF), interacts with pre-mRNAs at sequences downstream of the cleavage site. In mammalian testes, meiotic XY-body formation causes suppression of X-linked CstF-64 expression during pachynema. Consequently, an autosomal paralog, tauCstF-64 (gene name Cstf2t), is expressed during meiosis and subsequent haploid differentiation. Here we show that targeted disruption of Cstf2t in mice causes aberrant spermatogenesis, specifically disrupting meiotic and postmeiotic development, resulting in male infertility resembling oligoasthenoteratozoospermia. Furthermore, the Cstf2t mutant phenotype displays variable expressivity such that spermatozoa show a broad range of defects. The overall phenotype is consistent with a requirement for tauCstF-64 in spermatogenesis as indicated by the significant changes in expression of thousands of genes in testes of Cstf2t(-/-) mice as measured by microarray. Our results indicate that, although the infertility in Cstf2t(-/-) males is due to low sperm count, multiple genes controlling many aspects of germ-cell development depend on tauCstF-64 for their normal expression. Finally, these transgenic mice provide a model for the study of polyadenylation in an isolated in vivo system and highlight the role of a growing family of testis-expressed autosomal retroposed variants of X-linked genes.  相似文献   

11.
12.
The cAMP response element binding protein (CREB) and the cAMP-responsive element modulator (CREM) are cyclically expressed at high levels during spermatogenesis. Cyclical expression of CREB and CREM in germ and somatic Sertoli cells correlates with the fluctuations in cAMP signaling induced by the pituitary gonadotropic hormones FSH and LH both during sexual maturation of the testis and during the 12-day cycles of spermatogenesis that occur in the adult testis. CREB and CREM are expressed at different times during the spermatogenic cycle, undergo programmed sequential switches from activator to repressor isoforms by mechanisms of alternative exon splicing and promoter usage, and are autoregulated by cAMP signaling in opposing directions. cAMP response elements located in the promoter of the CREB gene upregulate the expression of activator CREBs, whereas cAMP autoregulatory response elements in the internal promoter of the CREM gene induce expression of repressor CREM isoforms. The complex mechanisms for the regulation of the expression of CREB and CREM in the testis appear to reflect critical adaptations for regulating key target genes essential for the development of germ cells.  相似文献   

13.
14.
15.
16.
17.
18.
Doerksen T  Benoit G  Trasler JM 《Endocrinology》2000,141(9):3235-3244
Genomic methylation patterns originate during gametogenesis and are postulated to be involved in important developmental events, including gene regulation, embryogenesis, and genomic imprinting. In previous work, treatment of male rats with 5-azacytidine, a drug that blocks DNA methylation, resulted in abnormal embryo development when germ cells were exposed throughout spermatogenesis, encompassing mitotic, meiotic, and postmeiotic development, but not if they were only exposed postmeiotically. To explore the mechanisms underlying the effects of 5-azacytidine on sperm function, we determined the effects of the drug on testicular morphology, assessed whether exposure of meiotic spermatocytes resulted in abnormal pregnancy outcome, and examined the role of germ cell genomic demethylation in mediating the effects of 5-azacytidine on spermatogonia and spermatocytes. Male Sprague Dawley rats were treated three times a week with saline or 5-azacytidine (2.5 and 4.0 mg/kg) for 6 weeks (meiotic and postmeiotic germ cell exposure) and 11 weeks (mitotic, meiotic, and postmeiotic exposure). Six weeks of paternal treatment with the highest dose of 5-azacytidine resulted in an increase in preimplantation loss (corpora lutea minus implantation sites) without affecting testicular morphology or altering sperm DNA methylation levels. Eleven weeks of 5-azacytidine treatment at doses that cause preimplantation loss resulted in severe abnormalities of the seminiferous tubules, such as degeneration and loss of germ cells, atrophy of seminiferous tubules, presence of multinuclear giant cells, and sloughing of immature germ cells into the lumen, and a 22-29% decrease in genomic methylation levels in epididymal sperm. On closer evaluation of testicular histology using terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end-labeling detection in situ, both 6 and 11 weeks of 5-azacytidine treatment resulted in an increase over the control value in the number of apoptotic germ cells in the seminiferous tubules. Analysis of DNA methylation levels in isolated germ cells of treated males indicated that spermatogonia were more susceptible to the hypomethylating effects of 5-azacytidine than were spermatocytes. These studies provide evidence of an association between demethylation of germ cell DNA and alterations in testicular histology.  相似文献   

19.
In addition to the five 70-kDa heat shock proteins (HSP70) common to germ cells and somatic tissues of mammals, spermatogenic cells synthesize HSP70-2 during meiosis. To determine if this unique stress protein has a critical role in meiosis, we used gene-targeting techniques to disrupt Hsp70-2 in mice. Male mice homozygous for the mutant allele (Hsp70-2 -/-) did not synthesize HSP70-2, lacked postmeiotic spermatids and mature sperm, and were infertile. However, neither meiosis nor fertility was affected in female Hsp70-2 -/- mice. We previously found that HSP70-2 is associated with synaptonemal complexes in the nucleus of meiotic spermatocytes from mice and hamsters. While synaptonemal complexes assembled in Hsp70-2 -/- spermatocytes, structural abnormalities became apparent in these cells by late prophase, and development rarely progressed to the meiotic divisions. Furthermore, analysis of nuclei and genomic DNA indicated that the failure of meiosis in Hsp70-2 -/- mice was coincident with a dramatic increase in spermatocyte apoptosis. These results suggest that HSP70-2 participates in synaptonemal complex function during meiosis in male germ cells and is linked to mechanisms that inhibit apoptosis.  相似文献   

20.
A voltage-gated ion channel expressed specifically in spermatozoa   总被引:13,自引:0,他引:13       下载免费PDF全文
Calcium ions play a primary role in the regulation of sperm cell behavior. We report finding a voltage-gated ion channel (CatSper2) that is expressed in male germ cells but not in other cells. The putative channel contains 6 transmembrane segments, making it more similar to the voltage-gated potassium channels, but the ion selectivity pore domain sequence resembles that of a Ca(v) channel. The mRNA is expressed during the meiotic or postmeiotic stages of spermatogenesis, and the protein is localized to the sperm flagellum, suggesting a role in the regulation of sperm motility. The mRNA for the channel is present in mouse, rat, and human sperm cells, and the gene is found on chromosome 2 E5-F1 in the mouse and 15q13 in the human. Recently, another voltage-gated channel (CatSper) that has features similar to the one reported here was discovered. It also is expressed within the flagellum and is required for normal fertility of mice. However, expression of CatSper2 alone or coexpression with CatSper in cultured cells, or attempts to coimmunoprecipitate the two proteins from germ cells failed to demonstrate that these two unique but similar alpha-like subunits form either a homo- or heterotetramer. It is possible, therefore, that two independent alpha subunits, different from other known voltage-gated channels, regulate sperm motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号