首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuropsychological data in primates demonstrated a pivotal role of the hippocampal formation (HF) and parahippocampal gyrus (PH) in navigation and episodic memory. To investigate the role of HF and PH neurons in environmental scaling in primates, we recorded neuronal activities in the monkey HF and PH during virtual navigation (VN) and pointer translocation (PT) tasks. The monkeys had to navigate within three differently sized virtual spaces with the same spatial cues (VN task) or move a pointer on a screen (PT task) by manipulating a joystick to receive a reward. Of the 234 recorded neurons, 170 and 61 neurons displayed place‐related activities in the VN and PT tasks, respectively. Significant differences were observed between the HF and PH neurons. The spatial similarity of place fields between the two different virtual spaces was lower in PH than in HF, while specificities of the neuronal responses to distal spatial cues were higher in PH than in HF. Spatial view information was predominately processed in posterior PH. The spatial scales (place field sizes) of the HF and PH neurons were reduced in the reduced virtual space, as shown in rodent place cells. These results suggest the complementary roles of HF (allocentric representation of landmarks) and PH (representation of the spatial layout of landmarks) in the recognition of a location during navigation. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Knierim JJ  Rao G 《Hippocampus》2003,13(5):604-617
Hippocampal neurons are selectively active when a rat occupies restricted locations in an environment. These place cells derive their specificity from a multitude of sources, including idiothetic cues and sensory input derived from both distal and local landmarks. Most experiments have attempted to dissociate the relative strengths and roles played by these sources by rotating one set against the other. Few studies have addressed the effects of relative translation of the local cue set versus salient distal landmarks. To address this question, ensembles of place cells were recorded as a rectangular or circular track was moved to different locations in a room with controlled visual landmarks. Place cells primarily maintained their firing fields relative to the track (i.e., occupying new locations relative to the distal landmarks), even though the track could occupy completely nonoverlapping regions of the room. When the distal landmarks were rotated around the circular track, however, the place fields rotated with the landmarks, demonstrating that the cues were perceptible to the rat. These results suggest that, under these conditions, the spatial tuning of place cells may derive from an interaction between local and idiothetic cues, which define the precise firing locations of the cells and the relationships between them, and distal landmarks, which set the orientation of the ensemble representation relative to the external environment.  相似文献   

3.
Neuropsychological data in humans demonstrated a pivotal role of the medial temporal lobe, including the hippocampal formation (HF) and the parahippocampal gyrus (PH), in allocentric (environment-centered) spatial learning and memory. In the present study, the functional significance of the monkey HF and PH neurons in allocentric spatial processing was analyzed during performance of the spatial tasks. In the tasks, the monkey either freely moved to one of four reward areas in the experimental field by driving a cab that the monkey rode (real translocation task) or freely moved a pointer to one of four reward areas on the monitor (virtual translocation task) by manipulating a joystick. Of 389 neurons recorded from the monkey HF and PH, 166 had place fields that displayed increased activity in a specific area in the experimental field and/or on the monitor (location-differential neurons). More HF and PH neurons responded in the real translocation task. These neurons had low mean spontaneous firing rates (0.96 spikes/sec), similar to those of rodent HF place cells. The remaining nonresponsive neurons had significantly higher mean firing rates (8. 39 spikes/sec), similar to interneurons or theta cells in the rodent HF. Furthermore, most location-differential neurons showed different responses in different tasks. These results suggest that the HF and PH are crucial in allocentric information processing and, moreover, that the HF can encode different reference frames that are context or task-dependent. This may be the neural basis of episodic memory.  相似文献   

4.
T Ono  H Nishijo 《Hippocampus》1999,9(4):458-466
The hippocampal formation (HF) receives the final outputs from all association cortices, and processes and integrates this diverse information. Our neurophysiological data in rats and monkeys suggest active selection of relevant sensory information in the HF. In an open field, rat HF neurons strengthened their sensitivity to more relevant variables among various movement variables such as movement speed, direction, and turning angle based on navigation contexts. The HF place-related activity in the monkey, which rode on a movable cab, became obscure in passive translocation of a monkey by an experimenter. This suggests that the animal actively senses the environment surrounding it during spatial navigation, and that spatial correlates of HF neurons depend on this active sensing. In the monkey septal nuclei that receive hippocampal outputs, some neurons were differential to specific views from 4 specific locations in an experimental room (place-differential responses). Multidimensional scaling (MDS) analysis of place-differential responses indicated that the 4 locations represented in a 2-dimensional virtual space at relative positions were similar to those in the real experimental room. This might be a neurophysiological basis of a cognitive map and path finding. These results are consistent with recent human PET studies that indicated HF involvement in recalling routes and landmarks. Thus, a cognitive mapping system represented in the HF plays a pivotal role in active computation for path finding.  相似文献   

5.
The present study describes the spatial firing properties of neurons in the lateral septum (LS). LS neuronal activity was recorded in rats as they performed a spatial navigation task in an open field. In this task, the rat acquired an intracranial self-stimulation reward when it entered a certain place, a location that varied randomly from trial to trial. Of 193 neurons recorded in the LS, 81 showed place-related activity. The majority of the tested neurons changed place-related activity when spatial relations between environmental cues were altered by rotating intrafield (proximal) cues. The comparison of place activities between LS place-related neurons recorded in the present study and hippocampal place cells recorded in our previous study, using identical behavioral and recording procedures, revealed that spatial parameters (spatial information content, coherence, and cluster size) were smaller in the LS than in the hippocampus. Of the 193 LS neurons, 86 were influenced by intracranial self-stimulation rewards; 31 of these 86 were also place-related. These results, together with previous anatomical and behavioral observations, suggest that the spatial information sent from the hippocampus to the LS is modulated by and interacts with signals related to reward in the LS.  相似文献   

6.
The hippocampal formation (HF) is hypothesized as a neuronal substrate of a cognitive map, which represents environmental spatial information by an ensemble of neural activity. However, the relationships between the hippocampal place cells and the cognitive map have not been clarified in monkeys. The present study was designed to investigate how activity patterns of place-selective neurons encode spatial relationships of various environmental stimuli; to do this, we used multidimensional scaling (MDS) for hippocampal neuronal activity in the monkey during the performance of real and virtual translocation. Of 389 neurons recorded from the monkey HF and parahippocampal gyrus (PH), 166 had place fields that displayed increased activity in a specific area of an experimental field and/or on a monitor (place-selective neurons). The MDS transformed relationships among the 16 places in the experimental field and the monitor, expressed as correlation coefficients between all possible pairs of two places based on the 166 place-selective responses, into geometric relationships in a two-dimensional MDS space. In the real translocation tasks, the 16 places were distributed throughout the MDS space, and their relative positions were well correlated to real positions in the experimental laboratory. However, the correlation between the MDS space and real arrangements was significantly smaller in virtual than real translocation tasks. The present results strongly suggest that activity patterns of the HF and PH neurons represent spatial information and might provide a neurophysiological basis for a cognitive map.  相似文献   

7.
This research examined whether rats can use idiothetic cues to form spatial memories in the radial-arm maze (RM) and whether the hippocampus is involved in such ability. A possible contribution of the vestibular system to RM performance was also investigated. Rats with excitotoxic hippocampal lesions and sham-operated controls were trained on two versions of the RM task. In the Light condition, a unique visual insert was apposed on each arm floor and rats could choose which arm to enter next by relying on visual and/or idiothetic stimuli. In the Dark condition, the task was administered in darkness and success required processing of idiothetic cues to remember visited locations on the maze. In experiment 1, the performance of lesioned rats was impaired in the Light condition, but both control and lesioned rats learned to avoid already visited arms. In the Dark condition, the performance of controls improved over time whereas a severe deficit was observed in rats with hippocampal lesions. Thus, control rats, but not hippocampal lesioned rats, can form spatial memories by processing idiothetic inputs. Experiment 2 showed that vestibular lesions disrupt performance in both the Light and the Dark conditions and confirmed that rats use idiothetic information, especially vestibular cues, while navigating in the RM. Therefore, cues generated during locomotion play an important role in hippocampal-dependent spatial memory.  相似文献   

8.
Abstract: In the 21st century, advances in basic research on higher brain functions in both system and molecular levels will proceed therapeutics to alleviate senile dementia, including Alzheimer's disease. In this review, we present our recent experimental results in the hippocampal formation (HF) in reference to human amnesia and a role of the HF in episodic memory and learning. First, we analyzed the activity of the HF neurons in both monkeys and rats. Neural activity in the monkey HF was analyzed during a spatial moving task in which the monkey could control a motorized, movable device (cab) and its route to a target location by pressing the bars. Some HF neurons responded to the occurrence of significant events (or episodes) in the place field where neuronal activity increased. This indicates that HF gating of incoming information may depend on where the monkey is located. These responses suggest representation related to episodic memory, and linkage among diverse information including both spatial and non-spatial cues. Rats were also trained to explore a circular open-field to obtain rewards [intracranial self-stimulation (ICSS)]. When ICSS delivery place was changed, about 20% of the place neurons shifted place fields to locations newly associated with ICSS rewards. These neurophysiological results suggest that the HF is crucial to represent associative relations among multiple cues or factors and to learn such relations. Second, we investigated effects of the newly developed compound (T-588), on learning and memory in rats. Treatment with the compound ameliorated deficits in learning the spatial tasks due to selective lesions of the CA1 subfield.  相似文献   

9.
The extent to which small ensembles of neighboring hippocampal neurons alter their spatial firing patterns concurrently in response to stimulus manipulations was examined in young adult rats as well as in aged rats with and without memory impairment. Recordings from CA1 and CA3 cells were taken as rats performed a spatial radial-maze task that employed prominent distal visual stimuli attached to dark curtains surrounding the maze and local cues on each maze arm provided by inserts with distinctive visual, tactile, and olfactory stimuli. To test the influence of the different stimulus subsets, the distal and local cues were rotated 90° in opposite directions (a Double Rotation). In response to this manipulation, place fields could maintain a fixed position to room coordinates, rotate with either the local or the distal cues, disappear, or new fields could appear. On average 79% of the cells within an ensemble responded in the same way, but only 37% of all ensembles were fully concordant. Typically discordant ensembles had place fields that rotated with one set of cues, whereas the other fields disappeared or new fields appeared. Ensembles in which the place fields rotated in two opposite directions were less frequent in young rats than would be expected by the occurrence of the individual responses, indicating selective competition between directly conflicting representations and ultimate suppression of one. These findings indicate that hippocampal neurons independently encode distinct subsets of the cues in a complex environment, although processing within the hippocampal network may actively reduce the simultaneous representation of conflicting orientation information. This kind of population activity might reflect the higher-order organization of new memories within an established knowledge framework or schema. Concordance was higher in aged memory-impaired rats than in young rats, and the suppression of conflicting representations was absent in these rats. These findings suggest that age-related memory impairment is at least in part associated with a decrease in the scope of information coded and in the coordination of encoded representations. Hippocampus 1997;7:613–623. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Hippocampal place fields were recorded as rats explored a four-arm radial maze surrounded by curtains holding distal stimuli and with distinct local tactile, olfactory, and visual cues covering each arm. Systematic manipulations of the individual cues and their interrelationships showed that different hippocampal neurons encoded individual local and distal cues, relationships among cues within a stimulus set, and the relationship between the local and distal cues. Double rotation trials, which maintained stimulus relationships within distal and local cue sets, but altered the relationship between them, often changed the responses of the sampled neural population and produced new representations. After repeated double rotation trials, the incidence of new representations increased, and the likelihood of a simple rotation with one of the cue sets diminished. Cue scrambling trials, which altered the topological relationship within the local or distal stimulus set, showed that the cells that followed one set of controlled stimuli responded as often to a single cue as to the constellation. These cells followed the single cue when the stimulus constellation was scrambled, but often continued firing in the same place when the stimulus was removed or switched to respond to other cues. When the maze was surrounded by a new stimulus configuration, all of the cells either developed new place fields or stopped firing, showing that the controlled stimuli had persistent and profound influence over hippocampal neurons. Together, the results show that hippocampal neurons encode a hierarchical representation of environmental information. Hippocampus 1997;7:624–642. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Fimbria-fornix lesions abolish the hippocampal electrophysiological activity time-locked to the theta rhythm and alter some functional characteristics of place cells. The present experiment investigated whether homotopic grafts of fetal septal cells can alleviate some of these alter-ations when combined with a polymeric hydrogel bridging a fimbria-fornix lesion-cavity. Eleven months after grafting surgery, unit recordings were obtained from hippocampal neurons of seven rats [two sham-operated (S), two lesion-only (L) and three grafted (G)] while they explored a radial maze. The lesions induced dramatic loss of hippocampal acetylcholinesterase(AChE)-positive reaction products. Surviving grafts were found in the three grafted rats and several AChE-positive processes could be observed in the polymeric hydrogel, as well as in the most dorsal portion of the hippocampal parenchyma. Of 168 recorded units, 132 were hippocampal interneurons (i.e., fired rapidly everywhere in the maze), and 36 were pyramidal place cells (i.e., fired only when the rat was in a specific location in the maze, the place field). The overall firing characteristics of either cell type were similar in S, L and G rats. However, while none of the interneurons recorded from L rats was found to fire rhythmically, a significant proportion of interneurons recorded from S and G rats had an activity pattern time-locked to the theta rhythm [S: 16/19 (84 %); G : 22/70 (31 %)]. In addition, the increase in firing activity observed in interneurons recorded from S rats when they were moving was disrupted in cells from L rats, but partially restored in cells from G rats. Concerning place cells, most (93 %) place fields in S rats were stable relative to extra-maze cues when the radial maze was rotated, while they followed the maze rotation in both L and G rats. Because of the low number of rats used, the present results should be considered with caution. Nevertheless, they indicate graft-induced recovery of some properties of hippocampal function following fimbria-fornix damage, and suggest that homotopic transplants of projection neurons may foster some func-tional recovery when provided with a biomaterial allowing the host or grafted neurons to cross the lesion cavity.  相似文献   

12.
This study was undertaken to compare the effect of hippocampal neurotoxic lesions in rats on two behavioral tasks, one a test of spatial learning, and the other an operant discrimination task that is acquired by forming nonspatial configural associations. Lesions of the hippocampus were made with microinjections of ibotenic acid. After postoperative recovery, rats were trained initially to locate a camouflaged escape platform in a water maze using distal spatial cues. Rats also were trained in the maze apparatus with a visible escape platform under conditions in which spatial information was made irrelevant to performance, i.e., cue learning. In an operant task, the same rats were then trained on a discrimination that included simultaneous feature positive and feature negative components (trial types XA+, A-, XB-, B+). After completion of this nonspatial configural learning task, rats received additional training in the water maze using a new platform location for spatial learning. To the extent that proficient performance in both the maze and operant tasks depends on a common function of the hippocampus, i.e., configural learning, the expectation was that hippocampal lesions would prove equally detrimental to performance in both tasks. Contrary to this expectation, lesioned rats were severely impaired in spatial learning but readily acquired the operant discrimination, even exhibiting some evidence of enhanced performance on this nonspatial configural learning task. Performance of the lesioned rats during cue training in the water maze was also enhanced relative to the control group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Place cells in the rat hippocampus commonly show place-related firing activity in the animal's current environment. Here, we evaluated the capability of the place cell system to discriminate visually identical environments. Place cell activity was first recorded while rats moved freely in a cylinder divided into three connected sectors. Two sectors were visually identical whereas the third sector was made distinctive by the addition of visual and tactile cues. When in a given sector, the rats could not perceive the cues present in the other two sectors. Most cells had distinctive place fields in each sector, including the two identical sectors. To rule out the influence of non-controlled cues, rotations of the cylinder (+/- 120 degrees) were conducted. When successful, cylinder rotations resulted in equivalent field rotation for all cells. These results suggest that the place cell system is able to form a specific spatial representation for all sectors, so that the rat knows, at any time, in which sector it is currently located. Presumably, such discrimination relies on angular path integration in which the computational errors stemming from self-motion cues would be corrected by environmental landmarks provided by the distinctive sector.  相似文献   

14.
The importance of space-specific single-unit activity for hippocampal formation (HF)-mediated learning and memory in rodents has been extensively studied, yet little is known about how the unit findings in rodents generalize to other vertebrate species. We report a first assessment of the space-specific single-unit activity recorded from the HF of homing pigeons as they moved through a plus maze for food reward. Rate maps of pigeon HF single-unit activity typically revealed multiple regions (2-5 per cell) of increased activity (on average, 2.5 times higher than other regions of the maze) that in 27% of slow-firing cells was reliably space-specific over time. The qualitative appearance of rate maps and the degree of spatial-specificity observed for most all pigeon HF cells suggests more modest space-specific activity than typically reported for rat hippocampal cells. The nature of space-specific activity in the pigeon HF includes (1) often transiently reliable regions of increased activity for many cells, (2) multiple patches of activity that were sometimes observed in analogous maze areas, and (3) cells displaying substantial decreases in firing rate between baseline and maze-run conditions that could not be explained by a simple relationship between firing rate and a pigeon's speed. These observations suggest that pigeon HF cells may be coding for an unspecified behavioral/motivational/environmental factors in addition to a pigeon's momentary location. The data further suggest that the spatial ecology and evolutionary history of different species may be a critical feature shaping how HF neurons capture properties of space.  相似文献   

15.
The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

16.
The rodent septohippocampal system contains "theta cells," which burst rhythmically at 4-12 Hz, but the functional significance of this rhythm remains poorly understood (Buzsáki, 2006). Theta rhythm commonly modulates the spike trains of spatially tuned neurons such as place (O'Keefe and Dostrovsky, 1971), head direction (Tsanov et al., 2011a), grid (Hafting et al., 2005), and border cells (Savelli et al., 2008; Solstad et al., 2008). An "oscillatory interference" theory has hypothesized that some of these spatially tuned neurons may derive their positional firing from phase interference among theta oscillations with frequencies that are modulated by the speed and direction of translational movements (Burgess et al., 2005, 2007). This theory is supported by studies reporting modulation of theta frequency by movement speed (Rivas et al., 1996; Geisler et al., 2007; Jeewajee et al., 2008a), but modulation of theta frequency by movement direction has never been observed. Here we recorded theta cells from hippocampus, medial septum, and anterior thalamus of freely behaving rats. Theta cell burst frequencies varied as the cosine of the rat's movement direction, and this directional tuning was influenced by landmark cues, in agreement with predictions of the oscillatory interference theory. Computer simulations and mathematical analysis demonstrated how a postsynaptic neuron can detect location-dependent synchrony among inputs from such theta cells, and thereby mimic the spatial tuning properties of place, grid, or border cells. These results suggest that theta cells may serve a high-level computational function by encoding a basis set of oscillatory signals that interfere with one another to synthesize spatial memory representations.  相似文献   

17.
E T Rolls 《Hippocampus》1999,9(4):467-480
The information represented in the primate hippocampus is being analysed by making recordings in monkeys actively walking in the laboratory. In a sample of 352 cells recorded in this situation, no "place" cells have so far been found. Instead, we have found a considerable population of "spatial view" cells tuned to respond when the monkey looks at small parts of the environment. We have been able to demonstrate (1) that these hippocampal neurons respond to a view of space "out there," not to the place where the monkey is; (2) that the responses depend on where the monkey is looking, by measuring eye position; (3) that the responses in some cases (e.g., CA1 but not CA3) still occur if the view details are obscured with curtains; (4) that the cells (in, e.g., CA1) retain part of their "space" tuning even in complete darkness, for several minutes; and (5) that the spatial representation is allocentric. The spatial representation is, thus, different from that in the rat hippocampus, in which place cells respond based on where the rat is located. The representation is also different from that described in the parietal cortex, where neurons respond in egocentric coordinates. This representation of space "out there" provided by primate spatial view cells would be an appropriate part of a memory system involved in memories of particular events or episodes, for example, of where in an environment an object was seen. Spatial view cells (in conjunction with whole body motion cells in the primate hippocampus, and head direction cells in the primate presubiculum) would also be useful as part of a spatial navigation system, for which they would provide a memory component.  相似文献   

18.
In the absence of useful visual or other exteroceptive cues, rats can orient in their environment using idiothetic navigation, the process in which the information generated during self-motion is integrated to yield a homing vector leading the animal back to a point of departure. If perceivable exteroceptive cues in the visited environment are available, their spatial relationship is integrated with idiothetic information and stored in a cognitive map of the environment. Our previous experiments demonstrated that place navigation in rats is severely impaired after devaluation of the intramaze substratal information by shuffling, i.e. by its random displacement relative to the already traversed track. Several interpretative difficulties of the previous study have been eliminated in the present study by the use of an advanced version of the shuffling apparatus. The results show that shuffling-induced impairment of substratal idiothesis depends on the salience of intramaze cues, that on a stable featureless arena, idiothesis can be updated by non-visual allothetic cues, and that shuffling exposing the animal to sudden accelerations and decelerations interferes with idiothetic navigation by the inherent conflict between substratal and inertial idiothesis. It is concluded that pure substratal idiothesis not updated by extramaze and intramaze cues cannot provide reliable navigation over distances longer than 5 m.  相似文献   

19.
Siegel JJ  Nitz D  Bingman VP 《Hippocampus》2006,16(2):125-140
Previous research has revealed that the functional components of spatial cognition are lateralized in the forebrain of birds, including the hippocampal formation (HF). To investigate how HF cells in the left and right avian brain may differentially participate in representations of space, we recorded single-units from the HF of homing pigeons as they ran a plus maze for food. The rate maps of left HF cells often displayed elongated regions of increased activity in the center of the maze and along the maze corridors, whereas right HF cells tended to display patches at the ends of maze arms at/near goal locations. Left HF cells displayed a higher degree of spatial-specificity compared with right HF cells, including higher patch-specificity, higher reliability, and a higher incidence of location-correlated activity. Analysis of speed-correlated and trajectory-dependent activity also revealed significant HF-lateralized differences. Right HF cells tended to display significant negative correlations between spike rate and speed, although speed-dependent rate maps indicate that this relationship did not explain their space-specific activity. Left HF cells displayed a significantly higher incidence of trajectory-dependent space-specific activity than was observed in the right HF, suggesting that left HF cells may participate in navigating among goal locations. Differences in the correlates of left and right pigeon HF cells are consistent with unilateral HF-lesion data suggesting that the functional components of spatial cognition are lateralized in the avian brain, and furthermore, provide a basis for hypotheses regarding how the left and right HF support different aspects of spatial cognition.  相似文献   

20.
Single neuron recording studies have demonstrated the existence of spatial view neurons which encode information about the spatial location at which a primate is looking in the environment. These neurons are able to maintain their firing even in the absence of visual input. The standard neuronal network approach to model networks with memory that represent continuous spaces is that of continuous attractor neural networks. Stringer, Rolls and Trappenberg (2005) have recently shown how idiothetic (self-motion) inputs could update the activity packet of neuronal firing within a two-dimensional continuous attractor neural network of spatial view cells. However, this earlier study examined only the simplified situation in which the agent could rotate on the spot or move its eyes. In this paper we show how spatial view cells could be driven by head direction and place cells, themselves idiothetically updated. The head direction and place neurons are remapped by a competitive network with expansion recoding which self-organises so that different neurons represent different combinations of head direction and the place where the agent is located. The combination cells are then mapped by pattern association involving long-term synaptic potentiation but also long-term homosynaptic depression to spatial view cells, which during training are driven by the spatial view. After training, the spatial view cells are updated in the dark by the idiothetically driven head direction and place cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号