首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of heterozygosity (LOH) was examined at 86 loci distributed on every chromosomal arm in 50 human ovarian tumors. Frequent allele losses were observed on chromosomes 13q (42%), 17p (42%), 17q (45%), and Xp (41%). Deletion mapping on chromosome 17 revealed a candidate gene on the long arm distal to D17S41/S74 for ovarian cancer which is distant from the locus for early onset breast cancer. LOH on chromosome 17q was found to be concordant with LOH on chromosomes 3p, 13q, 17p and Xp suggesting that it may be an early event in neoplastic development. These findings indicate that multiple tumor-suppressor genes for ovarian cancer possibly exist on chromosomes 13q, 17, and/or Xp and provide the basis for the identification of candidate gene(s) associated with ovarian cancer. The chromosomal mechanisms resulting in allele losses in ovarian cancer include deletion, deletion/duplication, mitotic recombination and monosomy, in concordance with the developed genetic model.  相似文献   

2.
Yin Z  Spitz MR  Babaian RJ  Strom SS  Troncoso P  Kagan J 《Oncogene》1999,18(52):7576-7583
We studied loss of heterozygosity (LOH) on human chromosome 13q in prostate cancer specimens to determine the location of a putative tumor suppressor gene (TSG) and to correlate these losses with the clinicopathological stage of the disease. Overall 13 (21%) of 61 specimens analysed had an allele loss on the long arm of chromosome 13. The most frequent (37%) LOH among the informative cases with allele losses was detected at the D13S284 locus on chromosome 13q14. 3. A portion of the DNA segment that spans this locus and is flanked by the microsatellite loci D13S153 and D13S163 was lost in 85% of the specimens with allele losses and was designated as a LOH cluster region (LCR). The LCR spans more than 6 Mbp of DNA. The results suggest that a TSG relevant for the development of prostate cancer is located telomeric to the RB locus. There was a significant correlation (P=0.0024) between chromosome 13q LOH and advanced metastatic disease, suggesting that loss of 13q14.3 region is associated with prostate cancer progression. However, further research must be conducted to establish the identity and function of this putative TSG.  相似文献   

3.
In order to identify a common region of deletion on chromosome 17 potentially containing a tumor-suppressor gene, 27 ovarian carcinomas and 3 ovarian tumors of low malignant potential (LMP) were examined for loss of heterozygosity (LOH) at 6 p arm and 10 q arm loci. Ninety percent of all tumors had deletions at one or more loci. On the p arm, there was a single near-common region of deletion on 17p 13.3 (D/7S30/ pYNZ22.1; 86% LOH), an intervening locus with a low LOH rate, and a more proximal locus on 17p11.2 (D/7S58/pEW301; 82% LOH) with a high LOH rate. In less aggressive tumors, LOH at Df 7S30 was not accompanied by LOH at p53. The q arm had a common region of deletion for high-stage carcinoma at D/7S579 (Mfd 188; 74% LOH) on q21, a locus tightly linked to the familial breast-ovarian-cancer syndrome (BRCAI) locus. D/7S579 was lost in all informative high-stage carcinomas and retained in all low-stage carcinomas and tumors of LMP. There may be at least 2 tumor-suppressor genes, an early-acting gene on the p arm and a gene on the q arm involved in tumor progression and metastasis.  相似文献   

4.
Our main purpose was to identify tumor suppressor gene loci on chromosome 13 responsible for nasopharyngeal cancer (NPC) development by analyzing loss of heterozygosity (LOH) and RB protein expression in paraffin embedded tissues. Normal and tumor DNA were extracted from microdissected samples, and their whole genomes were amplified using degenerate oligonucleotide primers. The polymerase chain reaction (PCR) products were analyzed by repeated amplification using primers derived from 16 microsatellite regions spanning the long arm of this chromosome. Among 50 informative cases, LOH was observed in 44 tumors. Thirty-one tumors displayed partial loss and provided an informative basis for detailed deletion mapping. Three minimal regions of loss were delineated; the first flanked by D13S120 and D13S219, the second by D13S126 and D13S119, and the third by D13S137 and 13qter. These 3 regions were linked to BRCA2 on 13q12, RB1 on 13q14, and 13q14.3-ter, respectively. Seven and 4 cases showed LOH either on 13q12 or 13q14, respectively. Nineteen cases showed LOH of both loci separately. One NPC displayed 13q12 and 13q14.3-ter LOH. RB protein expression was detectable in 76% of the cases. Ten out of 15 cases with the allelic losses limited to 13q14 showed RB protein expression. Contrasting that, 6 out of 7 cases devoid of RB protein expressions showed 13q14LOH. In conclusion, 13qLOH, involving 3 tumor suppressor gene loci, appears to be a frequent genetic event occurring during NPC development. However, other tumor suppressor genes besides RB1, may be responsible for the majority of 13q14LOH.  相似文献   

5.
We have studied 146 ovarian tumours (94 carcinomas, 22 tumours of low malignant potential and 30 benign tumours) for evidence of allele loss on chromosome 17p and 17q sufficient to imply the proximity of a tumour-suppressor gene. We have examined two polymorphic loci (YNZ22.2 and BHP53) on 17p13 and one on chromosome 17q (17q23-qter). Loss of heterozygosity (LOH) was detected in 34/63 (54%) informative malignant tumours at YNZ22.2 and 22/47 (47%) at BHP53; on 17q, 45/64 (70%) had LOH. Allele loss was detected in a small number of benign and borderline tumours. There was a statistically significant difference between the patterns of allele loss in serous and endometrioid groups of tumours, and allele loss occurred with significantly greater frequency on 17q than on 17p. Comparison of all malignant tumours presenting with either localized (FIGO stage I/II) or widespread (FIGO stage III/IV) disease showed that, particularly on 17q, allele loss increases in the more advanced stages. The p53 tumour-suppressor gene is implicated in ovarian carcinogenesis, and our findings suggest that an important tumour-suppressor gene may be located in the region 17q23-qter. Loss of function in this gene may be responsible for the frequently observed rapid progression of serous-type adenocarcinomas to an advanced stage.  相似文献   

6.
Thirty-four primary, untreated sporadic breast cancers were examined for loss of heterozygosity (LOH) at tumour suppressor loci involved in colorectal cancer: APC/MCC at 5q21 and DCC at 18q21. LOH was identified in 28% informative patients at 5q21 and 31% at 18q21. LOH at 5q21 and 18q21 was compared with allele loss at 17p13 and concurrent LOH at two or more of the loci was noted in 24% of tumours. Expression of a 12 kb DCC mRNA was demonstrated in 14/34 (42%) of the cancers and in all five tumours with LOH at the DCC locus there was an additional 11 kb DCC mRNA. Abnormalities of three loci involved in colorectal cancer (5q21, 17p13 and 18q21) therefore also occur in sporadic breast cancer. The accumulation of such genetic abnormalities may confer a growth advantage important in the development of breast cancer.  相似文献   

7.
To gain a broad spectrum on allelic loss of specific loci in ovarian tumors, we initially examined DNA from 23 pairs of ovarian tumors and matched peripheral blood lymphocyte samples from the same patients, using 27 polymorphic DNA markers distributed on 13 chromosomes. Significant high frequency of allelic deletion (22%-44%) at chromosome 13 loci (D13S31, D13S32, D13S33, and D13S34) at bands q12-q34 was observed in tumor tissues. These results led us to investigate the loss of heterozygosity at the retinoblastoma (RB) locus in ovarian tumors, because the RB gene is a tumor-suppressor gene located at 13q14. Analysis of the variable number of tandem repeat sequence polymorphism in intron 20 in the RB gene revealed that 6 (30%) of 20 patients with informative samples showed allelic loss at the RB locus in their tumor tissues. This loss, of relatively high frequency, suggests that the RB gene, or a closely linked gene, seems to be involved in the development of ovarian cancer.  相似文献   

8.
Inactivation of tumor suppressor genes due to allelic loss is thought to be an important mechanism of gene alterations in prostatic carcinogenesis. Loss of sequences on the short arm of chromosome 8 (8p) has been reported in human cancers, especially of 8p22 and 8p12-21 in prostate cancer. By using PCR analysis of polymorphic microsatellite repeat markers at four 8p loci and three 8q loci in 60 tumors, we observed deletion of sequences at two other deletion domains (8p23, and 8q12-13). There was loss in 51 of 60 cases (85%) with at least one marker. Four distinct regions of loss detected were: i) at 8p23, at locus D8S262; ii) at 8p22, on locus D8S259; iii) at 8p12, on loci D8S255 and D8S285; iv) at 8q12-13, on loci between D8S260 and D8S528. We found that 29% of the tumors showed LOH at 8p23; 19% LOH on 8p22; 54% had LOH at 8p12; and 48% had LOH at 8q12-13. There was higher frequency of LOH at 3 or more loci in samples of T3 stage (62%) as compared to T2 stage (13.3%) which suggests higher incidence of LOH in advanced stage of prostate cancer. We report deletion of two novel loci at 8p23 and 8q12-13, these regions may contain putative tumor suppressor genes in prostate cancer.  相似文献   

9.
目的:寻找胶质母细胞瘤(GBM)6号染色体上可能存在肿瘤抑制基因的杂合性丢失(LOH)区域,为发现和定位肿瘤抑制基因(TSG)提供线索和依据。方法:应用聚合酶链反应(PCR)方法,采用荧光标记的引物及377型DNA序列自动分析仪,分析了21例GBM患者6号染色体上20个微卫星多态性标记的LOH。结果:6号染色体总的LOH检出率为47.6%(10/21),在28.1%(81/288)能提价信息位上检测了LOH。其中,6p和6q的LOH检出率分别是28.6%(6/21)、38.1%(8/21),在6q^tel上距短臂端粒201.1cM的微卫星位点D6S281检测到较高的LOH率(50%),6q^16.3上D6S287的LOH率也高达50%,另外,6p^21.1-21.3上D6S276的LOH率也较高(35.3%)。结论:6号染色体分子遗传学异常改变可能在GBM的发生发展中起着重要作用,染色体6q^tel上的D6S281位点,6q^16.3上的D6S287和6p^21.1-21.3的D62S276位点所在的染色体区域可能存在与GBM相关的肿瘤抑制基因。  相似文献   

10.
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in Southern China, especially in the Guangdong area. To demonstrate a comprehensive profile of loss of heterozygosity (LOH) in NPC, we applied a large panel of 382 microsatellite polymorphism markers covering all the 22 autosomes in 98 cases of sporadic primary NPC. Of the 335 informative markers, 83 loci showed high level of LOH (presence in equal to or more than 30% cases) and most of the high frequent loci were clustered to chromosome 1p36 and 1p34, 3p14-p21, 3p24-p26, 3q25-q26 and 3q27, 4q31 and 4q35, 5q15-21 and 5q32-q33, 8p22-p23, 9p21-p23 and 9q33-q34, 11p12-p14, 13q14-q13 and 13q31-q32, 14q13-q11, 14q24-q23 and 14q32. High frequency of LOH was found in chromosomes 3, 5, 9 and 11 (>/=50%), while medium frequency of LOH was found in chromosomes 1, 4, 6, 14, 17 and 19 (40-49%). Several new regions showing high frequency of LOH were found in chromosome 1p36, 3q25-q26, 3q27, 5q15-q21, 8p22-p23 and 11p12-14. The relationship between LOH and TNM stage of NPC was evaluated. Regions 6p23 (D6S289), 8p23.1 (D8S549) and 9q34.2 (D9S1826) showed higher frequency of LOH in later stages (III and IV) than in earlier stages (I and II) (P<0.05). Thus, our study provides a global view on allelic loss in the development of NPC and should shed light on the way for localization of putative tumor suppressor genes associated with the pathogenesis of NPC.  相似文献   

11.
Glioblastoma multiforme (GBM), the most malignant type of glioma, is the most common primary brainneoplasm. Although comprehensive therapeutic measures are applied, the prognosis of GBM remains dismal with a median post-treatment survival of less than one year.Modern molecular genetics has demonstrated thatabnormal alterations of tumor suppressor genes (TSGs) and oncogenes are the major mechanisms responsible for the initiation and progression of this malignant tumor.Identifying of related…  相似文献   

12.
Deletion Mapping of Chromosome 1p and 22q in Pheochromocytoma   总被引:3,自引:0,他引:3  
To identify the localization of tumor suppressor genes, 22 pheochromocytomas (9 hereditary and 13 sporadic) were examined for loss of heterozygosity (LOH) on the short arm of chromosome 1 and on the long arm of chromosome 22 by using 11 polymorphic DNA markers on each chromosome arm. LOH on 1p was observed in 12 of 22 informative cases (55%) and on 22q in 8 of 20 informative cases (40%). There was no significant difference in the frequency of LOH on 1p or 22q between hereditary and sporadic cases. We could localize the commonly deleted regions as distal to D1S73 and proximal to D1S63 on 1p and distal to D22S24 and proximal to D22S1 on 22q. In addition, the relationship between LOH on 1p and 22q was studied in 20 pheochromocytomas which were informative for probes on both chromosome arms. Of eight tumors that showed LOH on 22q, allelic loss on 1p was also detected in seven. Thus, LOH on 22q was correlated significantly with LOH on 1p ( P = 0.0249; Fisher's exact test). These results suggest that inactivation of multiple tumor suppressor genes may be required for development and progression of hereditary and non-hereditary pheochromocytoma.  相似文献   

13.
Bogdan I  Xin H  Burg G  Böni R 《Melanoma research》2001,11(4):349-354
During the initiation and progression of malignant melanoma, a series of different genetic events accumulate on several different chromosomes. The biological heterogeneity of tumour cells presents a major problem, preventing effective treatment of melanoma. To examine the degree of genetic heterogeneity, we searched for allelic losses (loss of heterozygosity; LOH) on chromosomes 9p, 9q, 1p and 17p, examining different areas within human melanoma metastases. All of the examined metastases were informative within at least one dissected area for at least one marker. Out of 29 areas in 11 melanoma metastases, 58% showed LOH with at least one marker. On chromosome 9p21-22, eight out of 26 informative loci (31%) showed LOH at D9S171 (three not informative), two out of 18 (11%) at IFNA (11 not informative) and seven out of 24 (29%) at D9S169 (five not informative). LOH on chromosome 9q22.3 was examined by the microsatellite marker D9S12; three out of 24 areas (12.5%) showed LOH, and five were not informative. Deletions on chromosome 1p were assessed using D1S450. Four out of 25 (16%) showed LOH; four were not informative. Deletions on chromosome 17p13 were examined with TP53; two out of 21 cases (9%) showed LOH, and eight were not informative. Our data demonstrate an impressive heterogeneity of allelic losses in the investigated chromosomal areas within the same metastatic lesion. This suggests that there is not one specific genetic alteration that accounts for melanoma progression to metastases. Rather there seem to be multiple genetic alterations accumulating even on the same chromosome, and progression from melanoma to metastases is paralleled by the accumulation of clones harbouring multiple genetic abnormalities.  相似文献   

14.
The objective of this study was to determine whether microsatellite instability (MSI) and loss of heterozygosity (LOH) are involved in the immortalization of human breast epithelial cells (HBECs) in vitro and in the early stages of their transformation by benzo[a]pyrene (BP) and 7,12-dimethylbenz[a]anthracene (DMBA). We performed a genome-wide analysis of a total of 466 microsatellite DNA polymorphism loci along the X chromosome and the 22 pairs of human autosomes. MSI was found in the immortalized MCF-10F cells at the following loci: D11S1392 (on chromosome 11p13) and D17S849 (at 17p13.3), D17S796 (at 17p13.1), D17S513 (at 17p13.1), TP53 (at 17p13.1), D17S786 (at 17p13.1), and D17S520 (at 17p12) on chromosome 17. The BP-transformed cells exhibited MSI in the same loci and also in locus D11S912 (at 11q25). The more transformed BP1E cells also exhibited MSI on chromosome 13q12-13 at D13S260 and D13S289, markers known to flank the breast cancer susceptibility gene BRCA2. In the DMBA-transformed D3 and D3-1 cells, MSI was observed at the locus D13S260 in addition to the previously reported locus D16S285 (at 16q12.1). No LOH was observed on any of the chromosomes tested in these cells. These observations led us to conclude that the immortalization and transformation of HBECs may involve defects in mechanisms responsible for the cell's genomic stability, such as DNA replication and DNA mismatch repair.  相似文献   

15.
We previously reported the identification of three minimal regions of deletion on the short arm of chromosome 3 (3p) in epithelial ovarian tumor specimens, suggesting that the inactivation of tumor-suppressor genes in these regions may be important in terms of ovarian tumorigenesis. Another previous study of ovarian cancer observed that allele loss of chromosome 179 was frequently found in ovarian tumors that also showed loss of heterozygosity (LOH) of chromosomes 3p, 13q, 17p, and Xp. In an independent study, we also reported a high frequency of LOH for selected chromosome 17 loci in high-grade and late-stage ovarian tumors. We have extended our LOH analysis of chromosome 3p to include 102 ovarian tumor specimens (29 and 73 samples were previously examined for LOH of chromosome 3p and 17 markers, respectively), using additional polymorphic markers, to assess the coordinate LOH of loci representing the three chromosome 3p minimal regions of deletions [von Hippel-Lindau syndrome (VHL), thyroid hormone receptor beta, and fragile histidine triad (FHIT)] and LOH of other important loci [tumor protein 53 (TP53), breast cancer 1 early onset (BRCA1), breast cancer 2 early onset, retinoblastoma 1, ornithine carbamoyltransferase, and androgen receptor] or somatic mutations in TP53. There was a significant association between LOH of any chromosome 3p marker and LOH of any chromosome 17 marker (P = 0.026). The frequency of LOH at the TP53 locus was higher in the group of samples that displayed LOH of a 3p marker (P = 0.019), as was the frequency of LOH at the BRCA1 locus (P = 0.014). LOH of chromosome 3p was noted in four specimens that did not display LOH of either the BRCA1 or the TP53 locus, indicating that LOH of these loci need not precede LOH of the chromosome 3p loci. We found a significant association between LOH of the VHL (3p25) locus and LOH of any chromosome 17 marker (P = 0.005), suggesting that there may be an important relationship, in the tumorigenesis of epithelial ovarian cancer, between a gene at 3p25 and a gene located on chromosome 17. Our results indicate that inactivation of p53 by somatic mutation is unlikely to be a prerequisite to chromosome 3p LOH, because we found no significant association between mutations in TP53 and LOH of the three chromosome 3p loci. The frequency of LOH at the FHIT locus at 3p14 increased significantly with advancing age at diagnosis (P = 0.018), as did the frequency of somatic TP53 mutations (P = 0.008).  相似文献   

16.
Inactivation of the DCC gene on chromosome 18 owing to loss of heterozygosity is a common finding in colorectal cancer. Because both ovarian and colon cancer are features of Lynch syndrome II, which has been provisionally mapped to chromosome 18, we hypothesized that loss of heterozygosity at the DCC locus may also occur in ovarian neoplasia. Fifty-two sporadic ovarian adenocarcinoma tumours were analysed by Southern blotting for loss of heterozygosity (LOH) at six chromosome 18 loci. Overall, tumours from 31 patients (60%) showed allelic loss at one or more of these loci. A similarly high level of LOH, 66%, was found at D17S5 (17p13.3). In contrast, moderate levels of LOH, of 31%, 39% and 33%, were found at MYCL1 (1p32), D1S57 (1p) and D14S20 (14q32.33) respectively. However, analysis of partial chromosome deletions in 11 patients indicates that the smallest region of overlap appears to exclude the DCC gene but to be between the D18S5 and D18S11 loci. This suggests that another locus, as well as or apart from DCC, may be involved.  相似文献   

17.
High resolution mapping of chromosome 6 deletions in cervical cancer.   总被引:8,自引:0,他引:8  
Chromosome 6 is frequently affected in different tumors. However, little information exists on chromosome 6 deletions in cervical cancer. We have studied loss of heterozygosity (LOH) and microsatellite instability (MIN) in 62 invasive squamous cell carcinomas of the cervix (CC) using 19 polymorphic microsatellite markers spanning both arms of chromosome 6 and one marker located at 5p15. We found that LOH at chromosome 6 is a common feature of cervical carcinomas: 90% (56/62) of CC had LOH at least at one locus and about 58% (36/62) had LOH on both arms of chromosome 6. The highest LOH incidence was shown in HLA region (6p21.3-6p21.1) with markers D6S273 and D6S276 in 52.7% and 45.2% of informative cases respectively. Frequent LOH on 6q was found at loci D6S311 (6q24-25. 1), D6S305 (6q26) and D6S281 (6q27-6qter) in 37.8%, 33.3% and 39.0% of informative cases respectively. There was no significant correlation observed between clinical parameters of cervical cancer (age, histologic grade, clinical stages and progression) and LOH frequency. Microsatellite instability was found in 3 out of 62 cases (4.8%) at three and more loci out of 20 tested. The study shows that several regions on 6p and 6q may harbour potential tumor-suppressor genes important for cervical cancer progression.  相似文献   

18.
Many regions of the genome exhibit loss of heterozygosity (LOH) in epithelial ovarian cancer (EOC) suggesting sites of recessive genetic elements such as tumor suppressor genes. We performed detailed LOH studies of chromosomes 17 and 11 using 24 microsatellite repeat markers in a population of 47 patients with EOC. Univariate statistical analysis revealed that significant co-losses of chromosomal loci occurred between 17p and 17q whole arms (p=0.0003), NME1 (17q21) with D11S922 (11p15.5) (p=0.0067) and D11S912 (11q24) with D11S935 (11p13) (p=0.0073). Statistical analysis of the relationship between LOH on particular chromosomal arms and clinicopathological factors revealed a significant association between serous histological subtype of ovarian adenocarcinoma and chromosome 17p (p=0.0052) and telomeric 17q (p=0.0007) LOH. An analysis of specific polymorphic chromosomal loci demonstrated that adverse survival was significantly associated with LOH at 11q24 (p=0.0067) and 17q21 (p=0.0076). There were nonsignificant trends suggesting a relationship between chromosome 17p LOH and poorly differentiated (p=0.025) and advanced FIGO stage (p=0.031) tumours. Considering these statistical associations, a preliminary multistep model for involvement of chromosomes 11 and 17 in ovarian neoplasia can be constructed.  相似文献   

19.
We have previously observed loss of heterozygosity (LOH) at a single locus (del-27) on human chromosome 5p13-12 to correlate with bladder tumor progression. In this study, we examined 33 bladder tumors for their pattern of allelic loss on chromosome 5p using 7 microsatellite markers. In 14 of 15 bladder tumors with LOH at locus del-27, allelic loss was confined to chromosomal region 5p13-12. This region included the microsatellite marker D5S2025 that showed LOH in 5 of 11 (45%) informative cases with LOH at del-27. This suggests that D5S2025 and del-27 are located within a single critical region of LOH on 5p13-12 harboring a tumor suppressor gene involved in bladder tumor progression. Recurrent LOH at other loci was observed at microsatellite markers located at 5p15. However, these losses appeared to be independent of LOH at 5p13-12 and occurred predominantly in poorly differentiated (G3) and advanced (T3-T4) tumors.  相似文献   

20.
Loss of heterozygosity (LOH) on chromosome 11 is frequently altered in various epithelial cancers. The present study was designed to investigate LOH on chromosome 11 in microdissected samples of normal prostatic epithelium and invasive carcinoma from the same patients. For this purpose, DNA was extracted from the microdissected normal and tumor cells of 38 prostate cancers, amplified by polymerase chain reaction PCR and analyzed for LOH on chromosome 11 using 9 different polymorphic DNA markers (D11S1307, D11S989, D11S1313, D11S898, D11S940, D11S1818, D11S924, D11S1336 and D11S912). LOH on chromosome 11 was identified in 30 of 38 cases (78%) with at least one marker. Four distinct regions of loss detected were: 1) at 11p15, at loci between D11S1307 and D11S989; 2) at 11p12, on locus D11S131 (11p12); 3) at 11q22, on loci D11S898, D11S940 and D11S1818; and 4) at 11q23-24, on loci between D11S1336 and D11S912. We found 25% of the tumors with LOH at 11p15; 39% had LOH at 11p12; 66% had LOH at 11q22; and 47% had LOH at 11q23-24. These deletions at 11p15, 11p12, 11q22 and 11q23-24 loci were not related to the stage or grade of the tumor. Int. J. Cancer 72:283–288, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号