共查询到20条相似文献,搜索用时 0 毫秒
1.
The Taita No. 1 ventricular assist device (T-VAD) is a totally implantable pulsatile impeller centrifugal pump driven by a magnetically suspended motor. The flow can achieve 2.01 +/- 0.17 L/min against a pressure of 100 mm Hg under 0.266 +/- 0.017 amp and 13.55 +/- 0.41 voltage. The speed was around 3,500 rpm. It consumed less than 6 W of power, resulting in less heat production and mechanical bearing complications. The impeller vane was designed to have both radial and axial curves according to the stream surface and stream lines to reduce thrombosis and hemolysis. Eight calves weighing 80 to 100 kg (mean 87 +/- 12 kg) were used for experiments. With the calves under general anesthesia, left posterolateral thoracotomy was performed to connect the inflow tube with the atrial appendage and to anastomose the outflow tube with the descending aorta. The calves usually awoke and stood up within hours after discontinuation of anesthetics. The mean survival of the calves was 75 +/- 42 days (range 33-148 days). The terminations of experiments were mainly due to infection. During the course of pumping, no significant deterioration of liver or renal function was noted. The evaluation of serum samples from the implanted calves indicated that hemolysis was not associated with use of the T-VAD. The average daily free hemoglobin level was 8.08 +/- 3.05 mg/dl, which was less than the set limit of 20 mg/dl. The red blood cell and platelet count and hemoglobin of implanted animals were within the normal range. In our results, the T-VAD provided competent pulsatile function without severe blood damage or organ dysfunction. 相似文献
2.
Tomoyuki Yambe Naoki Owada Shin-ichi Kobayashi Taro Sonobe Shigeru Naganuma Shunsuke Nanka Hiroyuki Hashimoto Makoto Yoshizawa† Kou-ichi Tabayashi‡ Hideki Takayasu§ Hiroshi Takeda§§ & Shin-ichi Nitta 《Artificial organs》1998,22(5):426-429
Abstract Aiming at a totally implantable ventricular assist device (VAD), a vibrating flow pump (VFP) was developed in Tohoku University. A transcutaneous energy transmission system (TETS) using an amorphous fiber was developed for the totally implantable VAD system. The VFP works with a higher frequency than the natural heart of a biological system, a frequency of 10–50 Hz. In this research, animal experiments on left heart bypass were performed with healthy goats. Blood from the apex of the left ventricle was received and was sent to the aorta so that an adequate supporting effect of the left heart was provided. In particular, the depression effect of the left ventricle was obvious. As a result, sufficient artificial heart flow was provided. For a totally implantable type VAD, left heart bypass of almost 100% may become necessary in some situations. Therefore, apex approaches of left heart bypass may be desirable. From an anatomical consideration, an apex of the heart is suitable for the VFP of this totally implantable type. In the left heart bypass for which the apex of the heart was used, an almost 100% bypass was possible. This is a requirement that is important when waiting for recovery of sufficient cardiac function. It is also important that left heart circulation is maintained fully by an artificial heart of the complete implantation type. The VFP was considered to be useful as a totally implantable type artificial heart from the results. 相似文献
3.
Shin-ichi Nitta Tomoyuki Yambe Taro Sonobe Shigeru Naganuma Yoshito Kakinuma Shin-ichi Kobayashi Motonao Tanaka Hidetoshi Matsuki Ken-ichi Abe Makoto Yoshizawa† Takeshi Kasai‡ Hiroyuki Hashimoto‡ 《Artificial organs》1995,19(7):676-679
Abstract: A totally implantable ventricular assist system (VAS), including a drive system and a percutaneous electric energy transmission system, was developed and evaluated in acute animal experiments using adult goats. This newly designed VAS mainly consists of a vibrating tube, coils, magnets, and a jelly-fish valve as the outlet valve. For energy transmission, a new implantable transmitter with a plain weave structure was proposed as a noncon-tacting transform by using the spinal amorphous magnetic fibers. The fluid mechanical and hemodynamic properties and the efficiency of the energy transmission system were evaluated in acute animal experiments using healthy adult goats. This vibrating electromagnetic artificial heart (AH) could generate more than 10 L/min as output volume, with 10 Hz vibration using 20 volts as supplied voltage. The total efficiency of the percutaneous energy transmission system was 76%, and temperature increases were within the acceptable range, suggesting the usefulness of our newly developed implantable VAS. 相似文献
4.
Design, development, and first in vivo results of an implantable ventricular assist device, MicroVad 总被引:4,自引:0,他引:4
Kerkhoffs W Schumacher O Meyns B Verbeken E Leunens V Bollen H Reul H 《Artificial organs》2004,28(10):904-910
The design concept and first in vitro and in vivo results of a long-term implantable ventricular assist device system based on a microaxial blood pump are presented. The blood-immersed parts of the pump consist of a single-stage impeller and a proximally integrated microelectric motor. Both parts are surrounded by a pump housing currently made of polycarbonate to allow visible access to the blood-exposed parts. A titanium inflow cage attached to the tip of the housing is directly implanted into the left ventricular apex. The outflow of the pump is connected to the descending aorta by means of an e-PTFE graft. The overall dimensions of the device are 12 mm in outer diameter and about 50 mm in length. The calculated lifetime of the device is up to 2 years. The system underwent long-term durability tests, hydraulic performance tests, dynamic stability tests, and in vitro hemolysis and thrombogenicity tests. Furthermore, animal tests have been performed in adult Dorset sheep. In a first series, the pump has been placed extracorporeally; in a second series, the pump was completely implanted. Mean duration of the animal experiments of the second series was 31 days (range 8-110 days, n=14); no anticoagulation was administered over the whole test period. Blood data revealed no significant changes in blood cell counts, ionogram, or any other value. No end-organ dysfunction induced by long-term support could be observed, nor did the pathology reveal any evidence of thromboembolic complications. 相似文献
5.
Tomoyuki Yambe Satoyoshi Kawano Shun-suke Nanka Shin-ichi Kobayashi Akira Tanaka Naoki Owada Makoto Yoshizawa Ken-ichi Abe Kouichi Tabayashi Hiroshi Takeda Hiroyuki Hashimoto & Shin-ichi Nitta 《Artificial organs》1999,23(8):747-750
For development aimed at a totally implantable type ventricular assist device (VAD), the vibrating flow pump (VFP) has been developed at Tohoku University. A transcutaneous energy transmission system (TETS) using amorphous fibers was developed to power the totally implantable VAD system. The VFP works at a high frequency compared to that of a natural heart of a biological system. It is a frequency of 10-50 Hz. In this research, animal experiments with left heart bypass were carried out with healthy adult goats. For comparison between nonpulsatile flow and oscillated flow, a rotary pump (RP) and the VFP were used in the experiments. For the achievement of total left heart bypass, left ventricular approaches were carried out, and blood was pumped from the left ventricle to the descending aorta. Adequate support of the left heart was provided by both pumps. In terms of the results, the vascular resistances tended to decrease during the use of both pumps during 100% bypass driving. When we compared these pumps at the same flow rate, the resistances during RP driving were significantly smaller than those during VFP driving. These results may suggest that the influences of the VFP upon the peripheral vessels may be relatively small compared to those of the RP. This may be an important result when a stable hemodynamic condition is required during artificial circulation. The VFP was considered as a candidate for a totally implantable VAD as a result. 相似文献
6.
Tomoyuki Yambe Shin-ichi Kobayashi †Makoto Yoshizawa †Akira Tanaka †Hidetoshi Matsuki †Fumihiro Sato ‡Kouichi Tabayashi Shin-ichi Nitta 《Artificial organs》2001,25(9):688-691
This study describes the present state of progress in the development of the vibrating flow pump (VFP) ventricular assist system. We have proceeded with development aiming at a totally implantable ventricular assist system with smaller size and lighter weight appropriate for Asians like the Japanese by increasing the drive frequency. An actuator is important for the development of the miniature sized and lightweight artificial heart. We applied a linear motor for the mechanical part at first. The step motor was applied after that. This form may be best if we want the lightweight small sized motor for an actuator. The cross slider form is applied at present. It succeeded in the miniaturization compared with the linear motor. In the VFP-type ventricular assist system, the blood contact parts are a central vibration tube with inflow and outflow chambers. We designed round diaphragms to prevent thrombus formation. In addition, we developed an energy transmission system for total implantation. The VFP creates a high frequency oscillated blood flow. It has a unique flow pattern. Brain blood flow increased although the total flow of the circulation did not change in the frequency of 25 to 30 Hz. The quantitative evaluation of the autonomic nerve function during the left heart assistance with an oscillated blood flow was carried out by spectral analysis. Some influences on an autonomic nerve were observed by the VFP left heart assistance. We will continue development research with the aim of clinical application. 相似文献
7.
Centrifugal blood pump with a hydraulically-levitated impeller for a permanently implantable biventricular assist device 总被引:1,自引:0,他引:1
Watanabe K Ichikawa S Asai T Motomura T Hata A Ito S Shinohara T Tsujimura S Glueck JA Oestmann DJ Nosé Y 《Artificial organs》2004,28(6):556-563
A permanently implantable biventricular assist device (BVAD) system has been developed with a centrifugal pump which is activated by a hydraulically-levitated impeller. The pump impeller floats hydraulically into the top contact position; this position prevents thrombus formation by creating a washout effect at the bottom bearing area, a common stagnant region. The pump was subjected to in vitro studies using a pulsatile mock circulation loop to confirm the impeller's top contact position and the swinging motion produced by the pulsation. Eleven in vivo BVAD studies confirmed that this swinging motion eliminated blood clot formation. Twenty-one pumps im-planted for up to three months did not reveal any thrombosis in the pumps or downstream organs. One exception was a right pump which was exposed to severe low flow due to the kinking of the outflow graft by the accidental pulling of the flow meter cable. Three ninety-day BVAD studies were achieved without thrombus formation. 相似文献
8.
The DeBakey ventricular assist device: current status in 1997 总被引:3,自引:0,他引:3
Tayama E Olsen DB Ohashi Y Benkowski R Morley D Noon GP Nosé Y Debakey ME 《Artificial organs》1999,23(12):1113-1116
In 1993, the development began of a small axial flow blood pump, the DeBakey ventricular assist device (VAD). The material was recently converted to a titanium alloy, and a waterproof pump package was incorporated for long-term intracorporeal circulation. Thirteen intrathoracic implantations in calves were achieved. Nine animals survived the 2 week perioperative period and were supported for a range of 26-93 days. The first study had low flow due to poor anatomical fit of the straight cannula. In contrast, a curved cannula used subsequently provided a good anatomical fit with sufficient flow. Mean flow of 4.4 L/min was sustained with 9,900 rpm and required power was an average of 8.8 W. No thromboembolic evidences were observed in any case, and the plasma free hemoglobin level was maintained lower than 5 mg/dl, except in the early postoperative period. Three animals were terminated because of bleeding due to anticoagulant mismanagement. Electric interference (n = 1) and drive line breakage/fault (n = 2) were observed as device-related failures. Minor modifications were made to the drive line. In conclusion, the DeBakey VAD demonstrated adequate basic performance and biocompatibility. The highly reliable mechanical components and improved electrical parts are promising for a long-term implantable cardiac prosthesis. 相似文献
9.
The magnetically suspended impeller centrifugal blood pump (MSCBP) has shown its superiority as compared to other artificial hearts. However, it is still plagued by hemolysis and thrombus formation in the clearance gap between the impeller shroud surface and the pump casing. In an early study, a 5 : 1 scaled up model was built in order to measure the radial and tangential velocities at the gap under the operating condition of a flow coefficient (Phi) of 0.04 using a hot wire anemometer. In this study, velocity profiles were obtained at two critical flow coefficients, Phi = 0.078 (fully opened condition) and 0 (fully closed condition), to further the understanding of the flow field in the pump. Similar to the operating condition, the vector plot of the resultant velocity under these two flow coefficients showed that there were no vortices in the gap and a washout mechanism presented at the region around the starting of the splitter plate of the double volute. It was found that the washout mechanism was more obvious in the fully closed condition than in the fully opened condition. This has suggested that with real life operation, the pump could occasionally be operated at a relatively lower flow rate (e.g., under the resting condition of the patient) to obtain a good washout in the gap and thus reduce thrombus formation at the pump casing. 相似文献
10.
Abstract: This work presents results of preliminary studies concerning application of magnetic bearing in a ventricular assist device (VAD) being developed by Dante Pazzanese Institute of Cardiology—IDPC (São Paulo, Brazil). The VAD-IDPC has a novel architecture that distinguishes from other known VADs. In this, the rotor has a conical geometry with spiral impellers, showing characteristics that are intermediate between a centrifugal VAD and an axial VAD. The effectiveness of this new type of blood pumping principle was showed by tests and by using it in heart surgery for external blood circulation. However, the developed VAD uses a combination of ball bearings and mechanical seals, limiting the life for some 10 h, making impossible its long-term use or its use as an implantable VAD. As a part of development of an implantable VAD, this work aims at the replacement of ball bearings by a magnetic bearing. The most important magnetic bearing principles are studied and the magnetic bearing developed by Escola Politécnica of São Paulo University (EPUSP-MB) is elected because of its very simple architecture. Besides presenting the principle of the EPUSP-MB, this work presents one possible alternative for applying the EPUSP-MB in the IDPC-VAD. 相似文献
11.
Timms D Gregory S Hsu PL Thomson B Pearcy M McNeil K Fraser J Steinseifer U 《Artificial organs》2010,34(9):714-720
The ventricular assist device inflow cannulation site is the primary interface between the device and the patient. Connecting these cannulae to either atria or ventricles induces major changes in flow dynamics; however, there are little data available on precise quantification of these changes. The objective of this investigation was to quantify the difference in ventricular/vascular hemodynamics during a range of left heart failure conditions with either atrial (AC) or ventricular (VC) inflow cannulation in a mock circulation loop with a rotary left VAD. Ventricular ejection fraction (EF), stroke work, and pump flow rates were found to be consistently lower with AC compared with VC over all simulated heart failure conditions. Adequate ventricular ejection remained with AC under low levels of mechanical support; however, the reduced EF in cases of severe heart failure may increase the risk of thromboembolic events. AC is therefore more suitable for class III, bridge to recovery patients, while VC is appropriate for class IV, bridge to transplant/destination patients. 相似文献
12.
Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device 总被引:1,自引:0,他引:1
The latest generation of artificial blood pumps incorporates the use of magnetic bearings to levitate the rotating component of the pump, the impeller. A magnetic suspension prevents the rotating impeller from contacting the internal surfaces of the pump and reduces regions of stagnant and high shear flow that surround fluid or mechanical bearings. Applying this third-generation technology, the Virginia Artificial Heart Institute has developed a ventricular assist device (VAD) to support infants and children. In consideration of the suspension design, the axial and radial fluid forces exerted on the rotor of the pediatric VAD were estimated using computational fluid dynamics (CFD) such that fluid perturbations would be counterbalanced. In addition, a prototype was built for experimental measurements of the axial fluid forces and estimations of the radial fluid forces during operation using a blood analog mixture. The axial fluid forces for a centered impeller position were found to range from 0.5 +/- 0.01 to 1 +/- 0.02 N in magnitude for 0.5 +/- 0.095 to 3.5 +/- 0.164 Lpm over rotational speeds of 6110 +/- 0.39 to 8030 +/- 0.57% rpm. The CFD predictions for the axial forces deviated from the experimental data by approximately 8.5% with a maximum difference of 18% at higher flow rates. Similarly for the off-centered impeller conditions, the maximum radial fluid force along the y-axis was found to be -0.57 +/- 0.17 N. The maximum cross-coupling force in the x direction was found to be larger with a maximum value of 0.74 +/- 0.22 N. This resulted in a 25-35% overestimate of the radial fluid force as compared to the CFD predictions; this overestimation will lead to a far more robust magnetic suspension design. The axial and radial forces estimated from the computational results are well within a range over which a compact magnetic suspension can compensate for flow perturbations. This study also serves as an effective and novel design methodology for blood pump developers employing magnetic suspensions. Following a final design evaluation, a magnetically suspended pediatric VAD will be constructed for extensive hydraulic and animal testing as well as additional validation of this design methodology. 相似文献
13.
The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump is of the centrifugal type and consists of a shaftless impeller, also acting as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, resulting from the small clearances between the impeller outside surfaces and the pump cavity. In the older version of the pump tested, these small clearances range from approximately 50 microm to 230 microm; the displacement of the impeller relative to the pump cavity is unknown in use. This article presents two experiments: the first measured displacement of the impeller using eddy-current proximity sensors and laser proximity sensors. The second experiment used Hall-effect proximity sensors to measure the displacement of the impeller relative to the pump cavity. All transducers were calibrated prior to commencement of the experiments. Voltage output from the transducers was converted into impeller movement in five degrees of freedom (x, y, z, theta(x), and theta(y)). The sixth degree of freedom, the rotation about the impeller axis (theta(z)), was determined by the commutation performed by the motor controller. The impeller displacement was found to be within the acceptable range of 8 micro m to 222 microm, avoiding blood damage and contact between the impeller and cavity walls. Thus the impeller was hydrodynamically suspended within the pump cavity and results were typical of centrifugal pump behavior. This research will be the basis for further investigation into the stiffness and damping coefficient of the pump's hydrodynamic bearing. 相似文献
14.
Improvements in implantable ventricular assist device (VAD) performance will be required to obtain patient outcomes that are comparable with those of heart transplantation. The HeartQuest VAD (WorldHeart, Oakland, CA, U.S.A.) is an advanced device, with full magnetic suspension of the rotor, designed to address specific clinical shortcomings in existing devices and to maximize margins of safety and performance for an implantable assist device. The device dimensions are 35 x 75 mm, with a total weight of 440 g. The system was designed using extensive computer modeling of device function; a total of two iterations of device prototypes were built before building the clinical version. Animal study results have been very promising, with over 30 calf studies completed. Plasma-free hemoglobin levels returned to preoperative levels, and other hematology results were in the normal ranges. Highlights include clean surfaces seen in a 116-day experiment with no anticoagulation after day 43. Feasibility clinical trials are planned to start in 2006. 相似文献
15.
Yoshikawa M Nonaka K Linneweber J Kawahito S Ohtsuka G Nakata K Takano T Schulte-Eistrup S Glueck J Schima H Wolner E Nosé Y 《Artificial organs》2000,24(6):459-467
The Gyro centrifugal pump, PI (permanently implantable) series, is being developed as a totally implantable artificial heart. Our final goal is to establish a "functional TAH," a totally implantable biventricular assist system (BiVAS) with centrifugal pumps. A plastic prototype pump, Gyro PI 601, was evaluated through in vitro and in vivo studies as a single ventricular assist device (VAD). Based upon these results, the pump head material was converted to a titanium alloy, and the actuator was modified. These titanium Gyro pumps, PI 700 series, also were subjected to in vitro and in vivo studies. The Gyro PI 601 and PI 700 series have the same inner dimensions and characteristics, such as the eccentric inlet port, double pivot bearing system, secondary vane, and magnet coupling system; however, the material of the PI 700 is different from the PI 601. The Gyro PI series is driven by the Vienna DC brushless motor actuator. The inlet cannula of the right ventricular assist system (RVAS) specially made for this system consists of 2 parts: a hat-shaped silicone tip biolized with gelatin and an angled wire reinforced tube made of polyvinylchloride. The pump-actuator package was implanted into 8 calves in the preperitoneal space, bypassing from the left ventricle apex to the descending aorta for the left ventricular assist system (LVAS) and bypassing the right ventricle to the main pulmonary artery for the RVAS. According to the PI 601 feasibility protocol, 2 LVAS cases were terminated after 2 weeks, and 1 LVAS case and 1 RVAS were terminated after 1 month. The PI 700 series was implanted into 4 cases: 3 LVAS cases survived for a long term, 2 of them over 200 days (72-283 days), and 1 RVAS case survived for 1 month and was terminated according to the protocol for a short-term antithrombogenic screening and system feasibility study. Regarding power consumption, the plastic pump cases demonstrated from 6.2 to 12.1 W as LVAS and 7.3 W as RVAS, the titanium pump cases showed from 10.4 to 14.2 W as LVAS and 15.8 W as RVAS. All cases exhibited low hemolysis. The renal function and the liver function were maintained normally in all cases throughout these experimental periods. In the 2 RVAS cases, pulmonary function was normally maintained. No calves demonstrated thromboembolic signs or symptoms throughout the experiments except Case 1 with the plastic pump. However, in the plastic pump cases, bilateral renal infarction was suspected in 2 cases during necropsy whereas no abnormal findings were revealed in the titanium pump cases. There were also no blood clots inside the PI 700 series. As for the 601, the explanted pumps demonstrated slight thrombus formations at the top and bottom pivots except in 1 case. The Gyro PI series, especially the PI 700 series, demonstrated superior performance, biocompatibility, antithrombogenicity and low hemolysis. Also, the durability of the actuator was demonstrated. Based on these results, this titanium centrifugal pump is suitable as an implantable LVAS and RVAS. It is likely that the Gyro PI series is a feasible component of the BiVAS functional TAH. 相似文献
16.
Yoshikawa M Nakata KI Nonaka K Linneweber J Kawahito S Takano T Shulte-Eistrup S Maeda T Glueck J Schima H Wolner E Nosé Y 《Artificial organs》2000,24(8):659-666
At least 25-30% of patients with a permanent implantable left ventricular assist device (LVAD) experience right ventricular failure; therefore, an implantable biventricular assist system (BiVAS) with small centrifugal pumps is being developed. Many institutions are focusing and developing a control system for a left ventricular assist system (LVAS) with rotary blood pumps. These authors feel that the right ventricular assist system (RVAS) with rotary blood pumps should be developed simultaneously. A literature search indicated no recent reports on the effect of hemodynamics and exercise with this type of nonpulsatile implantable RVAS. In this study, a calf with an implantable right ventricular assist system (RVAS) was subjected to 30 min of exercise on a treadmill at 1.5 mph, resulting in excellent hemodynamics. The input voltage remained unchanged. Hemodynamic recordings were taken every 5 min throughout the testing period, and blood gas analysis was done every 10 min. Oxygen uptake (VO2), oxygen delivery (DO2), and oxygen extraction (O2ER) were calculated and analyzed. Two different pump flows were investigated: Group 1 low assist (<3.5 L/min) and Group 2 high assist (>3.5 L/min). In both groups, the RVAS flow rates were unchanged while the pulmonary artery (PA) flow increased during exercise; also, the heart rate and right atrial pressure (RAP) increased during exercise. There were no significant differences in the 2 groups. The PA flow correlates to the heart rate during exercise. In all of the tests, the VO2 and DO2 increased during exercise. Regarding VO2, no changes were observed during the different flow conditions; however, the DO2 of Group 2 was higher than that of Group 1. Because the implantable RVAS did not have pump flow changes during the test conditions, it was necessary to incorporate a flow control system for the implantable RVAS. During exercise with an implantable RVAS rotary blood pump, incorporating the heart rate and VO2 as feedback parameters is feasible for controlling the flow rate. 相似文献
17.
The Heartmate II: design and development of a fully sealed axial flow left ventricular assist system
Burke DJ Burke E Parsaie F Poirier V Butler K Thomas D Taylor L Maher T 《Artificial organs》2001,25(5):380-385
Our group is developing the control and power transmission components required to implement a permanent and fully sealed left ventricular assist system (LVAS). Starting with the percutaneously powered HeartMate II blood pump, our development efforts are focused in the following areas: a complete redesign of the transcutaneous energy transmission system (TETS) to include a rectification network and autonomous voltage regulation within the secondary coil, a hermetically sealed electronics package containing a miniaturized implementation of the existing redundant drive and control electronics with several power-input options, an implanted rechargeable lithium ion battery pack capable of providing up to 1 h of untethered operation, implantable electrical connectors that allow components to be connected after placement in the body or to be replaced if needed, and a radio telemetry subsystem to transmit diagnostic information and to permit remote adjustment of selected parameters. 相似文献
18.
Yambe T Abe Y Imachi K Shiraishi Y Shibata M Yamaguchi T Wang Q Duan X Liu H Yoshizawa M Tanaka A Matsuki H Sato F Haga Y Esashi M Tabayashi K Mitamura Y Sasada H Umezu M Matsuda T Nitta S 《Artificial organs》2004,28(10):940-944
It is well known that a rotary blood pump (RP) is effective as a small ventricular assist device (VAD). It might be still more effective if pulsation was available. The undulation pump (UP), which is a type of small RP, can also produce pulsation. In Japan, a development project for an implantable type UP ventricular assist device (UPVAD) is now advanced. Six universities and some companies together have been in charge of the development project for 5 years. In this study, the influence which the UP under development has on circulation in internal organs was investigated. Goats with the same weight as an average Asian person were used for the experiment. The left chest cavity was opened after resection of the fourth rib and the heart was approached. A cannula was inserted in the left ventricle from the apex. An outflow cannula was inserted into the left descending aorta. Heart muscle was excised using a newly developed puncher. The UPVAD was implanted using a left-heart bypass system. The myocardial blood flow, carotid arterial blood flow, and the kidney blood flow were recorded together with an electrocardiogram, blood pressure, and the flow rate. In these animal experiments, the blood circulation dynamic state was stabilized and sufficient support of the left heart was observed. Myocardial blood flow, carotid arterial flow, and a kidney blood flow increase resulting from UPVAD support was observed. Often the problem of multiple organ failure is important at the time of clinical application of a ventricular assist device. Assisting circulation to internal organs is important for prevention of multiple organ failure. It was concluded that the UPVAD might be useful for prevention of multiple organ failure. 相似文献
19.
Nojiri C Kijima T Maekawa J Horiuchi K Kido T Sugiyama T Mori T Sugiura N Asada T Umemura W Ozaki T Suzuki M Akamatsu T Westaby S Katsumata T Saito S 《Artificial organs》2001,25(5):411-413
We have been developing an implantable left ventricular assist system (T-ILVAS) featuring a magnetically suspended centrifugal pump (MSCP) since 1995. In vitro and in vivo studies using a prototype MSCP composed of a polycarbonate housing and impeller (196 ml) have demonstrated long-term durability and excellent blood compatibility for up to 864 days, and excellent stability of the magnetic bearing of the MSCP. These preliminary results strongly suggested that the magnetic bearing of the MSCP is reliable and is a most feasible mechanism for a long-term circulatory assist device. We have recently devised a clinical version pump made of titanium (180 ml) with a new position sensor mechanism and a wearable controller with batteries. Cadaver fit study confirmed that the Type IV pump could be implanted in a small patient with a body surface area as small as 1.3. The in vitro performance tests of the Type IV pump demonstrated excellent hydrodynamic performances with an acceptable hemolysis rate. New position sensors for the titanium housing showed more uniform sensor outputs of a magnetic bearing than in the prototype polycarbonate pump. The Type IV pump then was evaluated in vivo in 6 sheep at the Oxford Heart Centre. Four sheep were electively sacrificed at 3 months and were allowed to survive for more than 6 months for long-term evaluation. In this particular series of experiments, no anticoagulant/antiplatelet regimen was utilized except for a bolus dose of heparin during surgery. There was a left ventricular mural thrombi around the inflow cannula in 1 sheep. Otherwise, there was no mechanical failure nor sign of thromboembolism throughout the study. 相似文献
20.
Computational flow visualization in the casing of vibrating flow pump (VFP) was made for various conditions based on the novel techniques of fluid dynamics. VFP type artificial heart can generate the oscillated flow and can be applied to the left ventricular assist device. Flow pattern of blood in an artificial heart is closely connected to mechanical performance and serious biomechanical problems such as hemolysis and blood coagulation. To effectively design the VFP for a left ventricular assist device, the numerical codes for solving Navier-Stokes equations were developed for three-dimensional blood flow based on the finite volume method. Furthermore, the simulation techniques based on the artificial compressibility method and the unstructured grid were also developed here. The numerical calculations were based on the precise configurations and the flow conditions of the prototype device. From the viewpoint of computational fluid dynamics (CFD), the detailed discussion of flow patterns in the casing of VFP, which were closely connected with hemolysis and blood coagulation, was made and the computational results were visualized by the use of the recent technique of computational graphics. Some useful design data of VFP were presented. 相似文献