首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axon sprouting and synaptic reorganization in the hippocampus are associated with the development of seizures in temporal lobe epilepsy. Synaptic interactions among CA1 pyramidal cells were examined in fragments of hippocampal slices containing only the CA1 area from saline- and kainate-treated rats. Glutamate microapplication to the pyramidal cell layer increased excitatory postsynaptic current (EPSC) frequency, but only in rats with kainate-induced epilepsy. In bicuculline, action potentials evoked in single pyramidal cells increased the frequency of network bursts only in slices from rats with kainate-induced epilepsy. These data further support the hypothesis that excitatory connections between CA1 pyramidal cells increase after kainate-induced status epilepticus.  相似文献   

2.
Neuron loss, axon sprouting, and the formation of new synaptic circuits have been hypothesized to contribute to seizures in temporal lobe epilepsy (TLE). Using the kainate-treated rat, we examined how alterations in the density of CA1 pyramidal cells and interneurons, and subsequent sprouting of CA1 pyramidal cell axons, were temporally associated with functional changes in the network properties of the CA1 area. Control rats were compared with animals during the first week after kainate treatment versus several weeks after treatment. The density of CA1 pyramidal cells and putative inhibitory neurons in stratum oriens was reduced within 8 days after kainate treatment. Axon branching of CA1 pyramidal cells was similar between controls and animals examined in the first week after kainate treatment but was increased several weeks after kainate treatment. Stimulation of afferent fibers in brain slices containing the isolated CA1 region produced graded responses in slices from controls and kainate-treated rats tested <8 days after treatment. In contrast, synchronous all-or-none bursts of spikes at low stimulus intensity (i.e., "network bursts") were only observed in the CA1 several weeks after kainate treatment. In the presence of bicuculline, the duration of evoked bursts was significantly longer in CA1 pyramidal cells weeks after kainate treatment than from controls or those examined in the first week posttreatment. Spontaneous network bursts were also observed in the isolated CA1 several weeks after kainate treatment in bicuculline-treated slices. The data suggest that the early loss of neurons directly associated with kainate-induced status epilepticus is followed by increased axon sprouting and new recurrent excitatory circuits in CA1 pyramidal cells. These changes characterize the transition from the initial acute effects of the kainate-induced insult to the eventual development of all-or-none epileptiform discharges in the CA1 area.  相似文献   

3.
Temporal lobe epilepsy is usually associated with a latent period and an increased seizure frequency following a precipitating insult. After kainate treatment, the mossy fibers of the dentate gyrus are hypothesized to form recurrent excitatory circuits between granule cells, thus leading to a progressive increase in the excitatory input to granule cells. Three groups of animals were studied as a function of time after kainate treatment: 1-2 wk, 2-4 wk, and 10-51 wk. All the animals studied 10-51 wk after kainate treatment were observed to have repetitive spontaneous seizures. Whole cell patch-clamp recordings in hippocampal slices showed that the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in granule cells increased with time after kainate treatment. This increased excitatory synaptic input was correlated with the intensity of the Timm stain in the inner molecular layer (IML). Flash photolysis of caged glutamate applied in the granule cell layer evoked repetitive EPSCs in 10, 32, and 66% of the granule cells at the different times after kainate treatment. When inhibition was reduced with bicuculline, photostimulation of the granule cell layer evoked epileptiform bursts of action potentials only in granule cells from rats 10-51 wk after kainate treatment. These data support the hypothesis that kainate-induced mossy fiber sprouting in the IML results in the progressive formation of aberrant excitatory connections between granule cells. They also suggest that the probability of occurrence of electrographic seizures in the dentate gyrus increases with time after kainate treatment.  相似文献   

4.
1. Subcutaneous kainate injection in rats evoked acute seizures and led to cell loss in the hilus and areas CA1 and CA3, which resembled the pattern of hippocampal sclerosis often associated with temporal lobe epilepsy in humans. 2. Simultaneous intra- and extracellular recordings were performed in the stratum pyramidale of area CA1 while stimulating in the stratum radiatum close to the recording electrodes. Responses from control slices consisted of a brief excitatory postsynaptic potential (EPSP) with only one action potential, corresponding to a single extracellular population spike, followed by a clear biphasic inhibitory postsynaptic potential (IPSP). In slices from kainate-treated animals, however, stimulation evoked a prolonged EPSP, which often triggered multiple action potentials corresponding to multiple extracellular population spikes. 3. In slices from kainate-treated animals, the mean amplitude but not the duration of the stimulation-evoked IPSP was reduced. The extent of the kainate-induced loss of inhibition in area CA1 was highly variable. 4. Low concentrations of bicuculline in control slices led to a moderate hyperexcitability, which consisted of multiple population spikes and mirrored the responses observed in slices from kainate-treated animals in normal ACSF. Prolonged application of 10-30 microM bicuculline for > or = 30 min led to a much higher level of hyperexcitability, which was similar in slices from controls and kainate-treated rats. These findings are consistent with the hypothesis that the hyperexcitability of CA1 pyramidal neurons following kainate treatment is mainly due to decreased GABAA-receptor-mediated inhibition and that the loss of inhibition is only partial.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Wu K  Leung LS 《Neuroscience》2003,116(2):599-616
We used kainic acid in rats as an animal model of temporal lobe epilepsy, and studied the synaptic transmission in hippocampal subfield CA1 of urethane-anesthetized rats in vivo. Dendritic currents were revealed by field potential mapping, using a single micropipette or a 16-channel silicon probe, followed by current source density analysis. We found that the population excitatory postsynaptic potentials in the basal dendrites and distal apical dendrites of CA1 were increased in kainate-treated as compared with control rats following paired-pulse, but not single-pulse, stimulation of CA3b or medial perforant path. In contrast, the trisynaptic midapical dendritic response in CA1 following medial perforant path stimulation was decreased in kainate-treated as compared with control rats. Increased coupling between excitatory postsynaptic potential and the population spike in CA1 was found after kainate seizures. Short-latency, presumably monosynaptic CA1 population spikes following medial perforant path stimulation was found in kainate-treated but not control rats. An enhancement of dendritic excitability was evidenced by population spikes that invaded into or originated from the distal apical dendrites of CA1 in kainate-treated but not control rats. Reverberation of hippocampo-entorhinal activity was evidenced by recurrent excitation of CA1 following CA3b stimulation in kainate-treated but not control rats. Blockade of inhibition by intraventricularly administered bicuculline induced excitatory potentials in CA1 that were stronger and more prolonged in kainate-treated than control rats. The bicuculline-induced excitation was mainly blocked by non-N-methyl-D-aspartate receptor antagonists. We conclude that kainate seizures induced disinhibition in CA1 that unveiled excitation at the basal and distal apical dendrites, resulting in enhancement of the direct entorhinal cortex to CA1 input and reverberations via the hippocampo-entorhinal loop. These changes in the output of the hippocampus from CA1 are likely detrimental to the behavioral functions of the hippocampus and they may contribute to increased seizure susceptibility after kainate seizures.  相似文献   

6.
Liang LP  Beaudoin ME  Fritz MJ  Fulton R  Patel M 《Neuroscience》2007,147(4):1114-1118
Aging is a significant risk factor for developing epilepsy. The mechanisms underlying age-related increase in seizure susceptibility and resultant injury remain unknown. Oxidative stress is an important mechanism that contributes to diverse age-related disorders. Whether age-related increased seizure susceptibility is accompanied by increased oxidative stress remains unknown. The goal of this study was to determine if aging per se increases the susceptibility of rats to kainate-induced behavioral seizures and oxidative stress. Adult (3-4 month-old) and aging (18-19 month-old) Sprague-Dawley rats were administered a single low dose of kainate (5 mg/kg, s.c.) or saline. Behavioral seizures were monitored in all four groups for a period for a period of approximately 6 h. Oxidative stress (8-hydroxy-2'deoxyguanosine/2-deoxyguanosine; 8OHdG/2dG) was assessed 24 h following kainate injection. Stereological assessment of cell counts was performed in hippocampal tissue 7 days following kainate injection. In adult rats, administration of the low dose of kainate did not produce significant behavioral seizures, oxidative stress or cell loss. However, aging rats exhibited intense behavioral seizures consistent with status epilepticus following the low dose of kainate. In aging rats, kainate produced a significant increase in oxidative DNA damage (8OHdG/2dG) and neuronal loss in cornu ammonis regions 3 and 1 (CA3 and CA1), but not dentate gyrus compared with both age-matched controls and adult kainate-treated rats. These data suggest that the process of aging per se increases kainate-induced seizure susceptibility, oxidative stress and hippocampal pyramidal cell loss.  相似文献   

7.
The hippocampus sends efferent fibers to the subiculum, which projects to the entorinal cortex. Previous studies suggest that the hippocampal CA1 area may receive a projection back from the subiculum. This hypothesis was tested using whole cell recording from CA1 pyramidal cells while subicular neurons were selectively stimulated with focal flash photolysis of caged glutamate, which avoids stimulation of fibers of passage. Control experiments showed that focal flash stimulations caused direct glutamate-mediated depolarizations and bursts of action potentials in the recorded CA1 pyramidal cells, but only when the stimulation targeted the somatodendritic regions of a neuron, not the axons. To block GABA(A)-mediated inhibition and isolate local excitatory circuits, bicuculline was applied to minislices containing only the isolated CA1 area and the subiculum. Of 24 CA1 pyramidal cells, 25% (6 of 24) consistently generated repetitive excitatory postsynaptic currents (EPSCs) in response to flash stimulation in the subiculum. The responsive neurons were located 200-500 microm from the distal end of CA1 and 400-1,100 microm from the stimulation sites in subiculum, suggesting excitatory synaptic projections from the subicular neurons to CA1 pyramidal cells. This study provides new electrophysiological evidence that CA1 pyramidal cells receive excitatory synaptic input from the subiculum. Thus a reciprocal excitatory synaptic circuit connects the subiculum and the CA1 area in the normal adult rat.  相似文献   

8.
Limbic status epilepticus and preparation of hippocampal slice cultures both produce cell loss and denervation. This commonality led us to hypothesize that morphological and physiological alterations in hippocampal slice cultures may be similar to those observed in human limbic epilepsy and animal models. To test this hypothesis, we performed electrophysiological and morphological analyses in long-term (postnatal day 11; 40-60 days in vitro) organotypic hippocampal slice cultures. Electrophysiological analyses of dentate granule cell excitability revealed that granule cells in slice cultures were hyperexcitable compared with acute slices from normal rats. In physiological buffer, spontaneous electrographic granule cell seizures were seen in 22% of cultures; in the presence of a GABA(A) receptor antagonist, seizures were documented in 75% of cultures. Hilar stimulation evoked postsynaptic potentials (PSPs) and multiple population spikes in the granule cell layer, which were eliminated by glutamate receptor antagonists, demonstrating the requirement for excitatory synaptic transmission. By contrast, under identical recording conditions, acute hippocampal slices isolated from normal rats exhibited a lack of seizures, and hilar stimulation evoked an isolated population spike without PSPs. To examine the possibility that newly formed excitatory synaptic connections to the dentate gyrus contribute to granule cell hyperexcitability in slice cultures, anatomical labeling and electrophysiological recordings following knife cuts were performed. Anatomical labeling of individual dentate granule, CA3 and CA1 pyramidal cells with neurobiotin illustrated the presence of axonal projections that may provide reciprocal excitatory synaptic connections among these regions and contribute to granule cell hyperexcitability. Knife cuts severing connections between CA1 and the dentate gyrus/CA3c region reduced but did not abolish hilar-evoked excitatory PSPs, suggesting the presence of newly formed, functional synaptic connections to the granule cells from CA1 and CA3 as well as from neurons intrinsic to the dentate gyrus. Many of the electrophysiological and morphological abnormalities reported here for long-term hippocampal slice cultures bear striking similarities to both human and in vivo models, making this in vitro model a simple, powerful system to begin to elucidate the molecular and cellular mechanisms underlying synaptic rearrangements and epileptogenesis.  相似文献   

9.
How inhibition is altered after status epilepticus and the role of inhibition during epileptogenesis remain unsettled issues. The present study examined acute (4-7 days) and chronic (>3 mo) changes of GABA(A) receptor-mediated inhibitory synaptic input to dentate granule cells after kainate-induced status epilepticus. Whole cell patch-clamp techniques were used to record spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) in the presence of 6,7-dinitroquinoxaline-2,3-dione and dl-2-amino-5-phosphonopentanoic acid to block glutamatergic excitatory synaptic transmission. In both groups, mean sIPSC frequency of dentate granule cells from the saline- and kainate-treated rats was not significantly different. However, mIPSC frequency from the kainate-treated rats of both groups was approximately 30% lower than that of the respective saline controls. The mean amplitude of sIPSCs and mIPSCs from kainate-treated rats was not reduced in either the acute or chronic groups. The mean 10-90% rise time of IPSCs was not altered in kainate-treated rats, but the decay time constant was slightly longer than in controls, and the charge transfer 4-7 days after kainate treatment was significantly larger. The similar reduction of mIPSC frequency (i.e., approximately 30%) in the two groups of kainate-treated rats suggests a decreased inhibitory input to dentate granule cells (presumably due to a partial loss of inhibitory interneurons that innervate them) without recovery during epileptogenesis. The lack of effect on sIPSC frequency and the decreased mIPSC frequency in both groups suggests a possible compensatory increase in firing rate of interneurons, which may involve a hypothetical reduction of inhibitory input to the remaining interneurons.  相似文献   

10.
In the kainate model of epilepsy, electrophysiological and anatomical modifications occur in inhibitory circuits of the CA1 region of the rat hippocampus. Using postembedding GABA immunocytochemistry and electron microscopy, we characterized perisomatic GABA and non-GABA synaptic contacts in CA pyramidal cells, and GABAergic interneurons of stratum oriens/alveus and stratum lacunosum-moleculare, and examined if changes occurred at these synapses at two weeks post-kainate treatment. We found that, in control rats, the number and total length of perisomatic GABA synapses were significantly smaller (approximately 40-50%) in lacunosum-moleculare interneurons than in oriens/alveus interneurons and pyramidal cells. Additionally, the number and total length of perisomatic non-GABA synapses were different among all cell types, with these parameters increasing significantly in the following order: pyramidal cells相似文献   

11.
1. Evidence for local excitatory synaptic connections in CA1 of the rat hippocampus was obtained by recording excitatory postsynaptic potentials (EPSPs) intracellularly from pyramidal cells during local microapplications of glutamate. 2. Experiments were performed in hippocampal slices cut parallel to (transverse slice) or perpendicular to (longitudinal slice) alvear fibers. In normal solutions, glutamate microdrops (10-20 mM, 10-20 micron diam) applied in CA1 within 400 micron of recorded cells sometimes increased the frequency of inhibitory postsynaptic potentials for 5-10 s in both transverse and longitudinal slices. Increases in EPSP frequency were also occasionally observed, but only in transverse slices. Tetrodotoxin (1 microgram/ml) blocked glutamate-induced increases in PSP frequency, thus indicating that they were not caused by subthreshold effects on presynaptic terminals. Increases in PSP frequency were interpreted to result from glutamate activation of hippocampal neurons with inhibitory and excitatory connections to recorded neurons. 3. In both slice orientations, local excitatory circuits were studied in more isolated conditions by surgically separating CA1 from CA3 (transverse slices) and by blocking GABAergic inhibitory synapses with picrotoxin (5-10 microM). Microdrops were systematically applied at 200 and 400 micron on each side of the recording site. Significant glutamate-induced increases in EPSP frequency were observed in neurons from both slice orientations to microdrops in at least one of the locations. This provided evidence that excitatory synapses are present in both transverse and longitudinal slices. 4. Substantial increases in EPSP frequency only occurred in neurons from longitudinal slices when glutamate was microapplied 200 micron or less from the recording site. In transverse slices, however, large increases in EPSP frequency were observed to glutamate microapplications at 200 or 400 micron. These data suggest that CA1 local excitatory connections project for longer distances in the transverse than in the longitudinal plane of section. 5. Increases in EPSP frequency, averaged across cells, did not differ significantly in the four microapplication sites in either transverse or longitudinal slices. Thus local excitation in CA1 does not appear to be asymmetrically arranged in the way suggested for CA3. 6. The densities of local excitatory circuits in CA1 versus CA3 were studied by quantitatively comparing glutamate-induced increases in EPSP frequency.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Kainate-induced functional deficits are not blocked by MK-801   总被引:1,自引:0,他引:1  
Male, Fischer-344 rats were pretreated with MK-801 (0.1, 1.0 or 10.0 mg/kg, i.p.) prior to bilateral injection of kainate (0.33 micrograms/site) into the dorsal and ventral hippocampus. Kainate impaired the acquisition of a water maze acquisition task 4 weeks after surgery, an effect not attenuated by pretreatment with MK-801. However, higher doses (1.0 and 10.0 mg/kg) of MK-801 reduced the amount of kainate-induced granule cell and to some extent CA1 pyramidal cell damage in the hippocampus. Kainate-induced CA3/CA4 damage was not affected by MK-801 pretreatment. MK-801 (10 mg/kg) also reduced the amount of thalamic damage produced by kainate. These data support the conclusion that intrahippocampal kainate-induced destruction of CA3/CA4 pyramidal cells is mediated by non-N-methyl-D-aspartate (non-NMDA) receptors and that kainate-induced loss of these cells is associated with the neurobehavioral effects of intrahippocampally administered kainate.  相似文献   

13.
Separating contributions of pre- and postsynaptic factors to the maintenance of long-term potentiation (LTP) and long-term depression (LTD) has been confounded by their experimental interdependence. To isolate the postsynaptic contribution, glutamate-receptor-mediated currents were elicited by localized photolysis of caged glutamate in small spots along the dendrites of CA1 hippocampal pyramidal cells. With synaptic transmission blocked, pairing depolarization of pyramidal cells with repeated photolysis of caged glutamate at one site markedly and persistently depressed subsequent responses to glutamate; responses at a second, unpaired site were unchanged. Like synaptically induced LTD at the CA3-CA1 synapse, this depression was site specific, NMDA-receptor dependent and blocked by protein-phosphatase inhibitors. Thus, robust, persistent alterations of postsynaptic glutamate receptor efficacy can occur without presynaptic neurotransmitter release.  相似文献   

14.
A feature of animal models of temporal lobe epilepsy and the human disorder is hippocampal sclerosis and Timm stain in the inner molecular layer (IML) of the dentate gyrus, which represents synaptic reorganization and may be important in epileptogenesis. We reassessed the hypothesis that pre-treatment with cycloheximide (CHX) prevents Timm staining in the IML following pilocarpine (PILO)-induced status epilepticus (a multifocal model of temporal lobe epilepsy), but allows epileptogenesis (i.e., chronic spontaneous seizures) after a latent period. Hippocampal slices from PILO-treated rats without Timm stain in the IML after CHX treatment were hypothesized to lack the electrophysiological abnormalities suggestive of recurrent excitation. The primary experimental groups were as follows: 1) CHX (1 mg/kg) 30-45 min prior to administration of PILO (320 mg/kg ip, 2) only PILO, and 3) only saline (0.5 ml, IP). The CHX pre-treatment significantly decreased the number of rats that responded to PILO with status epilepticus compared to rats that received only PILO. Pre-treatment with CHX did not significantly alter the spontaneous motor seizure rate post-treatment compared to treatment with PILO alone in those animals from each group that developed status epilepticus during PILO treatment. Timm stain in the IML was not significantly different between the PILO- and PILO+CHX-treated rats. Using quantitative methods, CHX did not prevent hilar, CA1, or CA3 neuronal loss compared to the PILO-treated rats. Extracellular responses to hilar stimulation in 30 microM bicuculline and 6 mM [K(+)](o) demonstrated all-or-none bursting in both the CHX+PILO- and PILO-treated rats but not in control rats. Whole cell recordings from granule cells, using glutamate flash photolysis to activate other granule cells, showed that both the CHX+PILO- and PILO-treated rats had excitatory synaptic interactions in the granule cell layer, which were not found after saline treatment. Some rats responded to PILO (with or without CHX pre-treatment) with only one or a few seizures at treatment, and some of these animals (n = 4) demonstrated spontaneous motor seizures within 2 mo after treatment. Timm staining and neuron loss in this group were not clearly different from saline-treated rats. These results suggest that in the PILO model, pre-treatment with CHX does not affect mossy fiber sprouting in the IML of epileptic rats and does not prevent the formation of recurrent excitatory circuits. However, the develoment of spontaneous motor seizures, in a small number of rats, could occur without detectable hippocampal neuron loss or mossy fiber sprouting, as assessed by the Timm stain method.  相似文献   

15.
We studied the modulation of GABAergic inhibition by glutamate and kainate acting on GluR5-containing kainate receptors in the CA1 hippocampal region. Glutamate, kainate or ATPA, a selective agonist of GluR5-containing receptors, generates an inward current in inhibitory interneurons and cause repetitive action potential firing. This results in a massive increase of tonic GABAergic inhibition in the somata and apical dendrites of pyramidal neurons. These effects are prevented by the GluR5 antagonist LY 293558. Electrical stimulation of excitatory afferents generates kainate receptor-mediated excitatory postsynaptic currents (EPSCs) and action potentials in identified interneurons that project to the dendrites and somata of pyramidal neurons. Therefore glutamate acting on kainate receptors containing the GluR5 subunit may provide a protective mechanism against hyperexcitability.  相似文献   

16.
1. Local neuronal circuits in CA3 of hippocampal slices were studied by recording excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) intracellularly during glutamate microapplication in CA3. Control experiments validated this approach by providing evidence that glutamate microdrops stimulated neurons but not axons-of-passage or axon terminals in CA3. 2. Glutamate microdrops (10-20 mM, 10-20 microns diam) increased the firing frequency of extracellularly recorded dentate granule cells for 5-10 s when applied to their somata but not when applied to their mossy fiber axons and terminals in the hilus and in CA3. 3. Glutamate microapplications to granule cell somata, but not to mossy fiber axons, also increased the frequency of intracellularly recorded EPSPs in CA3 pyramidal cells for 5-10 s. This provided a second line of evidence that glutamate did not cause firing in mossy fiber axons synapsing in CA3. 4. In slices where the CA3 region was surgically separated from the dentate gyrus and CA2, glutamate microdrops placed in the CA3 stratum pyramidale within 400 microns of intracellularly recorded pyramidal cells increased the frequency of EPSPs and IPSPs. Tetrodotoxin (1 microgram/ml) blocked these increases in PSP frequency, indicating that they did not result from glutamate-induced depolarization and associated transmitter release from presynaptic terminals. Increases in PSP frequency were interpreted to reflect glutamate activations of CA3 neurons with local synaptic connections to recorded cells. 5. Low concentrations of picrotoxin (PTX, 5-10 microM) blocked glutamate-induced increases in IPSP frequency and often revealed increases in EPSP frequency where they were not previously observed. This suggests that recurrent inhibitory circuits normally mask or block transmission through recurrent excitatory pathways in CA3. 6. In five experiments following PTX treatment (7.5-10 microM), large and prolonged (up to 2 min) increases in EPSP frequency were observed in CA3 pyramidal cells to glutamate microapplications in CA3. Rhythmic epileptiform bursts eventually occurred in two of these cases, suggesting that the protracted increases in EPSP frequency represent a form of reverberating excitation during a transition from normal to epileptic states. 7. Sixteen CA3 pyramidal cells were recorded in PTX (5-10 microM) during glutamate microapplications at 200 and 400 microns on each side of the recording site. The most consistent glutamate-induced increases in EPSP frequency occurred to microapplications 200 microns from recording sites on the hilar side.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
目的:观察环氧合酶-2(cyclooxygenase-2,COX-2)抑制剂硝基苯-甲磺酸(NS-398)对幼鼠痫样放电的作用及其对海马CA1锥体神经元突触电活动的影响,研究NS-398在幼鼠痫性发作中的作用。方法:用生后第14天龄SD大鼠制作海马组织脑切片,记录其CA1区锥体神经元场电位,以群峰电位(PS)个数和波幅作为指标来评价脑片放电的变化。给脑片用不同浓度青霉素,建立离体海马脑片痂样放电模型,在脑片灌流液中用不同浓度NS-398,观察对PS个数和波幅的影响。全细胞记录模式下,观察NS-398对海马CA1锥体神经元递质释放和突触活动的影响。分别记录自发性兴奋性突触后电流(sEPSC)和自发性抑制性突触后电流(sIPSC),观察NS-398对其波幅和频率的影响。结果:NS-398浓度为10μmol/L时,对青霉素诱发的痼样放电没有多大的抑制效应;当浓度为20gmol/L时,有明显的抑制作用;为30μmol/L时抑制作用很强,明显降低PS的波幅和减少其频率。NS-398能明显抑制致痴大鼠海马锥体神经元sEPSC的频率,但是对其波幅及衰减时间没有明显的影响;同时NS-398能明显增强致痫大鼠海马脑片锥体神经元sIPSC的频率,明显延长sIPSC的衰减时间,对波幅影响不大。结论:COX-2抑制剂NS-398能减少sEPSC的放电和增强sIPSC的抑制功能,导致兴奋性神经递质的释放减少,降低神经元的兴奋性,从而抑制神经元异常放电。  相似文献   

18.
目的:观察拉莫三嗪(LTG)及丙戊酸钠(VPA)对锂-匹罗卡品癫痫持续状态(SE)大鼠海马锥体细胞、齿状回门区神经元的保护作用及对癫痫的治疗作用。方法:用大鼠制作锂-匹罗卡品SE动物模型,分三组:SE对照组,LTG治疗组和VPA治疗组。此三组在SE后2h给予安定阻断痫性发作,再分别给予适量生理盐水(NS)、LTG、VPA治疗15d,比较各组海马锥体细胞、门区神经元计数、继发癫痫的发生率及苔藓纤维出芽的评分。另设有正常对照组(NS组),不制模只给予NS“治疗”。结果:SE对照组、LTG组及VPA组齿状回门区均出现神经元丢失,VPA组及SE对照组均存在海马CA1神经元丢失,但LTG组海马CA1锥体神经元无丢失;三个模型组继发癫痫的发生率及苔藓纤维出芽的评分比较差异无统计学意义。结论:锂-匹罗卡品SE模型中,SE2h后给药,LTG能够对大鼠海马锥体细胞起到神经保护作用,VPA无明显保护作用,但两种抗癫痫药物均不能够阻断癫痫的发生及齿状回苔藓出芽。  相似文献   

19.
This study investigated calcium/calmodulin kinase II (CaMKII) activity related to long-standing neuronal injury of the hippocampus in kainate (KA)-induced experimental temporal lobe epilepsy. Epileptic seizure was induced by injection of KA (1 microg/microL) dissolved in phosphate buffer (0.1 M, pH 7.4) into the left amygdala. Clinical seizures, histopathologic changes and CaMKII activity of the hippocampus were evaluated. Characteristic early limbic and late seizures were developed. Hippocampal CaMKII activity increased significantly 4 and 8 weeks after intra-amygdaloid injection of KA, when late seizures developed. The histopathologic changes of the hippocampus included swelling of neuronal cytoplasm with nuclear pyknosis and loss of neurons in CA3 during this period. The increased activity of CaMKII may correlate with appearance of distant damage in the hippocampus. The above results indicate that intra-amygdaloid injection of KA produces excitatory signals for ipsilateral CA3 neurons in the hippocampus and that subsequently increased levels of CaMKII in postsynaptic neurons induce neuronal injury via phosphorylation of N-methyl-D-aspartate type glutamate receptor.  相似文献   

20.
To understand the precise microarchitecture of the cortical circuitry, it is crucial to know the distribution of synaptic connections and their synaptic strengths at the level of a single cell, rather than a group of cells. Here, we describe a new application of two-photon photolysis of caged glutamate that enabled us to induce an action potential in only a small number (about five) of pyramidal neurons by increasing the volume of two-photon excitation by reducing the effective numerical aperture of the objective. We performed whole cell patch-clamp recordings from layer 2/3 pyramidal neurons in the rat visual cortex and stimulated many neurons in a large three-dimensional space (approximately 600 x 600 x 100 microm) including neurons in layers 2/3 and 4 using this new technique. We mapped the density and amplitude of unitary excitatory postsynaptic currents and found that the basic microarchitecture of excitatory synaptic connections consists of two regions: a columnar, dense core region with a radius of 150 microm and an outer, sparse region. The dense core region includes the majority of strong synaptic connections in layer 2/3. Our results reveal the columnar organization of synaptic connectivity in the rat visual cortex, where functional columns have not been clearly demonstrated. Thus this technique will be a uniquely powerful tool for quantifying synaptic connectivity and manipulating neural activity at the single-cell level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号