首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the main problems in orthopaedics is the surgical removal of hard substances, such as bone and polymethylmethacrylate (PMMA). Such materials are often very difficult to remove without mechanical trauma to the remaining tissue. This study investigated the feasibility of the ultraviolet 308 nm excimer laser in the ablation of these materials. The beam was delivered through a 1 mm-diameter fiber optic at 40 Hz with energy densities at the target surface of 20-80 J/cm2 per pulse. The goal of the study was to establish the ideal dosimetry for removing bone and PMMA with minimum trauma to the adjacent tissue. Histology revealed that the 308 nm laser effectively removed bone leaving a thermal damage zone of only 2-3 microns in the remaining tissue. Increasing the energy per pulse gave correspondingly larger and deeper cuts with increasing zones of thermal damage. The excimer laser was also effective in the ablation of PMMA, creating craters in the substrate with a thermal damage zone of 10-40 microns. The debris from both substrates was evaluated.  相似文献   

2.
The possible application of excimer laser to laser angioplasty was studied. In the first experiment, the ablative effects of excimer laser at wavelengths of 248 nm and 308 nm on the pig myocardium were examined in vitro at an air-tissue interface. Crater depth increased with total delivered energy and energy per pulse. Very clear cuts could be observed by histological examination. There was no evidence of thermal damage at a wavelength of 248 nm, at 10 pps. Above 10 pps, a thin bordering zone of suspicious thermal damage was noted with the wavelengths of 248 nm and 308 nm. Thermal damage increased with pulse repetition rate. In the second experiment, the effects of excimer laser irradiation on blood were examined. Five vials, each of which contained 3 ml of blood, were exposed to 37.5 mJ laser beam at 10 pps in repetition rate for 10, 20, 30, 40, 50 seconds. One vial was left untreated as a control. No change in hematocrit value was observed after excimer laser irradiation. In contrast, the level of plasma free hemoglobin rose progressively with each increased duration of exposure. This result indicates that the lysis of erythrocytes does not occur in the laser-exposed cells. However, the damage to erythrocyte membrane took place as it was evidenced by progressive hemoglobin leakage into plasma. In the third experiment, the excimer laser was coupled to a 400 microns quartz optical fiber and the laser energy transmitted through the fiber was measured. At a wavelength of 308 nm, pulse energies up to 9 mJ were noted at the tip of the fiber. At a wavelength of 248 nm, the fiber tip was destroyed. In the fourth experiment, acute and chronic healing responses of normal canine arteries to excimer laser irradiation were studied in 4 mongrel dogs. The artery healed completely at the 18th day after the excimer laser irradiation. There was no evidence of thrombus formation and intimal hyperplasia in these arteries. The results suggest the applicability of excimer laser to laser angioplasty.  相似文献   

3.
Pulsed ultraviolet lasers and the potential for safe laser angioplasty   总被引:2,自引:0,他引:2  
Endoscopic laser ablation of atheroma using continuous wave lasers is limited by imprecise control of thermal ablation, resulting in a crater that expands in width and depth, with thermal damage to adjacent normal tissue. We compared the gross and histologic effects of pulsed 308 mm excimer irradiation to continuous-wave Nd:YAG and Argon Ion laser irradiation, and pulsed 1,060 nm, 532 nm, 355 nm, and 266 nm laser irradiation in 205 atherosclerotic aortic segments. In contrast to the continuous-wave Nd: YAG, Argon Ion, and pulsed 1,060 nm, 532 nm, and 355 nm laser irradiation, which produced gross and histologic evidence of uncontrolled ablation, the 308 nm and 266 nm pulsed lasers induced incisions that conformed precisely to the beam configuration without gross evidence of thermal injury. The incision edges from these two lasers were histologically smooth and comparable to a scalpel incision. Our histologic findings suggest that rapid, precise endoscopic ablation of vascular and nonvascular tissue can be performed at these shorter pulsed wavelengths with very high precision with relatively little damage or risk to adjacent tissue.  相似文献   

4.
To determine the temporal evolution of laser induced tissue ablation, arterial wall specimens with either hard calcified or fatty plaques and normal tissue were irradiated in a 0.9% saline solution using a XeCl excimer laser (wavelength 308 nm, energy fluence 7 J/cm2, pulse width 30 ns) through a 600 microns fused silica fiber pointing perpendicular either at a 0.5 mm distance or in direct contact to the vascular surface. Radiation of a pulsed dye laser (wavelength 580 nm) was used to illuminate the tissue surface. The ablation process and the arising bubble above the tissue surface were recorded with a CCD camera attached to a computer based image-processing system. Spherical cavitation bubbles and small tissue particles emerging from the irradiated area have been recorded. The volume of this bubble increased faster for calcified plaques than for normal tissue.  相似文献   

5.
Laser–induced fluorescence may be used to guide laser ablation of atherosclerotic lesions. This study was performed to evaluate arterial autofluorescence spectroscopy in vitro using a single XeCl excimer laser (308 nm) for simultaneous tissue ablation and fluorescence excitation. The laser beam was coupled to a 600-μm silica fiber transmitting 40–50 mJ/mm2 per pulse. The fluorescence radiation emanating retrogradely from the fiber was collected by a concave mirror for spectroscopic analysis over a range of 321–657 nm. The arterial media (n = 26), lipid plaques (n = 26), and calcified lesions (n = 27) of aortic specimens from ten human cadavers were investigated in air, saline, and blood. Whereas the spectrum of calcified lesions changed with the surrounding optical medium, the other spectra remained constant. In air and blood, the spectra of arterial media, lipid plaques, and calcified lesions could be differentiated qualitatively and quantitatively (P < 0.0001). In saline, there was no clearcut spectroscopic difference between lipid plaques and calcified lesions. However, normal arterial media and atherosclerotic lesions (lipid plaques plus calcified lesions) could still be discriminated. Thus spectroscopy and plaque ablation can be combined using a single XeCl excimer laser. These encouraging results should stimulate further studies to determine the potential use of this approach to guide laser angioplasty in humans. © 1994 Wiley-Liss, Inc.  相似文献   

6.
The present study was designed to assess the characteristics of tissue photoemission obtained from normal and atherosclerotic segments of human postmortem femoral arteries by 308 nm excimer laser irradiation of 60 ns pulsewidth. Three ablative (20, 30, and 40 mJ/pulse) and three non-ablative (2.5, 5, and 10 mJ/pulse) energy fluences were employed. Both the activating laser pulses and the induced photoemission were guided simultaneously over one and the same 1,000 micron core optical fiber that was positioned in direct tissue contact perpendicular to the vascular surface. The spectral lineshape of normal arterial and noncalcified atherosclerotic structures was characterized by a broad-continuum, double-peak emission of relevant intensity between wavelengths of 360 and 500 nm, with the most prominent emission in the range of 400-415 (407 nm peak) and 430-445 nm (437 nm peak). Fibrous and lipid atherosclerotic lesions, however, exhibited a significantly reduced intensity at 437 nm compared to normal artery layers (P less than 0.001), expressed as a 407/437 nm ratio of 1.321 +/- 0.075 for fibrous and 1.392 +/- 0.104 for lipid lesions. Normal artery components presented with approximately equal intensity at both emission peaks (407/437 nm ratio: intima, 1.054 +/- 0.033; media, 1.024 +/- 0.019; adventitia, 0.976 +/- 0.021). Comparison of spectral lineshape obtained under various energy fluences within a group of noncalcified tissues disclosed no substantial difference using the 407/437 nm ratio (P greater than 0.05). In contrast, calcified lesions revealed high-intensity multiple-line (397, 442, 461, and 528 nm) emission spectra under ablative energy fluences, whereas a low-intensity broad-continuum, single-peak spectrum resulted from irradiation beyond the ablation threshold. Thus, these findings suggest fluorescence phenomena for broad-continuum spectra, and plasma emission for multiple-line spectra as an underlying photodynamic process. Regardless of the activating energy fluence, spectral analysis of 308 nm activated photoemission provides accurate information about the laser target under standardized in vitro conditions. It is demonstrated that direct contact ablation and simultaneous spectral imaging of the target tissue via the same optical fiber is feasible.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The effect of force applied to a 430 micron single fiber, delivering 60 pulses of 308 nm XeCl laser radiation at 20 Hz, on the ablation depth in porcine aortic tissue under saline has been investigated. Energy densities of 8, 15, 25, 28, 31, 37, and 45 mJ/mm2 were used. Force was applied by adding weights from 0 to 10 grams to the fiber. The fiber penetration was monitored by means of a position transducer. At 0 grams, the ablation depth increased linearly with incident energy density, but the fiber did not penetrate the tissue; with any weight added, the fiber penetrated the tissue at energy densities above 15 mJ/mm2. The fiber did not penetrate during the first several pulses, possibly due to gas trapped under the fiber. After these first pulses, a smooth linear advancement of the fiber began, which lasted until the pulse train stopped. The ablation depth increased with increasing energy densities and weights. This effect was largest above 25 mJ/mm2 where the ablation efficiencies (unit mm3/J), with weights added to the fiber, were substantially larger than values found in 308 nm ablation experiments described in the literature, which were conducted with either a focused laser beam or a fiber without additional force. The results imply that in 308 nm excimer laser angioplasty, force must be applied to the beam delivery catheter for efficient recanalization, and that experiments performed with a focused beam or without actual penetration of the fiber do not represent the situation encountered in excimer laser angioplasty.  相似文献   

8.
Excimer ablation of human intervertebral disc at 308 nanometers   总被引:1,自引:0,他引:1  
Excimer laser energy, which has been shown to photoablate tissue at a precisely controllable rate with minimal thermal damage, was applied to human intervertebral disc in an effort to develop a technique for percutaneous discectomy. Cadaveric samples of human disc were used. Excimer laser energy was produced by a XeCl, magnetically switched, long-pulse laser working at 308 nm, 20 Hz. Annulus tissue of approximately 1 mm thickness was placed in contact with the output tip of a 400 microns core diameter quartz fiber, and measurements of ablation rate were made at different radiant exposures. Ablation rates were found to vary linearly with radiant exposure, from 0.7 micron/pulse at 10 mJ/mm2 to 11.0 microns/pulse at 55 mJ/mm2, with a correlation coefficient of 0.984. Threshold radiant exposure, calculated by extrapolation, was found to be about 7 mJ/mm2. Histologic analysis showed a minimum of thermal damage in these specimens, and when ablated with modification to maintain constant fiber-tissue contact, thermal injury was nearly absent, as compared to samples ablated with Nd:YAG through a contact probe. Thermographic analysis, performed using the AGA 782 Digital Thermography system, showed increasing temperature with increasing radiant exposure, with a maximum temperature of 47.2 degrees C at 55 mJ/mm2. In that precise tissue ablation was demonstrated with minimal generated heat, and excimer energy at 308 nm is transmissible through fiber optics, excimer holds great promise for the development of a percutaneous discectomy technique.  相似文献   

9.
Using a pulsed XeCl excimer laser (308 nm) and a pulsed Er:YAG laser (2,940 nm), we investigated skin ablation as a function of pulse number, radiant energy, and repetition rate. In vitro analysis of lesions performed in freshly excised human skin were consistent with in vivo results obtained from experiments on pig skin. Pulsed 308 nm laser radiation caused considerable nonspecific thermal tissue injury followed by an inflammatory reaction and impaired healing of lesions in vivo. These findings were especially pronounced with higher repetition rates, which would be required for efficient destruction of larger lesions. On the other hand, the 2.94 microns Er:YAG laser radiation produced clean and precise lesions with only minimal adjacent injury. In vivo skin ablation caused intraoperative bleeding with deeper penetration. The Er:YAG laser offers a promising surgical tool for careful removal of superficial epidermal lesions, if higher repetition rates, and an appropriate laser beam delivery system are available for clinical use.  相似文献   

10.
Pulsed excimer laser angioplasty of human cadaveric arteries   总被引:2,自引:0,他引:2  
Laser angioplasty has been limited by the lack of precise control of thermal and acoustic vascular injury. Pulsed excimer lasers, by contrast, have a capacity to affect target tissue without heat dispersion or damage to surrounding structures. The ablative properties of three excimer wavelengths, krypton fluoride (249 nm), xenon chloride (308 nm), and xenon fluoride (351 nm), were investigated with the use of fresh human cadaveric normal and atherosclerotic femoral arteries. Light and electron microscopy demonstrated clean cuts with histologically normal edges. There was no evidence of either thermal or acoustic damage with any of the wavelengths studied. The depth of ablation varied directly with the number of pulses and inversely with tissue density while the incision width remained constant. The excimer laser appears to offer significant advantages over its conventional counterparts for the ablation of atherosclerotic plaque.  相似文献   

11.
To quantify the dependence on pulse repetition rate of 308 nm laser ablation in ocular tissue and elucidate the photoablation mechanisms involved, 85 full-thickness ab interno sclerostomies were created in six human donor eyes using an 800-μm-diameter quartz optical fiber. A laser pulse duration of 135 ns, fluence of 31 mJ/mm2, and a fixed repetition rate between 5 and 40 Hz were used for 38 sclerostomies; the remaining 47 sclerostomies were completed at various laser settings during initial experimentation. Surprisingly, the numbers of pulses required for complete penetration of the optical fiber through the fixed tissue thickness were not constant as expected but decreased nonlinearly with increasing repetition rate. This demonstrates that the 308 nm excimer laser cuts ocular tissue significantly more rapidly per pulse at higher repetition rates. To explain this nonlinearity, we propose a composite ablation mechanism composed of photochemical, thermal, mechanical, and optical effects in varying proportions. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Pulsed ultra-violet excimer laser radiation is capable of tissue ablation with only minimal thermal injury of adjacent tissue structures. Since difficult fibre optic coupling of energy was observed, alternative Q-switched laser sources capable of ablation of atherosclerotic plaque are under current investigation. To evaluate tissue effects of Alexandrite laser radiation, 160 arterial segments with macroscopic evidence of atherosclerotic disease were treated. The laser light was transmitted via silica based quartz fibres with different diameters. Using the Q-switched Alexandrite laser at the fundamental wavelength (748 nm) with a pulse duration of 300 ns the energy density threshold for tissue ablation was found to be in the range of 63 to 126 J cm–2 using a 300m fibre. On macroscopic examination only limited thermal and acoustic injury was found in crater adjacent tissue structures. Crater edges were even and did not reveal signs of crater charring or debris in the crater lumen. However, the histological cross-sections revealed thermal injury extending from 100 up to 200m lateral into adjacent tissue. The crater margins revealed fissuring as a result of shock wave injury. Thermal damage was most evident if irradiation of atherosclerotic tissue was performed in blood.  相似文献   

13.
Cytotoxicity and mutagenicity of excimer laser radiation   总被引:3,自引:0,他引:3  
Excimer laser radiation at 193 nm, 248 nm and 308 nm cause DNA photochemistry. The photobiological effects resulting from exposure of cells to 308 nm and 248 nm radiation appear to be the same as those obtained using low irradiance CW sources at similar wavelengths. This indicates that the high irradiances available from the excimer laser cause the same DNA photochemistry as the lower-irradiance CW sources. Excimer laser radiation at 193 nm causes less cytotoxicity than predicted based on the DNA absorption spectrum. This may result from absorption of 193 nm radiation by protein present between the cell surface, and nuclear DNA, or from less efficient DNA photochemistry using 193 nm radiation. In vitro assays indicate that DNA-damaging effects resulting in cytotoxicity decrease in the order 248 nm greater than 308 nm greater than 193 nm.  相似文献   

14.
H Ogino 《Nippon geka hokan》1992,61(2):168-189
An excimer laser, which is a pulsed ultraviolet laser and ablates tissue precisely with no thermal injury, is expected to coronary laser angioplasty. We transmitted XeCl excimer laser (308 nm) via a 400 microns fused silica fiber. In the first experiment, we studied about excimer laser ablative effects to normal canine arteries and atherosclerotic rabbit aortas, and about healing responses following excimer laser irradiation in both models. Surfaces after excimer laser ablation were slightly rough but no thermal injury was found in the media. And for healing process of normal canine arteries, endothelial cells appeared at 3 weeks and completely covered surfaces with fibrointimal ingrowth at 3 months. In the rabbit aortas, at 3 weeks there was reconstruction of the surface. At 2 months no accelerated atherosclerotic or aneurysmal changes were observed. In the second, with this excimer laser (short pulse) and 400 microns fused silica fibers (distal fiber-end power: 3-6 mJ/pulse), we performed transluminal laser angioplasty to recanalize totally occluded canine femoral arteries under an angioscopic guidance. We cold recanalize 8 of 9 totally occluded arteries with no thermal injury of adjacent tissue, though perforations were observed in 7 of 9 arteries. In the third, we used a newly-developed long pulse excimer laser, with which distal fiber-end energy was about 3 to 4 times as much as the short pulse one, to recanalize totally occluded canine arteries. In result, recanalization was performed in 6 of 8 arteries rapidly with little thermal injury. However, we observed perforations in 6 of 8 arteries like the short pulse one. Multifiber catheter ("over the wire system") coupled with this long-pulse excimer laser was used to reconstruct stenotic iliac arteries of atherosclerotic rabbit models. The procedure was successful in all the 5 rabbits. In conclusion, our preliminary results suggested that further developments of a more powerful and longer pulse-duration excimer laser, optic delivery system and guidance system would make excimer laser angioplasty safer and more effective method in the near future.  相似文献   

15.
Laser dentistry: a new application of excimer laser in root canal therapy   总被引:1,自引:0,他引:1  
We report the first study of the application of excimer lasers in dentistry for the treatment of dental root canals. High-energy ultraviolet (UV) radiation emitted by an XeCl excimer laser (308 nm) and delivered through suitable optical fibers can be used to remove residual organic tissue from the canals. To this aim, UV ablation thresholds of dental tissues have been measured, showing a preferential etching of infiltrated dentin in respect to healthy dentin, at laser fluences of 0.5-1.5 J/cm2. This technique has been tested on extracted tooth samples, simulating a clinical procedure. Fibers of decreasing core diameters have been used to treat different sections of the root canal down to its apical portion, resulting in an effective, easy, and fast cleaning action. Possible advantages of excimer laser clinical applications in respect to usual procedures are also discussed.  相似文献   

16.
Acute in vitro histologic studies have shown that the pulsed xenon chloride excimer laser causes precise microablation without the surrounding thermal tissue injury associated with frequently used continuous-wave lasers such as the argon, carbon dioxide, and neodymium:yttrium aluminum garnet lasers. However, the in vivo healing response of artery wall to excimer laser injury is not known. Accordingly, a xenon chloride excimer laser (308 nm, 40 nsec pulse width, 39 mJ/mm2/pulse) was transmitted via a 600 micron fused silica fiber to create 420 craters of varying depths (30 to 270 micron) in 21 normal canine femoral and carotid arteries. At 2 hours, 2 days, 10 days, and 42 days after excimer laser ablation, the artery segments were perfusion fixed in situ and analyzed by light, scanning, and transmission electron microscopy. At 2 hours, craters were covered by a carpet of platelets and entrapped red blood cells. Fibrin and exposed collagen fibers were seen at the crater base. There was a sharp demarcation of the crater-artery wall interface without lateral laser tissue injury. At 2 days, adherent platelets persisted with thrombus covering the base of the craters. Early healing responses were present, consisting of polymorphonucleated leukocytes and new endothelial cells, which extended over the crater rims. At 10 days, no thrombi were seen, and healing continued with almost complete reendothelialization. Macrophages, fibroblasts, fibrin, and entrapped red blood cells were present below the reendothelialized surface. At 42 days, healing was complete with obliteration of the craters by fibrointimal ingrowth. The surface was completely covered by a smooth monolayer of axially aligned endothelial cells. There were no aneurysms or surface hyperplastic responses. These favorable healing responses in normal canine arteries suggest that pulsed lasers with high tissue absorption coefficients, such as the xenon chloride excimer laser, may be suitable energy sources for clinical laser angioplasty procedures. However, further studies in atherosclerotic animals are required before human clinical responses can be accurately predicted.  相似文献   

17.
Ablation rates measured as the depth of tissue excavation per unit time were determined in human and canine aortas subjected to radiation with ultraviolet (UV) excimer (ArF 193 nm, KrF 248 nm, XeF 351 nm) and visible lasers [continuous wave (cw) and 50-ms chopped argon ion, 478 nm-514 nm; pulsed double-frequency Nd:YAG, 532 nm]. For UV and pulsed double-frequency Nd:YAG lasers ablation rates were constant in time and depended linearly on average laser power, but for cw and chopped argon lasers ablation rates varied with irradiation time and were nonlinearly dependent on laser power. In human aortas, atherosclerosis without gross calcification had no influence on ablation rates. Charring and tissue disruption were observed with cw and chopped argon ion, whereas excimer and pulsed Nd:YAG lasers produced only minimal injury to surrounding tissue. We conclude that the determination of ablation rates is useful for the selection of laser wavelengths and power densities applicable to angioplasty and that UV and pulsed visible laser permit a better control of ablation compared to continuous wave lasers.  相似文献   

18.
The energetics of 308-nm excimer laser irradiation of human aorta were studied. The heat generation that occurred during laser irradiation of atherosclerotic aorta equaled the absorbed laser energy minus the fraction of energy for escaping fluorescence (0.8-1.6%) and photochemical decomposition (2%). The absorbed laser energy is equal to the total delivered light energy minus the energy lost as specular reflectance (2.4%, air/tissue) and diffuse reflectance (11.5-15.5%). Overall, about 79-83.5% of the delivered light energy was converted to heat. We conclude that the mechanism of XeCl laser ablation of soft tissue involves thermal overheating of the irradiated volume with subsequent explosive vaporization. The optical properties of normal wall of human aorta and fibrous plaque, both native and denatured were determined. The light scattering was significant and sufficient to cause a subsurface fluence (J/cm2) in native aorta that equaled 1.8 times the broad-beam radiant exposure, phi o (2.7 phi o for denatured aorta). An optical fiber must have a diameter of at least 800 microns to achieve a maximum light penetration (approximately 200 microns for phi o/e) in the aorta along the central axis of the beam.  相似文献   

19.
Lasers have been advocated to resect atherosclerotic plaques in the cardiovascular system, yet little information is available regarding the effects of laser on the range of occlusive lesions seen in the peripheral arterial tree. This study was conducted to assess the risk of perforation in human cadaveric aorta involved with variable degrees of atherosclerosis. Ten fresh segments of atherosclerotic human aorta were graded for extent of atherosclerosis, then subjected to argon laser energy within 48 hours. Using air as the conduction medium and with the fiber tip 2 or 5 mm from the vessel wall, the argon laser was applied to matched calcified and non-calcified arteries at 3.0-7.0 W and 10.0-13.5 W with energy density identical for matched pairs. Results were compared among segments which were normal in appearance or had only fatty streaks grossly with those with gross regional wall calcification. The mean penetration time (T) for calcified and non-calcified lesions at low and high power outputs was compared. (table; see text) Mean time to perforation and range of time necessary to produce perforation were greater in calcified than non-calcified segments at all power levels employed. These data suggest that atherosclerotic lesions vary in their response to argon laser. The presence of calcium may preclude resection of some plaques and protect against wall perforation.  相似文献   

20.
Excimer laser radiation at 193 nm and 248 nm was used to create linear etch perforations of enucleated calf corneas. The etch depth per pulse was determined for various exposures, and specimens were examined by light and transmission electron microscopy. Compared to 248 nm, excimer laser ablation at 193 nm was found to have a lower threshold for onset of ablation, less increase in etch depth per pulse at increasing fluences, and less structural alteration in adjacent cornea. For 193 nm, structural alterations were minimal, confined to an area less than 0.3 micron wide, and did not increase with increasing fluence. These studies suggest that clinical strategies for excimer laser refractive surgery will employ the 193-nm wavelength, with fluence chosen depending on surgical strategy. Ablation exposures above 600 mJ/cm2 at 193 nm may give the most repeatable etch depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号