首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reduction of prefrontal cortex glutamic acid decarboxylase (GAD67) and reelin (mRNAs and proteins) expression is the most consistent finding reported by several studies of postmortem schizophrenia (SZ) brains. Converging evidence suggests that the reduced GAD67 and reelin expression in cortical GABAergic interneurons of SZ brains is the consequence of an epigenetic hypermethylation of RELN and GAD67 promoters very likely mediated by the overexpression of DNA methyltransferase 1 in cortical GABAergic interneurons. Studies of the molecular mechanisms (DNA methylation plus related chromatin remodeling factors) that cause the down-regulation of reelin and GAD67 in SZ brains have important implications not only to understand the disease pathogenesis but also to improve present pharmacological interventions to treat SZ. The mouse treated with l-methionine models some of the molecular neuropathologies detected in SZ, including the hypermethylation of RELN promoter CpG islands and the down-regulation of reelin and GAD67 expression. We now report that in these mice, RELN and GAD67 promoters express an increased recruitment of methyl-CpG binding domain proteins. In these mice the histone deacetylase inhibitor valproate, which increases acetylated histone content in cortical GABAergic interneurons, also prevents MET-induced RELN promoter hypermethylation and reduces the methyl-CpG binding domain protein binding to RELN and GAD67 promoters. These findings suggest that DNA hypermethylation and the associated chromatin remodeling may be critically important in mediating the epigenetic down-regulation of reelin and GAD67 expression detected in cortical GABAergic interneurons of SZ patients.  相似文献   

3.
A down-regulation of reelin and glutamic acid decarboxylase (GAD) 67 mRNAs was detected in gamma-aminobutyric acid (GABA)ergic cortical interneurons of schizophrenia (SZ) postmortem brains (10), suggesting that the availability of GABA and reelin may be decreased in SZ cortex. In situ hybridization of the mRNA encoding for DNA-methyltransferase 1, which catalyzes the methylation of promoter CpG islands, shows that the expression of this mRNA is increased in cortical GABAergic interneurons but not in pyramidal neurons of SZ brains. Counts of reelin mRNA-positive neurons in Brodmann's area 10 of either nonpsychiatric subjects or SZ patients show that the expression of reelin mRNA is decreased in layer-I, -II, and -IV GABAergic interneurons of SZ patients. These findings are consistent with the hypothesis that the increase of DNA-methyltransferase 1 expression in telencephalic GABAergic interneurons of SZ patients causes a promoter hypermethylation of reelin and GAD(67) and perhaps of other genes expressed in these interneurons. It is difficult to decide whether this dysfunction of GABAergic neurons detected in SZ is responsible for this disease or is a consequence of this disorder. Although at present we cannot differentiate between these two alternatives, it is important to consider that so far a molecular pathology of cortical GABAergic neurons appears to be the most consistent finding associated with SZ morbidity.  相似文献   

4.
Cortical DNA-methyltransferase 1 (DNMT1) is preferentially expressed in interneurons secreting GABA where it very likely contributes to promoter CpG island hypermethylation, thus causing a down-regulation of promoter functions. To consolidate and expand on previous findings that, in the cortex of schizophrenia (SZ) brains, glutamic acid decarboxylase 67 (GAD67) expression is down-regulated whereas that of DNMT1 is up-regulated, we studied both parameters in Brodmann's area (BA) 9 from the McLean 66 Cohort Collection (Harvard Brain Tissue Resource Center, Belmont, MA). In BA9 of SZ and bipolar disorder patients with psychosis, DNMT1 mRNA and protein expression preferentially increases in layer I, II, and IV interneurons, and this increase is paralleled by a decreased number of GAD67 mRNA-positive neurons. The increase in DNMT1 and the decrease in GAD67-expressing neurons were unrelated to postmortem interval, pH, RNA quality, or to the presence, dose, or duration of antipsychotic (APS) medication, with the exception of a subgroup of SZ patients treated with a combination of valproate and APS in which the expression of DNMT1 failed to change. The DNMT1 increase and the GAD67 decrease in BA9 interneurons are significant features of SZ and bipolar disorder with psychosis. Interestingly, the DNMT1 increase failed to occur when patients with psychosis received a combination of valproate and APS treatment but not APS monotherapy.  相似文献   

5.
17beta-Estradiol spatiotemporally regulates the gamma-aminobutyric acid (GABAergic) tone in the adult hippocampus. However, the complex estrogenic effect on the GABAergic system is still unclear. In adult central nervous system (CNS) neurons, GABA can induce both inhibitory and excitatory actions, which are predominantly controlled by the cation-chloride cotransporters NKCC1 and KCC2. We therefore studied the estrogenic regulation of two glutamate decarboxylase (GAD) isoforms, GAD65 and GAD67, as well as NKCC1 and KCC2 in the adult female rat hippocampus by immunohistochemistry and in situ hybridization. First, we focused on the duration after ovariectomy (OVX) and its effects on GAD65 protein levels. The basal number of GAD65-immunoreactive cells decreased after long-term (10 days) OVX compared to short-term (3 days) OVX. We found that, only after long-term OVX but not after short-term OVX, estradiol increased the number of GAD65-immunoreactive cells in the CA1 pyramidal cell layer. Furthermore, estradiol did not alter the GAD65-immunoreactive cell population in any other CA1 subregion. Second, we therefore focused on long-term OVX and the estrogenic regulation of GAD and cation-chloride cotransporter mRNA levels. In the pyramidal cell layer, estradiol affected GAD65, GAD67 and NKCC1 mRNA levels, but not KCC2 mRNA levels. Both GAD65 and NKCC1 mRNA levels increased within 24 h after estradiol treatment, followed by a subsequent increase in GAD67 mRNA levels. These findings suggest that basal levels of estrogen might contribute to a balance between the excitatory and inhibitory synaptic transmission onto CA1 pyramidal cells by regulating perisomatic GAD and NKCC1 expression in the adult hippocampus.  相似文献   

6.
7.
Cortical GABAergic dysfunction, a hallmark of both schizophrenia (SZ) and bipolar (BP) disorder pathophysiologies may relate to the hypermethylation of GABAergic gene promoters (i.e., reelin and GAD67). Benefits elicited by a combination of atypical antipsychotics with valproate (VPA) (a histone deacetylase inhibitor that may also activate brain DNA demethylation) in SZ or BP disorder treatment prompted us to investigate whether the beneficial action of this association depends on induction of a putative DNA demethylase activity. To monitor this activity, we measured the ratio of 5-methyl cytosine to unmethylated cytosine in reelin and GAD67 promoters in the mouse frontal cortex and striatum. We compared normal mice with mice pretreated with l-methionine (5.2 mmol/kg s.c. twice a day for 7 days) to hypermethylate promoters, including reelin and GAD67. Clinically relevant doses of clozapine (CLZ) (3.8 to 15 micromol/kg twice a day s.c. for 3 days) and sulpiride (SULP) (12.5 to 50 micromol/kg twice a day for 3 days) but not clinically relevant doses of haloperidol (HAL) (1.3 to 4 micromol/kg twice a day s.c. for 3 days) or olanzapine (OLZ) (4 to 15 micromol/kg twice a day for 3 days) exhibited dose-related increases in the cortical and striatal demethylation of hypermethylated reelin and GAD67 promoters. These effects of CLZ and SULP were dramatically potentiated by a clinically relevant VPA dose (0.5 mmol/kg twice a day for 3 days). By activating a DNA demethylase, the association of CLZ or SULP with VPA may facilitate a chromatin remodeling that normalizes the GABAergic gene expression down-regulation detected in the telencephalic regions of SZ and BP patients.  相似文献   

8.
Significant reductions in GABAergic cell numbers and/or activity have been demonstrated in the hippocampus of subjects with schizophrenia and bipolar disorder. To understand how different subpopulations of interneurons are regulated, laser microdissection and gene expression profiling have been used to “deconstruct” the trisynaptic pathway, so that subtypes of GABA cells could be defined by their location in various layers of CA3/2 and CA1. The results suggest that the cellular endophenotypes for SZ and BD may be determined by multiple factors that include unique susceptibility genes for the respective disorders and altered integration among hippocampal GABA cells with extrinsic and intrinsic afferent fiber systems. The extensive and intricate data that has come from this study has provided insights into how a complex circuit, like the trisynaptic pathway, may be regulated in human hippocampus in both health and disease.  相似文献   

9.
目的探讨人胃癌谷氨酸脱羧酶(GAD)、GADmRNA(包括GAD65mRNA和GAD67mRNA)的表达。方法 随机选取30例胃癌手术标本,采用免疫组化法捡测GAD,RT-PCR法检测GADmRNA的表达,并探讨与胃癌部位、浸润深度、分化程度、分期及有无淋巴结转移之间的关系。结果与正常胃黏膜组织比较,胃癌组织中GAD表达减弱(p<0.05),但与胃癌的临床病理特征无明显相关,人胃癌组织及正常胃黏膜组织只有GAD67mRNA的表达,而无GAD65mRNA的表达。结论GAD表达异常可能与胃癌的发生有密切关系;人胃癌组织及正常胃黏膜组织只有GAD67mRNA的表达。  相似文献   

10.
Previous studies have reported that patients with bipolar disorders (BDs) exhibit increased physical comorbidity and psychological distress. Studies have shown that schizophrenia and anxiety increase the risk of peptic ulcer diseases (PUDs). Therefore, we conducted this study to determine the association between these 2 diseases and examine the possible risk factors.We used patients diagnosed with BDs from the Taiwan National Health Insurance Research Database. A comparison cohort comprising patients without BDs was frequency matched by age, sex, and comorbidities, and the occurrence of PUDs was evaluated in both the cohorts.The BD and non-BD cohort consisted of 21,060 patients with BDs and 84,240 frequency-matched patients without BDs, respectively. The incidence of PUDs (hazard ratio, 1.51; 95% confidence interval, 1.43–1.59; P < 0.001) was higher among the patients with BDs than the control patients. Cox models showed that irrespective of comorbidities, BDs were an independent risk factor for PUDs.Patients with BDs exhibit a substantially higher risk for developing PUDs. According to our data, we suggest that, following a diagnosis of BD, practitioners could notice the occurrence of PUD and associated prevention. Further prospective clinical studies investigating the relationship between BDs and PUDs are warranted.  相似文献   

11.
12.
13.
14.
The polygenic nature of complex psychiatric disorders suggests a common pathway that may be involved in the down-regulation of multiple genes through an epigenetic mechanism. To investigate the role of methylation in down-regulating the expression of mRNAs that may be associated with the schizophrenia phenotype, we have adopted a cell-culture model amenable to this line of investigation. We have administered methionine (2 mM) to primary cultures of cortical neurons prepared from embryonic day 16 mice and show that this treatment down-regulated reelin and glutamic acid decarboxylase 67 (GAD67) mRNA expression but not that corresponding to neuron-specific enolase mRNA. Moreover, methionine increased methylation of the reelin promoter, suggesting a possible mechanism for the observed change. These cultures contain a mixed population of neurons and glia. Approximately 83% of the neurons are GABAergic based on GAD immunoreactivity, and these neurons coexpress high levels of reelin and DNA methyltransferase (Dnmt) 1 immunoreactivity. To examine whether Dnmt1 regulates reelin gene expression, we used an antisense approach to reduce (knock down) Dnmt1 expression. The reduced Dnmt1 mRNA and protein were accompanied by increased reelin mRNA expression. More importantly, the Dnmt1 knockdown blocked the methionine-induced reelin and GAD67 mRNA down-regulation. These data support the hypothesis that the reduced amounts of reelin and GAD67 mRNAs documented in postmortem schizophrenia brain may be the consequence of a Dnmt1-mediated hypermethylation of the corresponding promoters.  相似文献   

15.
16.
Heterozygous reeler mice (HRM) haploinsufficient for reelin express approximately 50% of the brain reelin content of wild-type mice, but are phenotypically different from both wild-type mice and homozygous reeler mice. They exhibit, (i) a down-regulation of glutamic acid decarboxylase 67 (GAD(67))-positive neurons in some but not every cortical layer of frontoparietal cortex (FPC), (ii) an increase of neuronal packing density and a decrease of cortical thickness because of neuropil hypoplasia, (iii) a decrease of dendritic spine expression density on basal and apical dendritic branches of motor FPC layer III pyramidal neurons, and (iv) a similar decrease in dendritic spines expressed on the basal dendrite branches of CA1 pyramidal neurons of the hippocampus. To establish whether the defect of GAD(67) down-regulation observed in HRM is responsible for neuropil hypoplasia and decreased dendritic spine density, we studied heterozygous GAD(67) knockout mice (HG(67)M). These mice exhibited a down-regulation of GAD(67) mRNA expression in FPC (about 50%), but they expressed normal amounts of reelin and had no neuropil hypoplasia or down-regulation of dendritic spine expression. These findings, coupled with electron-microscopic observations that reelin colocalizes with integrin receptors on dendritic spines, suggest that reelin may be a factor in the dynamic expression of cortical dendritic spines perhaps by promoting integrin receptor clustering. These findings are interesting because the brain neurochemical and neuroanatomical phenotypic traits exhibited by the HRM are in several ways similar to those found in postmortem brains of psychotic patients.  相似文献   

17.
18.
目的探讨砷暴露对子代大鼠中枢神经系统氨基酸递质代谢酶的影响。方法雌性大鼠于受孕后第6天开始以自由饮水方式分别暴露0、10、50、100mg/L的NaAsO2水溶液,连续染毒直到仔鼠出生后第42天,分别于仔鼠出生后0、28、42d取皮质、海马进行谷氨酰胺脱羧酶(GAD)和γ-氨基丁酸转移酶(GABA—T)mRNA表达检测。结果仔鼠出生后第0天,各染砷组脑组织GAD65、GAD。mRNA表达均未发生变化,GABA—T mRNA表达水平也未发生明显改变。在出生后第28天,100mg/L染砷组仔鼠海马的GAD65和皮质的GAD。mRNA表达水平升高,而50mg/L染砷组仔鼠皮质的GABA—T mRNA表达下降。出生后第42天.100mg/L染砷组仔鼠皮质、海马的GAD65 mRNA表达均增强,海马的GAD。mRNA表达也增强,而GABA—T mRNA表达水平未见明显变化。结论从胚胎到出生后连续的饮水砷暴露能够使GAD。GAD。mRNA表达增强,从而可能会导致脑组织中相关神经递质水平发生改变,引起中枢神经功能紊乱。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号