首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.

Objective

Excess fluoride intake during tooth development is known to cause dental fluorosis. It has also been suggested that amoxicillin use in early childhood is associated with enamel hypomineralization. The aim was to investigate separate and combined effects of sodium fluoride (NaF) and amoxicillin on enamel formation in vitro.

Design

Mandibular molar tooth germs of E18 mouse embryos were cultured for 10 days in a medium containing NaF (10, 12 or 15 μM) and/or amoxicillin (0.5, 1, 2 or 3.6 mg/mL) or sodium clavulanate (0.07 mg/mL) alone or in combination with 0.5 mg/mL of amoxicillin. Morphological changes were studied from the whole tooth photographs and histological tissue sections with light microscope.

Results

Only with the highest concentrations of NaF or amoxicillin alone the extent of enamel in the first molars measured as the vertical enamel height/crown height ratio was reduced (p < 0.01, p < 0.001, respectively). At lower concentrations, combination of NaF (12 μM) and amoxicillin (2 mg/mL) significantly reduced enamel extent compared with the controls (p < 0.001). Histologically, the ameloblasts were still columnar but poorly organized and the nascent enamel was often non-homogeneous. Enamel formation was not seen in any second molars exposed to 12 μM NaF and 2 mg/mL of amoxicillin (or higher concentrations) compared with the presence of enamel in half of the controls (p < 0.001).

Conclusions

Amoxicillin and NaF dose dependently affect developing enamel of mouse molars in vitro and the effects are potentiative. The clinical significance of the results remains to be studied.  相似文献   

2.

Objective

This study aimed to compare the effects 0.5% and 1% sodium, amine and stannous fluoride at different pH on enamel erosion in vitro.

Methods

Bovine enamel samples were submitted to a cyclic de- and remineralisation for 3 days. Each day, the samples were exposed for 120 min to pooled human saliva and subsequently treated with one of the fluoride solutions for 3 min: amine fluoride (AmF, 0.5% and 1% F), sodium fluoride (NaF, 0.5% and 1% F), each at pH 3.9 and 7.0, and stannous fluoride (SnF2, 0.5% and 1% F), at pH: 3.9. Additionally, two groups were treated with fluoride-free placebo solutions (pH: 3.9 and 7.0) and one group served as control (no fluoridation). Ten specimens each group were inserted in a so-called artificial mouth and eroded six times daily with hydrochloric acid (pH 2.6) for 90 s each intermitted by exposure to artificial saliva (1 h). After 3 days, enamel loss was analyzed profilometrically and evaluated statistically by ANOVA.

Results

Only the acidic 0.5% and 1% SnF2 and 1% AmF solutions were able to reduce erosive enamel loss significantly, while all other solutions and placebos did not differ significantly from the control. Between the acidic SnF2 and the 1% AmF solutions no significant differences could be detected.

Conclusion

At the same concentrations, acidic SnF2 and AmF may be more effective than NaF to protect enamel against erosion.  相似文献   

3.

Objectives

This study aimed to analyse the erosion-inhibiting potential of a single application of stannous chloride-containing fluoride solution on pellicle-covered enamel and dentine under constant acid flow conditions in vitro.

Design

Bovine enamel (n = 60) and dentine (n = 60) samples were exposed 1 h to the oral cavity of 4 healthy volunteers to allow for in situ pellicle formation. Pellicle-covered samples were randomly assigned to three groups (each n = 20 enamel and n = 20 dentine samples; 5 enamel and 5 dentine samples/volunteer) and treated once with a SnCl2/AmF/NaF (800 ppm Sn(II), 500 ppm F, pH 4.5) or a NaF solution (500 ppm F, pH 4.5) for 2 min or remained untreated (controls). Samples were eroded with hydrochloric acid (pH 2.6) in a small erosion chamber at 60 μl/min for 25 min. Calcium release into the acid was monitored in consecutive 30 s intervals for 5 min, then at 1 min intervals up to a total erosion time of 25 min using the Arsenazo III procedure. Data were statistically analysed by random-effects linear models (p < 0.05).

Results

The stannous chloride-containing fluoride solution reduced calcium loss of enamel and dentine to up to 6 min and 3.5 min, respectively. Calcium loss (% of control) amounted from 24 ± 7 (30 s) up to 93 ± 14 (6 min) in enamel and from 38 ± 13 (30 s) to 87 ± 15 (3.5 min) in dentine. The sodium fluoride solution was unable to reduce enamel and dentine erosion at any time point.

Conclusion

A single application of a stannous chloride-containing fluoride solution reduced enamel and dentine erosion up to 6 min and 3.5 min of constant acid flow, respectively.  相似文献   

4.

Objectives

This in vitro study assessed the effect of milk containing different fluoride concentrations on tooth erosion.

Methods

Bovine enamel and root dentine specimens were treated with: (1) bovine whole milk with 0 ppm F; (2) 2.5 ppm F; (3) 5 ppm F; (4) 10 ppm F (all after erosion); (5) whole milk with 0 ppm F (before erosion); (6) NaF (0.05% F, positive control, after erosion) or (7) 0.9% NaCl (negative control, after erosion). The specimens were submitted to pH cycles (4× 90 s in soft drink) and treatments for 5 days. The specimens were immersed in the treatment solutions for 1 min (only at the first cycle each day) with further exposition to 1:1 milk:saliva slurry for 10 min. The tooth loss was measured using a contact profilometer and statistically analysed (p < 0.05).

Results

Rinsing with milk before erosive challenge significantly reduced tooth loss compared to negative control (67% and 24% reduction in dentine and enamel loss, respectively) and to milk after erosive challenge, only for dentine. The addition of fluoride to milk also reduced tooth loss compared to negative control, but with no significant differences among fluoride concentrations for enamel and dentine (μm), respectively: 0 ppm (3.63 ± 0.04 and 2.51 ± 0.53), 2.5 ppm F (2.86 ± 0.42 and 1.96 ± 0.47), 5 ppm F (2.81 ± 0.27 and 1.77 ± 0.44), 10 ppm F (2.03 ± 0.49 and 1.68 ± 0.59). There was a negative and significant correlation between [F] and the tooth loss.

Conclusions

Daily rinse with milk containing F is able to reduce both enamel and dentine erosion in vitro.

Clinical significance

Since the prevalence of dental erosion is steadily increasing, rinse with milk or its derivate might be an important strategy to reduce the progression of tooth erosion.  相似文献   

5.

Objective

This study analysed the anti-erosive effect of experimental solutions containing TiF4 and NaF.

Methods

Bovine enamel samples (n = 15) were treated with: (1) commercial solution with SnCl2/NaF (Erosion Protection®); (2) experimental solution with 0.0815% TiF4; (3) 0.105% NaF; (4) 0.042% NaF + 0.049% TiF4; (5) 0.063% NaF + 0.036% TiF4 or (6) control. The samples were submitted to pH cycles and daily fluoride applications for seven days. The enamel wear was measured using a contact profilometer and analysed by ANOVA (p < 0.05).

Results

The best anti-erosive effect was found for experimental solution with 0.0815% TiF4 (99% reduction in enamel wear), followed by SnCl2/NaF (78%) and 0.049% TiF4 + 0.042% NaF solution (41%).

Conclusions

The experimental solution containing a specific combination of TiF4 + NaF has the ability to partially reduce enamel erosion.  相似文献   

6.

Objectives

To investigate the effect of a single application of highly concentrated SnF2 and NaF solutions and a NaF/CaF2 varnish on human enamel subjected to hydrochloric acid erosion and tooth brush abrasion.

Methods

Forty enamel samples were prepared from human third molars and NaF (9500 ppm, pH 8.0), SnF2 (9500 ppm, pH 2.6) solutions; Bifluorid10® varnish (42,500 ppm, NaF 5%, CaF2 5%) and deionized water (control) was applied to the enamel. Following this three, six and nine cycles of erosion [1 cycle = erosion (0.01 M HCl, pH 2.2, 2 min) + artificial saliva (1 h, pH 7.0)] and erosion-abrasion [1 cycle = erosion (0.01 M HCl, pH 2.2, 2 min) + artificial saliva (1 h, pH 7.0) + abrasion (120 linear strokes in artificial saliva from Tepe medium soft brushes 200 g loading)] were carried out. The fluoride treated enamel was analysed using Knoop microhardness, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS).

Results

For erosion alone, there was significantly less microhardness reduction in the Bifluorid10® group after three and six cycles of erosion (P < 0.05), however no other groups showed statistically different hardness (P > 0.05). The EDS analysis showed that only the Bifluorid10® group had any detectable fluorine following erosion and erosion-abrasion (0.1 wt.% and 0.2 wt.% fluorine respectively). The surface fluorine was found to have been removed after erosion and erosion-abrasion for all other surface treatments. Although precipitates were observed after application of the surface treatments, following erosion-abrasion, no visible surface effects from any fluoride preparation remained.

Conclusions

Enamel surface precipitates from application NaF, SnF2 solutions appear to not be able to provide protection against gastric erosion and tooth brush abrasion. The NaF/CaF2 varnish provided limited protection against erosion but the role for such varnishes in gastric erosion and tooth brush abrasion remains uncertain.  相似文献   

7.

Objectives

This randomised in situ study aimed to analyse the effect of milk (with or without 5 ppm F) and CPP-ACP pastes (with or without 900 ppm F) on dental erosion.

Methods

The study was a seven phase (5 days each) crossover design involving 15 participants wearing intraoral appliances with enamel and dentine specimens. Specimens were extraorally eroded (erosive soft drink, 6 × 90 s/day) and brushed (2 × 30 s/day, 2 N) using a non-fluoridated toothpaste (negative control). The test products were milk, milk + 5 ppm F (twice daily, each 100 ml/2 min), CPP-ACP paste, CPP-ACP paste + 900 ppm F (3 min/day) or a SnCl2/AmF/NaF mouthrinse (positive control, 30 s/day), which were applied immediately after erosion with the appliances in the oral cavity. In an additional group, a fluoridated toothpaste was used without any additional test product. Tissue loss was determined profilometrically after 5 days and statistically analysed by linear mixed models methodologies (p < 0.05).

Results

Compared with the negative control (non-fluoridated toothpaste only, enamel: 2.2 ± 1.3 μm; dentine: 3.8 ± 2.2 μm), enamel and dentine loss was significantly reduced by the use of fluoridated toothpaste (enamel: 1.1 ± 1.0 μm; dentine: 2.4 ± 1.7 μm) and the SnCl2/AmF/NaF mouthrinse (1.5 ± 1.5 μm; dentine: 1.8 ± 1.9 μm).

Conclusions

Milk and CPP-ACP were not effective in reducing enamel and dentine loss significantly, independently of the presence of fluoride.

Clinical significance

Enamel and dentine erosion were significantly reduced by the use of a fluoridated toothpaste or a SnCl2/AmF/NaF mouthrinse, but not by milk or CPP-ACP under the conditions of the present study.

Clinical trials registration

NCT01566357.  相似文献   

8.

Objectives

To investigate the effect of an aqueous sodium fluoride solution of increasing concentration on erosion and attrition of enamel and dentine in vitro.

Methods

Enamel and dentine sections from caries-free human third molars were polished flat and taped (exposing a 3 mm × 3 mm area) before being randomly allocated to 1 of 5 groups per substrate (n = 10/gp): G1 (distilled water control); G2 (225 ppm NaF); G3 (1450 ppm NaF); G4 (5000 ppm NaF); G5 (19,000 ppm NaF). All specimens were subjected to 5, 10 and 15 cycles of experimental wear [1 cycle = artificial saliva (2 h, pH 7.0) + erosion (0.3% citric acid, pH 3.2, 5 min) + fluoride/control (5 min) + attrition (60 linear strokes in artificial saliva from enamel antagonists loaded to 300 g)]. Following tape removal, step height (SH) in μm was measured using optical profilometry.

Results

When the number of cycles increased the amount of tooth surface loss increased significantly in enamel and dentine after attrition and erosion and for dentine after attrition. Attrition and erosion resulted in greater surface loss than attrition alone after 15 cycles of experimental wear of enamel. 5000 ppm and 19,000 ppm sodium fluoride solutions had a protective effect on erosive and attritional enamel tooth wear in vitro, however no other groups showed significant differences.

Conclusions

The more intensive the fluoride regime the more protection was afforded to enamel from attrition and erosion. However, in this study no such protective effect was demonstrated for dentine.  相似文献   

9.

Objectives

The present study evaluated the effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and CPP-ACP with 900 ppm fluoride (CPP-ACPF) pastes on inhibition of enamel demineralization over time, using polychromatic micro-computed tomography (micro-CT).

Methods

Enamel blocks were prepared from bovine teeth. The specimens were each treated by one of the following agents, 30 min daily for 7 days: deionized water (negative control); CPP-ACP paste; CPP-ACPF paste; and NaF solutions (positive controls) (90, 900, and 9000 ppm F). After treatment, the specimens were immersed in a demineralizing solution (pH 4.5) for 24, 72, and 120 h. Mean mineral loss (ML) and lesion depth (LD) after each period were determined from mineral density profiles obtained using micro-CT.

Results

ML values in all the treatment groups were significantly smaller than those in the control group after 72 and 120 h of demineralization (p < 0.05, two-way ANOVA and t-test with Bonferroni correction). ML values in CPP-ACPF and NaF solution groups were significantly smaller compared to CPP-ACP group after 72 h (p < 0.05). LD values in the CPP-ACPF and all the NaF solutions groups were significantly smaller compared to the control group after 120 h (p < 0.05). The 9000 ppm F group showed the lowest nominal ML and LD values.

Conclusions

The application of CPP-ACP or CPP-ACPF pastes to sound enamel surfaces resulted in inhibition of enamel demineralization, and a better effect was noted for the latter paste. Quantitative assessment using polychromatic micro-CT demonstrated to be useful for detecting mineral density changes.  相似文献   

10.

Objective

To evaluate the effectiveness of a dentifrice with 5000 ppm fluoride in preventing dental erosion by orange juice in situ in comparison to a control dentifrice with 1450 ppm fluoride.

Methods

This was a double-blind and randomized clinical study with a cross-over design. Sixteen subjects wore an intra-oral appliance containing two enamel disks with an exposed surface of approximately 2 mm × 5 mm. Enamel disks in the study group were treated with a dentifrice with 5000 ppm fluoride and in the control group with 1450 ppm fluoride. The subjects rinsed with slurries of study dentifrices for one minute before immersing the enamel disks in 250 ml orange Juice four times in an 8-h period daily. The treatment procedure was repeated for three 5-day phases for each dentifrice. Enamel erosion was measured after each 5-day treatment phase using a focus-variation 3D scanning microscopy. Medians and inter-quartile ranges (IQR) of mean erosion depth were compared between the groups.

Results

The mean erosion depths of enamel varied greatly amongst the subjects. Enamel treated with 5000 ppm fluoride had less erosion (median 5.7 μm, IQR 4.5 μm) as compared to the control (median 12.6 μm, IQR 12.3 μm) after 15 days of fluoride treatment and erosive challenge cycles (p < 0.05).

Conclusions

Enamel treated with 5000 ppm fluoride had significantly improved resistance to erosion by orange juice. Periodic application of 5000 ppm fluoride may be beneficial in individuals at risk of acidic erosion associated with soft drink consumptions.  相似文献   

11.

Objectives

The aim of this study was to investigate the effects of decreasing fluoride concentrations on repeated demineralizing challenges on human enamel.

Materials and methods

In 24 teeth, 3 mm × 3 mm windows were prepared on the buccal and lingual sides and treated in a cycling demineralization–remineralization model. Remineralization was achieved with 100, 10 and 0.1 ppm fluoride from anime fluoride. Coronal sections were cut through the artificial lesions, and three sections per tooth were investigated using polarized light microscopy and scanning electron microscopy with quantitative element analysis.

Results

The morphology of the lesions was studied, and the extensions of the superficial layer and the body of the lesion were measured. Using element analysis, the Ca, P and F content were determined. The body of the lesion appeared remineralized after application of 100 ppm fluoride, while remineralization of the lesion was less successful after application of 10 and 0.1 ppm fluoride. The thickness of the superficial layer increased with decreasing fluoride concentrations, and also the extension of the body of the lesion increased. Ca and P content increased with increasing fluoride concentrations.

Conclusions

The effectiveness of fluoride in enamel remineralization increased with increasing fluoride concentration.

Clinical relevance

A consistently higher level of fluoride in saliva should be a goal in caries prevention.  相似文献   

12.
Dental products containing calcium phosphate and fluoride are claimed to enhance enamel remineralization over fluoride products.

Objectives

To compare remineralization of enamel subsurface lesions by dental products with added calcium phosphate in a double-blind, randomized, cross-over in situ study.

Methods

Human enamel specimens with subsurface lesions were prepared and inserted into intra-oral appliances worn by volunteers. A slurry (1 g product plus 4 ml H2O) of each product was rinsed for 60 s, 4 times per day for 10 days. Six products were tested (i) placebo, (ii) 1000 ppm F, (iii) 5000 ppm F, (iv) Tooth Mousse (TM), (v) TM plus 900 ppm F (TMP) and (vi) Clinpro with 950 ppm F. Calcium, inorganic phosphate and fluoride levels were measured in post-rinse/saliva samples using ion chromatography. Mineral content was measured using transverse microradiography.

Results

Only TM and TMP significantly increased salivary calcium and phosphate levels. The products produced remineralization in the following order from lowest to highest: placebo < 1000 ppm F = Clinpro < 5000 ppm F < TM < TMP.

Conclusion

Clinpro was not significantly different to 1000 ppm F whereas TM and TMP were superior to 5000 ppm F with TMP producing the highest level of enamel lesion remineralization.  相似文献   

13.

Aim

Our aim was to test the hypothesis that co-exposure to lead and fluoride alter the severity of enamel fluorosis.

Materials and methods

Wistar rats were allocated in four groups: control, and 3 groups that received water containing 100 ppm of fluoride (F), 30 ppm of lead (Pb), or 100 ppm of F and 30 ppm of Pb (F + Pb) from the beginning of gestation. Enamel analysis and F and Pb determinations in enamel, dentine, and bone were performed in 81-day-old animals. Fluorosis was quantified using a new fluorosis index based on the identification of incisor enamel defects (white bands and white islets, representing hypomineralization, and cavities) weighted according to their severity and quantity. Hypomineralization was validated histopathologically by polarizing microscopy and microradiography. Scores were given by two blinded calibrated examiners (intra and interexaminer kappa values were 0.8 and 0.86, respectively).

Results

The control and the Pb groups presented normal enamel. The F + Pb group presented more severe enamel defects compared with the F group (P < 0.0001).

Conclusions

This study shows that lead exacerbates dental fluorosis in rodents, suggesting that co-exposure to lead may affect the degree of fluorosis.  相似文献   

14.

Objective

The aim of the study was to investigate the effect of chemical compounds of Galla chinensis on in vitro the remineralization of enamel surface.

Method

Bovine enamel blocks with in vitro produced initial lesions were used. The lesions were subjected to a pH-cycling regime for 12 days. Each daily cycle included 4×1 min applications with one of four treatments: Group A: 1000 ppm F aq. (as NaF, positive control); Group B: deionized water (DDW, negative control); Group C: 4000 ppm crude aqueous extract of G. chinensis (GCE); Group D: 4000 ppm gallic acid. The enamel specimens were analysed by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray microdiffraction (XRD).

Results

The morphology of surface enamel was different in each group. The mineral composition was identified as similar to hydroxylapatite, but the crystallite sizes of enamel in different groups were significantly different. In addition, the Ca/P ratios were significantly lower in GCE group.

Conclusion

GCE could affect the mineral ions deposit on the surface layer and then modified the remineralization of initial dental caries. The mechanism seems to be different between GCE and gallic acid.  相似文献   

15.
16.

Objectives

This in situ trial study was designed to evaluate whether calcium (Ca) pre-rinse would increase the fluoride (F) rinse protection against enamel erosion.

Methods

Fifteen volunteers participated in this split-mouth, 3-phase, crossover design study wearing a palatal appliance containing four sterilized bovine enamel slabs, for 10 days. In the 1st phase, five participants followed protocol A: daily rinse with a Ca lactate (CaL, 150 mmol/L, 1 min), followed by F (NaF 12 mmol/L, 1 min). Other five participants followed protocol B: daily rinse only with F, while the remainders followed protocol C: no rinse (negative control). Appliances were removed from the mouth and one side of the palatal appliance was exposed to a daily erosive challenge (0.05 M citric acid, 90 s); the other side served as control (deionized water – no erosion). In the 2nd phase volunteers were crossed over to other protocol and in the 3rd phase volunteers received the remaining protocol not yet assigned. Specimens were evaluated for surface loss using an optical profilometer.

Results

Repeated-measures three-way ANOVA (p = 0.009) and Tukey's test showed that CaL pre-rinse followed by NaF rinse significantly decreased surface loss of enamel when performed prior to an erosive challenge in comparison with the condition in which NaF only was used.

Conclusions

Pre-rinse with CaL may increase the protection exerted by NaF against erosive wear.  相似文献   

17.

Objectives

This in situ/ex vivo study analysed the anti-erosive/abrasive effect of TiF4 and NaF varnish and solution on enamel wear.

Materials and methods

Twelve subjects took part in this study which was performed in three periods (phases) with the duration of 5 days each. Each two human enamel specimens per subject were pretreated with experimental NaF varnish or solution (phase A), experimental-TiF4 varnish or solution (phase B) and placebo varnish or untreated control (phase C). The specimens were worn in palatal appliances; one enamel specimen, from each treatment, was subjected to erosion (ERO; cola soft drink, 4?×?90 s/day), and the other specimen was subjected to erosion plus abrasion (ERO + ABR; tooth brushing, 2?×?10 s/day). The tooth wear was quantified by a contact profilometer (micrometre) and analysed using two-way repeated measures ANOVA and Bonferroni’s test (n?=?12 subjects, p?<?0.05).

Results

All fluoride varnishes and solutions reduced the enamel wear (around 25 %) significantly compared to the control and placebo varnish. There were no significant differences among the fluoride formulations and between the conditions ERO and ERO + ABR.

Conclusions

Therefore, it can be concluded that TiF4 has the same protective potential as NaF formulations to reduce human enamel wear under this experimental in situ model.

Clinical significance

In vitro studies have indicated a better anti-erosive/abrasive effect of TiF4 compared to NaF varnish. The present in situ study does not support the previous findings. Therefore, any of the tested professional fluoride varnishes in principle could be able to partially reduce enamel wear.  相似文献   

18.

Objective

To evaluate the effect of fluoride (F) varnishes supplemented or not with sodium trimetaphosphate (TMP) on enamel erosive wear followed or not by abrasion in situ.

Methods

Ten volunteers were selected and randomly divided into four groups, according to the varnishes tested: placebo (no F or TMP), 5% NaF (positive control), 2.5% NaF and 2.5% NaF/5% TMP. Enamel blocks (n = 4) were mounted in palatal devices and received an application of each test varnish, following a double-blind, crossover protocol. After 6 h, varnishes were completely removed and the blocks were subjected to erosive challenges by ex vivo immersion in citric acid (5 min, 4×/dia, 5 days). Following, half of the blocks were subjected to abrasion by brushing with a placebo dentifrice slurry for 15 s. Enamel wear (μm), surface hardness (SHf) and cross-sectional hardness (ΔKHN) were assessed after each experimental period. Results were analyzed by ANOVA, Student–Newman–Keuls's test and Pearson correlation coefficient (p < 0.05).

Results

The fluoride varnish supplemented with TMP promoted significantly lower wear and ΔKHN when compared to the other groups after erosive challenges, followed or not by abrasion (p < 0.05). As for (SHf) the fluoride varnish supplemented with TMP promoted similar results to the 5% NaF product, being significantly higher than the remaining groups after erosive and erosive + abrasive challenges (p < 0.05).

Conclusion

TMP significantly enhanced the effects of F on enamel wear after erosive challenges, followed or not by abrasion.  相似文献   

19.

Objective

To determine the association between KOH-soluble and structurally bound fluoride uptake and the erosion resistance of enamel, respectively. Additionally, the effect of enamel pre-treatment with ethanol before fluoridation was assessed.

Methods

Sixty bovine incisors (4 specimens/tooth) were randomly allocated to six groups (A-F). Samples 1 and 2 remained untreated, serving as control at baseline. Pre-treatment of the samples was performed for 5 min with 99% ethanol (groups A, B and C) or physiologic saline (groups D, E and F). Samples 3 and 4 were treated either with 0.5% (groups A and D), 1.0% (groups B and E) or 1.5% (groups C and F) fluoride solution. In samples 1 and 3, uptake of KOH-soluble and structurally bound fluoride was determined. Samples 2 and 4 were used for the determination of acid susceptibility by immersion in 1 ml HCl for 30 s. Calcium release into HCl was assessed by atomic absorption spectroscopy. Differences between the groups were calculated by unpaired t-tests (p < 0.05).

Results

Mode of pre-treatment showed no influence on fluoride acquisition. KOH-soluble and structurally fluoride uptake increased with increasing fluoride concentrations. Highest acid resistance was observed after treatment with 1% fluoride solution for both kinds of pre-treatment followed by 1.5% and 0.5% fluoride solution.

Conclusion

Dose-dependency was observed for enamel fluoride acquisition but not for acid resistance.  相似文献   

20.

Objective

To evaluate the remineralising effect of the adjunctive application of 38% silver diamine fluoride (SDF) solution and 5% sodium fluoride (NaF) varnish on artificial enamel caries lesions.

Methods

Forty-eight demineralised enamel specimens were allocated into four groups. Group 1 received 38% SDF and 5% NaF; Group 2 received 38% SDF; Group 3 received 5% NaF; and Group 4 received deionized water. After pH cycling, the surface morphology and fluoride content of the specimens were studied via scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS). The lesion depth and crystal characteristics were assessed using micro-computed tomography and X-ray diffraction (XRD) respectively. The crystallization reaction was performed by incubating hydroxyapatite powder with NaF or SDF for 48 h. The precipitates were studied via transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).

Results

SEM demonstrated the destruction of the enamel surface in Group 4. EDS revealed that the mean fluoride weight percentage of Groups 1–4 were 1.28 ± 0.15, 1.33 ± 0.19, 1.03 ± 0.09 and 0.87 ± 0.04 respectively. The mean lesion depths of Groups 1–4 were 129 ± 14 μm, 131 ± 16 μm, 153 ± 10 μm and 181 ± 21 μm respectively. The addition of NaF to SDF did not reduce the lesion depths (p = 0.779). XRD revealed that silver chloride formed as a main product in Groups 1 and 2. Meanwhile, TEM analysis indicated that silver nanoparticles were incorporated into hydroxyapatite crystal in SDF-treated hydroxyapatite. XPS spectra suggested that the chemical state of the silver was metallic.

Significance

The adjunctive application of SDF and NaF varnish had a similar remineralising effect to that of SDF on enamel caries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号