首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose If the CT scan of a combined PET/CT study is performed as a full diagnostic quality CT scan including intravenous (IV) contrast agent, the quality of the joint PET/CT procedure is improved and a separate diagnostic CT scan can be avoided. CT with IV contrast can be used for PET attenuation correction, but this may result in a bias in the attenuation factors. The clinical significance of this bias has not been established. Our aim was to perform a prospective clinical study where each patient had CT performed with and without IV contrast agent to establish whether PET/CT with IV contrast can be used for PET attenuation without reducing the clinical value of the PET scan.Methods A uniform phantom study was used to document that the PET acquisition itself is not significantly influenced by the presence of IV contrast medium. Then, 19 patients referred to PET/CT with IV contrast underwent CT scans without, and then with contrast agent, followed by an 18F-fluorodeoxyglucose whole-body PET scan. The CT examinations were performed with identical parameters on a GE Discovery LS scanner. The PET data were reconstructed with attenuation correction based on the two CT data sets. A global comparison of standard uptake value (SUV) was performed, and SUVs in tumour, in non-tumour tissue and in the subclavian vein were calculated. Clinical evaluation of the number and location of lesions on all PET/CT scans was performed twice, blinded and in a different random order, by two independent nuclear medicine specialists.Results In all patients, the measured global SUV of PET images based on CT with IV contrast agent was higher than the global activity using non-contrast correction. The overall increase in the mean SUV (for two different conversion tables tested) was 4.5±2.3% and 1.6±0.5%, respectively. In 11/19 patients, focal uptake was identified corresponding to malignant tumours. Eight out of 11 tumours showed an increased SUVmax (2.9±3.1%) on the PET images reconstructed using IV contrast. The clinical evaluation performed by the two specialists comparing contrast and non-contrast CT attenuated PET images showed weighted kappa values of 0.92 (doctor A) and 0.82 (doctor B). No contrast-introduced artefacts were found.Conclusion This study demonstrates that CT scans with IV contrast agent can be used for attenuation correction of the PET data in combined modality PET/CT scanning, without changing the clinical diagnostic interpretation.  相似文献   

2.
OBJECTIVE: Image fusion has been recognized as a useful technique in diagnostic imaging. We have been evaluating the manual image fusion of PET and contrast-enhanced (CE) CT obtained separately. The CT images can be used for attenuation correction as well as for image fusion; however, the quantitative accuracy of CT-corrected PET images has yet to be assessed. The purpose of this study was to compare the radioactivity concentration between conventional (68)Ge-corrected and CECT-corrected PET images. METHODS: Twenty patients underwent a whole-body PET scan, followed by a CT scan with intravenous contrast material, after careful positioning using an individually molded vacuum cushion. Two different attenuation-corrected emission data sets were produced, i.e., (68)Ge-corrected images and CECT-corrected images. Image registration was performed by maximizing mutual information-based cost function, between the CT and the combination of emission and transmission PET volumes. The CT pixel values in Hounsfield units were transformed into linear attenuation coefficients in cm(-1), using a conversion formula for a lookup-table from phantom experiments. Measured activity concentrations from identical regions of interest in representative normal organs and in 25 pathologic foci of uptake were compared. In addition, the quality of the reconstructed images was assessed using the normal mean square error (NMSE). RESULTS: Measured average radioactivity concentrations were 1.38-9.56% higher for CECT-corrected images than for (68)Ge-corrected images. Overall, the NMSE value of CECT-corrected images compared with (68)Ge-corrected images was 0.02+/-0.01. CONCLUSIONS: The difference in quantitative values between (68)Ge-corrected and CECT-corrected PET images was comparable to that of an integrated PET/CT system. Diagnostic CT images with intravenous contrast performed separately before or after a PET scan could be used clinically not only for fusion but also for attenuation correction.  相似文献   

3.
Standard application of CT intravenous contrast agents in combined PET/CT may lead to high-density artifacts on CT and attenuation-corrected PET. To avoid associated diagnostic pitfalls, we designed and compared different intravenous contrast injection protocols for routine whole-body PET/CT. METHODS: Whole-body PET/CT included a topogram and a single spiral CT scan (2-row) with or without intravenous contrast, followed by an emission scan. The CT scan was used for attenuation correction of the emission data. Four groups of 10 whole-body PET/CT referrals each were investigated: (A) no intravenous contrast agent, (B) biphasic injection (90 and 50 mL at 3 and 1.5 mL/s, respectively) of intravenous contrast (300 mg/mL iodine) and CT in the craniocaudal direction with a 30-s delay, (C) triple-phase injection (90, 40, and 40 mL at 3, 2, and 1.5 mL/s, respectively) in the craniocaudal direction with a 50-s delay, and (D) dual-phase injection (80 and 60 mL at 3 and 1.5 mL/s, respectively) in the caudocranial direction with a 50-s delay. CT image quality was assessed on a scale from 1 to 3, and CT and attenuation-corrected PET images were reviewed separately for contrast-induced artifacts. RESULTS: Average CT image quality was poorest for protocol A (1.0) but improved to 2.8 when using intravenous contrast agents (protocols B-D). Only protocols B and C resulted in contrast-induced image artifacts that were limited to the thorax. The most homogeneous intravenous contrast enhancement without high-density image artifacts on either CT or PET after CT-based attenuation correction was achieved with protocol D. CONCLUSION: Dual-phase intravenous contrast injection and CT in the caudocranial direction with a 50-s delay yields reproducible high image quality and is now used routinely for combined diagnostic PET/CT at our hospital.  相似文献   

4.
The purpose of this study was to compare various PET/CT examination protocols that use contrast-enhanced single-phase or contrast-enhanced multiphase CT scans under different breathing conditions. METHODS: Sixty patients with different malignant tumors were randomized into 4 different PET/CT protocols. Single-phase protocols included an intravenous contrast-enhanced (Ultravist 370; iodine at 370 mg/mL) single-phase whole-body CT scan (90 mL at 1.8 mL/min; delay, 90 s) during shallow breathing (protocol A) or during normal expiration (NormExp; protocol B). Multiphase protocols included 2 separate CT scans in the arterial contrast enhancement phase (90 mL at 2.5-2.8 mL/min; bolus tracking; scan range, base of the skull to the kidneys) and the portal-venous contrast enhancement phase (delay, 90 s; scan range, base of the lungs to the proximal thighs) during shallow breathing (protocol C) or during NormExp (protocol D) followed by a low-dose CT scan during shallow breathing for attenuation correction and whole-body PET. Feasibility was assessed by comparing the misalignment of the upper abdominal organs quantitatively by means of the craniocaudal, lateral, and anterior-posterior differences on coregistered PET/CT images. For image quality, the occurrence of CT artifacts and mismatching of rigid body points were evaluated qualitatively. RESULTS: Misalignment was significantly lower for protocol B in almost all organs and represented the best coregistration quality. Surprisingly, protocol A showed significantly better alignment than the multiphase CT scans during NormExp. Misalignment values between the multiphase protocols were not significantly different, with a trend toward lower values for protocol D. The best CT image quality, with a significantly lower occurrence of artifacts, was found for protocols B and D (NormExp). The levels of mismatching of rigid body points because of patient movement in between the transmission and emission scans were similar for all protocols. CONCLUSION: Multiphase CT protocols presented a technical disadvantage represented by suboptimal image coregistration compared with single-phase protocols. Nevertheless, multiphase protocols are technically feasible and should be considered for patients who will benefit from a contrast-enhanced multiphase CT examination for diagnosis.  相似文献   

5.
The current perception of using contrast-enhanced CT (CECT) for attenuation correction (AC) is that of caution, as it might lead to erroneously elevated (18)F-FDG uptake on the PET scan. This study evaluates in vivo whether an intravenous iodinated contrast agent produces a significant AC artifact in the level of standardized uptake value (SUV) changes in PET/CT. METHODS: Fifty-four patients referred for whole-body (WB) PET/CT scans were enrolled and subdivided into 2 groups. In part I, 26 patients had a single WB PET scan that was corrected for attenuation using noncontrast and intravenous CECT obtained before and after the emission data, respectively. The final PET images were compared for any visual and SUV maximum (SUV(max)) measurement difference. This allowed analysis of the compatibility of the scaling processes between the 2 different CTs and the PET. The SUV(max) values were obtained from ascending aorta, upper lung, femoral head, iliopsoas muscle, spleen, liver, and the site of pathology (total, 193 regions). Part II addressed whether intravenous contrast also influenced the PET emission data. For that purpose, the remaining 28 patients underwent a limited plain CT scan from lung base to lower liver edge, followed by a 1-bed PET scan of the same region and then a WB intravenous contrast CT scan in tandem with a WB PET scan. SUV(max) values were obtained at the lung base, liver, spleen, T11 or T12 vertebra, and paraspinal muscle (total, 135 regions). The data obtained from pre- and post-intravenous contrast PET scans were analyzed as in part I. RESULTS: There was no statistically significant elevation of the SUV level in the measured anatomic sites as a whole (part I: mean SUV(max) difference = 0.06, P > 0.05; Part II: mean SUV(max) difference = -0.02, P > 0.05). However, statistically significant results as a group (mean SUV(max) difference = 0.26, P < 0.05)--albeit considered to be clinically insignificant--were observed for areas of pathology in the part I study. No abnormal focal increased (18)F-FDG activity was detected as a result of the intravenous contrast in both parts of this examination. CONCLUSION: No statistically or clinically significant spuriously elevated SUV level that might potentially interfere with the diagnostic value of PET/CT was identified as a result of the application of intravenous iodinated contrast.  相似文献   

6.
In dual-modality PET/CT systems, the CT scan provides the attenuation map for PET attenuation correction. The current clinical practice of obtaining a single helical CT scan provides only a snapshot of the respiratory cycle, whereas PET occurs over multiple respiratory cycles. Misalignment of the attenuation map and emission image because of respiratory motion causes errors in the attenuation correction factors and artifacts in the attenuation-corrected PET image. To rectify this problem, we evaluated the use of cine CT, which acquires multiple low-dose CT images during a respiratory cycle. We evaluated the average and the intensity-maximum image of cine CT for cardiac PET attenuation correction. METHODS: Cine CT data and cardiac PET data were acquired from a cardiac phantom and from multiple patient studies. The conventional helical CT, cine CT, and PET data of an axially translating phantom were evaluated with and without respiratory motion. For the patient studies, we acquired 2 cine CT studies for each PET acquisition in a rest-stress (13)N-ammonia protocol. Three readers visually evaluated the alignment of 74 attenuation image sets versus the corresponding emission image and determined whether the alignment provided acceptable or unacceptable attenuation-corrected PET images. RESULTS: In the phantom study, the attenuation correction from helical CT caused a major artifactual defect in the lateral wall on the PET image. The attenuation correction from the average and from the intensity-maximum cine CT images reduced the defect by 20% and 60%, respectively. In the patient studies, 77% of the cases using the average of the cine CT images had acceptable alignment and 88% of the cases using the intensity maximum of the cine CT images had acceptable alignment. CONCLUSION: Cine CT offers an alternative to helical CT for compensating for respiratory motion in the attenuation correction of cardiac PET studies. Phantom studies suggest that the average and the intensity maximum of the cine CT images can reduce potential respiration-induced misalignment errors in attenuation correction. Patient studies reveal that cine CT provides acceptable alignment in most cases and suggest that the intensity-maximum cine image offers a more robust alternative to the average cine image.  相似文献   

7.
Heart disease is a leading cause of death in North America. With the increased availability of PET/CT scanners, CT is now commonly used as a transmission source for attenuation correction. Because of the differences in scan duration between PET and CT, respiration-induced motion can create inconsistencies between the PET and CT data and lead to incorrect attenuation correction and, thus, artifacts in the final reconstructed PET images. This study compared respiration-averaged CT and 4-dimensional (4D) CT for attenuation correction of cardiac PET in an in vivo canine model as a means of removing these inconsistencies. METHODS: Five dogs underwent respiration-gated cardiac (18)F-FDG PET and 4D CT. The PET data were reconstructed with 3 methods of attenuation correction that differed only in the CT data used: The first method was single-phase CT at either end-expiration, end-inspiration, or the middle of a breathing cycle; the second was respiration-averaged CT, which is CT temporally averaged over the entire respiratory cycle; and the third was phase-matched CT, in which each PET phase is corrected with the matched phase from 4D CT. After reconstruction, the gated PET images were summed to produce an ungated image. Polar plots of the PET heart images were generated, and percentage differences were calculated with respect to the phase-matched correction for each dog. The difference maps were then averaged over the 5 dogs. RESULTS: For single-phase CT correction at end-expiration, end-inspiration, and mid cycle, the maximum percentage differences were 11% +/- 4%, 7% +/- 3%, and 5% +/- 2%, respectively. Conversely, the maximum difference for attenuation correction with respiration-averaged CT data was only 1.6% +/- 0.7%. CONCLUSION: Respiration-averaged CT correction produced a maximum percentage difference 7 times smaller than that obtained with end-expiration single-phase correction. This finding indicates that using respiration-averaged CT may accurately correct for attenuation on respiration-ungated cardiac PET.  相似文献   

8.
A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended.  相似文献   

9.
Recent studies have shown increased artifacts in CT attenuation-corrected (CTAC) PET images acquired with oral contrast agents because of misclassification of contrast as bone. We have developed an algorithm, segmented contrast correction (SCC), to properly transform CT numbers in the contrast regions from CT energies (40-140 keV) to PET energy at 511 keV. METHODS: A bilinear transformation, equivalent to that supplied by the PET/CT scanner manufacturer, for the conversion of linear attenuation coefficients of normal tissues from CT to PET energies was optimized for BaSO(4) contrast agent. This transformation was validated by comparison with the linear attenuation coefficients measured for BaSO(4) at concentrations ranging from 0% to 80% at 511 keV for PET transmission images acquired with (68)Ge rod sources. In the CT images, the contrast regions were contoured to exclude bony structures and then segmented on the basis of a minimum threshold CT number (300 Hounsfield units). The CT number in each pixel identified with contrast was transformed into the corresponding effective bone CT number to produce the correct attenuation coefficient when the data were translated by the manufacturer software into PET energy during the process of CT attenuation correction. CT images were then used for attenuation correction of PET emission data. The algorithm was validated with a phantom in which a lesion was simulated within a volume of BaSO(4) contrast and in the presence of a human vertebral bony structure. Regions of interest in the lesion, bone, and contrast on emission PET images reconstructed with and without the SCC algorithm were analyzed. The results were compared with those for images obtained with (68)Ge-based transmission attenuation-corrected PET. RESULTS: The SCC algorithm was able to correct for contrast artifacts in CTAC PET images. In the phantom studies, the use of SCC resulted in an approximate 32% reduction in the apparent activity concentration in the lesion compared with data obtained from PET images without SCC and a <7.6% reduction compared with data obtained from (68)Ge-based attenuation-corrected PET images. In one clinical study, maximum standardized uptake value (SUV(max)) measurements for the lesion, bladder, and bowel were, respectively, 14.52, 13.63, and 13.34 g/mL in CTAC PET images, 59.45, 26.71, and 37.22 g/mL in (68)Ge-based attenuation-corrected PET images, and 11.05, 6.66, and 6.33 g/mL in CTAC PET images with SCC. CONCLUSION: Correction of oral contrast artifacts in PET images obtained by combined PET/CT yielded more accurate quantitation of the lesion and other, normal structures. The algorithm was tested in a clinical case, in which SUV(max) measurements showed discrepancies of 2%, 1.3%, and 5% between (68)Ge-based attenuation-corrected PET images and CTAC PET images with SCC for the lesion, bladder, and bowel, respectively. These values correspond to 6.5%, 62%, and 66% differences between CTAC-based measurements and (68)Ge-based ones.  相似文献   

10.
In patients with oral head and neck cancer, the presence of metallic dental implants produces streak artifacts in the CT images. These artifacts negate the utility of CT for the spatial localization of PET findings and may propagate through the CT-based attenuation correction into the PET images. In this study, we evaluated the efficacy of an algorithm that reduces metallic artifacts in CT images and the impact of this approach on the quantification of PET images. METHODS: Fifty-one patients with and 9 without dental implants underwent a PET/CT study. CT images through the patient's dental implants were reconstructed using both standard CT reconstruction and an algorithm that reduces metallic artifacts. Attenuation correction factors were calculated from both sets of CT images and applied to the PET data. The CT images were evaluated for any reduction of the artifacts. The PET images were assessed for any quantitative change introduced by metallic artifact reduction. RESULTS: For each reconstruction, 2 regions of interest were defined in areas where the standard CT reconstruction overestimated the Hounsfield units (HU), 2 were defined in underestimated areas, and 1 was defined in a region unaffected by the artifacts. The 5 regions of interest were transferred to the other 3 reconstructions. Mean HU or mean Bq/cm(3) were obtained for all regions. In the CT reconstructions, metallic artifact reduction decreased the overestimated HUs by approximately 60% and increased the underestimated HUs by approximately 90%. There was no change in quantification in the PET images between the 2 algorithms (Spearman coefficient of rank correlation, 0.99). Although the distribution of attenuation (HU) changed considerably in the CT images, the distribution of activity did not change in the PET images. CONCLUSION: Our study demonstrated that the algorithm can enhance the structural and spatial content of CT images in the presence of metallic artifacts. The CT artifacts do not propagate through the CT-based attenuation correction into the PET images, confirming the robustness of CT-based attenuation correction in the presence of metallic artifacts. The study also demonstrated that considerable changes in CT images do not change the PET images.  相似文献   

11.
Purpose  Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (μmap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. Methods  The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. Results  The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated μmaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. Conclusions  An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.  相似文献   

12.
CT images represent essentially noiseless maps of photon attenuation at a range of 40-140 keV. Current dual-modality PET/CT scanners transform them into attenuation coefficients at 511 keV and use these for PET attenuation correction. The proportional scaling algorithms hereby used account for the different properties of soft tissue and bone but are not prepared to handle material with other attenuation characteristics, such as oral CT contrast agents. As a consequence, CT-based attenuation correction in the presence of an oral contrast agent results in erroneous PET standardized uptake values (SUVs). The present study assessed these errors with phantom measurements and patient data. METHODS: Two oral CT contrast agents were imaged at 3 different concentrations in dual-modality CT and PET transmission studies to investigate their attenuation properties. The SUV error due to the presence of contrast agent in CT-based attenuation correction was estimated in 10 patients with gastrointestinal tumors as follows. The PET data were attenuation corrected on the basis of the original contrast-enhanced CT images, resulting in PET images with distorted SUVs. A second reconstruction used modified CT images wherein the CT numbers representing contrast agent had been replaced by CT values producing approximately the right PET attenuation coefficients. These CT values had been derived from the data of 10 patients imaged without a CT contrast agent. The SUV error, defined as the difference between both sets of SUV images, was evaluated in regions with oral CT contrast agent, in tumor, and in reference tissue. RESULTS: The oral CT contrast agents studied increased the attenuation for 511-keV photons minimally, even at the highest concentrations found in the patients. For a CT value of 500 Hounsfield units, the proportional scaling algorithm therefore overestimated the PET attenuation coefficient by 26.2%. The resulting SUV error in the patient studies was highest in regions containing CT contrast agent (4.4% +/- 2.8%; maximum, 11.3%), whereas 1.2% +/- 1.1% (maximum, 4.1%) was found in tumors, and 0.6% +/- 0.7% was found in the reference. CONCLUSION: The use of oral contrast agents in CT has only a small effect on the SUV, and this small effect does not appear to be medically significant.  相似文献   

13.
For quantitative PET information, correction of tissue photon attenuation is mandatory. Generally in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating radionuclide source, or from the CT scan in a combined PET/CT scanner. In the case of PET/MRI scanners currently under development, insufficient space for the rotating source exists; the attenuation map can be calculated from the MR image instead. This task is challenging because MR intensities correlate with proton densities and tissue-relaxation properties, rather than with attenuation-related mass density. METHODS: We used a combination of local pattern recognition and atlas registration, which captures global variation of anatomy, to predict pseudo-CT images from a given MR image. These pseudo-CT images were then used for attenuation correction, as the process would be performed in a PET/CT scanner. RESULTS: For human brain scans, we show on a database of 17 MR/CT image pairs that our method reliably enables estimation of a pseudo-CT image from the MR image alone. On additional datasets of MRI/PET/CT triplets of human brain scans, we compare MRI-based attenuation correction with CT-based correction. Our approach enables PET quantification with a mean error of 3.2% for predefined regions of interest, which we found to be clinically not significant. However, our method is not specific to brain imaging, and we show promising initial results on 1 whole-body animal dataset. CONCLUSION: This method allows reliable MRI-based attenuation correction for human brain scans. Further work is necessary to validate the method for whole-body imaging.  相似文献   

14.
PET/CT imaging artifacts   总被引:6,自引:0,他引:6  
The purpose of this paper is to introduce the principles of PET/CT imaging and describe the artifacts associated with it. PET/CT is a new imaging modality that integrates functional (PET) and structural (CT) information into a single scanning session, allowing excellent fusion of the PET and CT images and thus improving lesion localization and interpretation accuracy. Moreover, the CT data can also be used for attenuation correction, ultimately leading to high patient throughput. These combined advantages have rendered PET/CT a preferred imaging modality over dedicated PET. Although PET/CT imaging offers many advantages, this dual-modality imaging also poses some challenges. CT-based attenuation correction can induce artifacts and quantitative errors that can affect the PET emission images. For instance, the use of contrast medium and the presence of metallic implants can be associated with focal radiotracer uptake. Furthermore, the patient's breathing can introduce mismatches between the CT attenuation map and the PET emission data, and the discrepancy between the CT and PET fields of view can lead to truncation artifacts. After reading this article, the technologist should be able to describe the principles of PET/CT imaging, identify at least 3 types of image artifacts, and describe the differences between PET/CT artifacts of different causes: metallic implants, respiratory motion, contrast medium, and truncation.  相似文献   

15.
Motion in PET/CT leads to artifacts in the reconstructed PET images due to the different acquisition times of positron emission tomography and computed tomography. The effect of motion on cardiac PET/CT images is evaluated in this study and a novel approach for motion correction based on optical flow methods is outlined. The Lukas-Kanade optical flow algorithm is used to calculate the motion vector field on both simulated phantom data as well as measured human PET data. The motion of the myocardium is corrected by non-linear registration techniques and results are compared to uncorrected images.  相似文献   

16.
Cardiac PET/CT is optimized by cine CT with dedicated shift software for manual correction of attenuation-emission misregistration. Separate rest and stress CT scans incur greater radiation dose to patients than does standard helical PET/CT or "pure" PET using rotating rod attenuation sources. To reduce radiation dose, we tested quantitative accuracy of using a single poststress cine CT attenuation scan for reconstructing rest perfusion images to eliminate resting CT attenuation scans. METHODS: A total of 250 consecutive patients underwent diagnostic rest-dipyridamole myocardial perfusion PET/CT with (82)Rb and a 16-slice PET/CT scanner using averaged cine CT attenuation data during breathing at rest and stress. After correcting for any attenuation-emission misregistration, we quantitatively compared resting perfusion images reconstructed using rest cine CT attenuation data with the same resting emission data reconstructed with poststress cine CT attenuation data. Automated software quantifying average regional quadrant activity, severity, size, and combined size and severity of perfusion defects was used for this comparison. RESULTS: Resting perfusion images reconstructed using rest cine CT attenuation data were quantitatively comparable to resting images reconstructed with poststress cine CT attenuation data with no clinically significant differences. Twenty-five (10%) of 250 cases required shifting of stress cine CT attenuation data to achieve optimal attenuation-emission coregistration with resting perfusion data. Eliminating rest CT attenuation scans reduced CT radiation dose by 50% below rest-plus-stress cine CT protocols. CONCLUSION: Resting perfusion images reconstructed using poststress cine CT attenuation data are quantitatively comparable to resting images reconstructed with resting cine CT attenuation data. Eliminating the rest CT scan reduces CT radiation dose by 50%.  相似文献   

17.
The objective of the work reported here was to develop and test automated methods to calculate biodistribution of PET tracers using small-animal PET images. METHODS: After developing software that uses visually distinguishable organs and other landmarks on a scan to semiautomatically coregister a digital mouse phantom with a small-animal PET scan, we elastically transformed the phantom to conform to those landmarks in 9 simulated scans and in 18 actual PET scans acquired of 9 mice. Tracer concentrations were automatically calculated in 22 regions of interest (ROIs) reflecting the whole body and 21 individual organs. To assess the accuracy of this approach, we compared the software-measured activities in the ROIs of simulated PET scans with the known activities, and we compared the software-measured activities in the ROIs of real PET scans both with manually established ROI activities in original scan data and with actual radioactivity content in immediately harvested tissues of imaged animals. RESULTS: PET/atlas coregistrations were successfully generated with minimal end-user input, allowing rapid quantification of 22 separate tissue ROIs. The simulated scan analysis found the method to be robust with respect to the overall size and shape of individual animal scans, with average activity values for all organs tested falling within the range of 98% +/- 3% of the organ activity measured in the unstretched phantom scan. Standardized uptake values (SUVs) measured from actual PET scans using this semiautomated method correlated reasonably well with radioactivity content measured in harvested organs (median r = 0.94) and compared favorably with conventional SUV correlations with harvested organ data (median r = 0.825). CONCLUSION: A semiautomated analytic approach involving coregistration of scan-derived images with atlas-type images can be used in small-animal whole-body radiotracer studies to estimate radioactivity concentrations in organs. This approach is rapid and less labor intensive than are traditional methods, without diminishing overall accuracy. Such techniques have the possibility of saving time, effort, and the number of animals needed for such assessments.  相似文献   

18.

Purpose

Hybrid positron emission tomography and magnetic resonance (PET/MR) imaging performs a two-point Dixon MR sequence for attenuation correction. However, MR data in hybrid PET/MR should provide anatomic and morphologic information as well as an attenuation map. We evaluated the Dixon sequence of hybrid PET/MR for anatomic correlation of PET-positive lesions compared with contrast-enhanced PET/computed tomography (CT) in patients with oncologic diseases.

Methods

Twelve patients underwent a single injection, dual imaging protocol. PET/CT was performed with an intravenous contrast agent (85 ± 13 min after 18F-FDG injection of 403 ± 45 MBq) and then (125 ± 19 min after injection) PET/MR was performed. Attenuation correction and anatomic allocation of PET were performed using contrast-enhanced CT for PET/CT and Dixon MR sequence for hybrid PET/MR. The Dixon MR sequence and contrast-enhanced CT were compared for anatomic correlation of PET-positive lesions (scoring scale ranging from 0 to 3 for visual ratings). Additionally, standardized uptake values (SUVs) for the detected lesions were assessed for quantitative comparison.

Results

Both hybrid PET/MR and contrast-enhanced PET/CT identified 55 lesions with increased FDG uptake in ten patients. In total, 28 lymph nodes, 11 bone lesions, 3 dermal nodules, 3 pleural thickening lesions, 2 thyroid nodules, 1 pancreas, 1 liver, 1 ovary, 1 uterus, 1 breast, 1 soft tissue and 2 lung lesions were present. The best performance was observed for anatomic correlation of PET findings by the contrast-enhanced CT scans (contrast-enhanced CT, 2.64 ± 0.70; in-phase, 1.29 ± 1.01; opposed-phase, 1.29 ± 1.15; water-weighted, 1.71 ± 1.07; fat weighted, 0.56 ± 1.03). A significant difference was observed between the scores obtained from the contrast-enhanced CT and all four coregistered Dixon MR images. Quantitative evaluation revealed a high correlation between the SUVs measured with hybrid PET/MR (SUVmean, 2.63 ± 1.62; SUVmax, 4.30 ± 2.88) and contrast-enhanced PET/CT (SUVmean, 3.88 ± 2.30; SUVmax, 6.53 ± 4.04) in PET-positive lesions (SUVmean, ρ = 0.93; SUVmax, ρ = 0.95), although hybrid PET/MR presented a decrease of SUVs compared with contrast-enhanced PET/CT (mean reduction; SUVmean, 32.44 ± 15.64 %; SUVmax, 35.16 ± 12.59 %).

Conclusions

Despite different attenuation correction approaches, the SUV of PET-positive lesions correlated well between hybrid PET/MR and contrast-enhanced PET/CT. However Dixon MR images acquired for attenuation correction were insufficient to provide anatomic information of PET images because of low spatial resolution. Thus, additional MR sequence with fast and higher resolution may be necessary for anatomic information.  相似文献   

19.
PET-CT scanners allow generation of transmission maps from CT. The use of CT attenuation correction (CTAC) instead of germanium-68 attenuation correction (Ge AC) might be expected to cause artifacts on reconstructed emission images if differences in respiratory status exist between the two methods of attenuation correction. The aim of this study was to evaluate for possible respiratory motion artifacts (RMA) in PET images attenuation corrected with CT from PET-CT in clinical patients. PET-CT scans were performed using a Discovery LS PET-CT system in 50 consecutive patients (23 males, 27 females; mean age 58.2 years) with known or suspected malignancy. Both CTAC and Ge AC transmission data obtained during free tidal breathing were used to correct PET emission images. Cold artifacts at the interface of the lungs and diaphragm, believed to be due to respiratory motion (RMA), that were seen on CTAC images but not on the Ge AC images were evaluated qualitatively on a four-point scale (0, no artifact; 1, mild artifact; 2, moderate artifact; 3, severe artifact). RMA was also measured for height. Curvilinear cold artifacts paralleling the dome of the diaphragm at the lung/diaphragm interface were noted on 84% of PET-CT image acquisitions and were not seen on the (68)Ge-corrected images; however, these artifacts were infrequently severe. In conclusion, RMA of varying magnitude were noted in most of our patients as a curvilinear cold area at the lung/diaphragm interface, but were not diagnostically problematic in these patients.  相似文献   

20.
We investigated radiation exposure of patients undergoing whole-body 18F-FDG PET/CT examinations at 4 hospitals equipped with different tomographs. METHODS: Patient doses were estimated by using established dose coefficients for 18F-FDG and from thermoluminescent measurements performed on an anthropomorphic whole-body phantom. RESULTS: The most relevant difference between the protocols examined was the incorporation of CT as part of the combined PET/CT examination: Separate low-dose CT scans were acquired at 2 hospitals for attenuation correction of emission data in addition to a contrast-enhanced CT scan for diagnostic evaluation, whereas, at the other sites, contrast-enhanced CT scans were used for both purposes. Nevertheless, the effective dose per PET/CT examination was similar, about 25 mSv. CONCLUSION: The dosimetric concepts presented in this study provide a valuable tool for the optimization of whole-body 18F-FDG PET/CT protocols. Further reduction of patient exposure can be achieved by modifications to the existing hardware and software of PET/CT systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号