首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA (mtDNA) mutations are an important cause of human disease. Most mtDNA mutations are found in heteroplasmy, in which the proportion of mutant vs. wild-type species is believed to explain some of the observed high phenotypic heterogeneity. However, homoplasmic mutations also observe phenotypic heterogeneity, which may be in part due to undetected low levels of heteroplasmy. In the present report, we have developed two assays, using DHPLC and Pyrosequencing (Biotage AB, Uppsala, Sweden), for reliably and accurately detecting low-level mtDNA heteroplasmy. Using these assays we have identified a three-generation family segregating two mtDNA mutations in heteroplasmy: the deafness-related m.1555A>G mutation in the 12S rRNA gene (MTRNR1) and a new variant (m.15287T>C) in the cytochrome b gene (MTCYB). Both heteroplasmic mtDNA mutations are transmitted through generations in a random manner, thus showing differences in mutation load between siblings within the family. In addition, the developed assays were also used to screen a group of deaf subjects of unknown etiology for the presence of heteroplasmy for both mtDNA variants. Two additional heteroplasmic m.1555A>G samples, previously considered as homoplasmic, and two deaf subjects carrying m.15287T>C variant were identified, thus confirming the high specificity and reliability of the approach. The development of assays for reliably detecting low-level heteroplasmy, together with the study of heteroplasmic mtDNA transmission, are essential steps for a better knowledge and clinical management of mtDNA diseases.  相似文献   

2.

Background

Diseases arising from mitochondrial DNA (mtDNA) mutations are usually serious pleiotropic disorders with maternal inheritance. Owing to the high recurrence risk in the progeny of carrier females, “at‐risk” couples often ask for prenatal diagnosis. However, reliability of such practices remains under debate. Preimplantation diagnosis (PGD), a theoretical alternative to conventional prenatal diagnosis, requires that the mutant load measured in a single cell from an eight cell embryo accurately reflects the overall heteroplasmy of the whole embryo, but this is not known to be the case.

Objective

To investigate the segregation of an mtDNA length polymorphism in blastomeres of 15 control embryos from four unrelated couples, the NARP mutation in blastomeres of three embryos from a carrier of this mutation.

Results

Variability of the mtDNA polymorphism heteroplasmy among blastomeres from each embryo was limited, ranging from zero to 19%, with a mean of 7%. PGD for the neurogenic ataxia retinitis pigmentosa (NARP) mtDNA mutation (8993T→G) was therefore carried out in the carrier mother of an affected child. One of three embryos was shown to carry 100% of mutant mtDNA species while the remaining two were mutation‐free. These two embryos were transferred, resulting in a singleton pregnancy with delivery of a healthy child.

Conclusions

This PGD, the first reported for a mtDNA mutation, illustrates the skewed meiotic segregation of the NARP mtDNA mutation in early human development. However, discrepancies between the segregation patterns of the NARP mutation and the HV2 polymorphism indicate that a particular mtDNA nucleotide variant might differentially influenced the mtDNA segregation, precluding any assumption on feasibility of PGD for other mtDNA mutations.  相似文献   

3.
When a mitochondrial DNA (mtDNA) mutation is identified, the reliable and sensitive quantification of the mutation load is a prerequisite for evaluating the feasibility of prenatal/pregestational diagnosis of the disease. We have developed a quantification assay of the 8993T>G NARP mutation using semi-quantitative fluorescent PCR. The test was reproducible and the experimental values were linear even at extremely low concentrations of mutant mtDNA molecules, making quantification of the mutant load in individual cells feasible (including blastomeres). Studying single circulating lymphocytes from a single NARP 8993T>G patient, we found a broad distribution of the disease causing mutation (0-44%) supporting the remarkable variability of heteroplasmy at the cellular level. This observation and the experimental approach reported here should be relevant to either prenatal or preimplantation diagnosis.  相似文献   

4.
Prenatal diagnosis of mitochondrial DNA (mtDNA) mutations is technically possible, but has only rarely been attempted. This is largely because of uncertainty about the effects of mtDNA heteroplasmy, the mtDNA bottleneck, random segregation or selection of mtDNA species, and difficulty in correlating a particular mtDNA mutant load with clinical outcome. We have investigated the feasibility of prenatal diagnosis for two common mtDNA mutations at nucleotide (nt)8993 by determining mtDNA mutant loads in human oocytes and by reviewing data on 56 pedigrees with these mutations, and by reviewing six studies on mtDNA mutations in human fetuses. Data from heteroplasmic human and mouse oocytes demonstrate that the bottleneck occurs in early oogenesis. Analysis of mutant loads of the nt8993 mutations in fetal and adult tissues confirms that there is no substantial tissue variation, implying that the mutant load in a prenatal sample will represent the mutant load in other fetal tissues. The two nucleotide 8993 mutations each show a strong correlation between mutant load and symptom severity and between maternal blood mutant load and risk of a severe outcome. We generated empirical data for calculating recurrence risk and predicting the clinical outcome of a given mutant load. These predictive data can be used (cautiously) for genetic counselling and prenatal diagnosis of nucleotide 8993 mutations.  相似文献   

5.
Ooplasmic donation in humans: the potential for epigenic modifications   总被引:6,自引:0,他引:6  
Ooplasm donation, wherein ooplasm is transferred from a donor oocyte to a recipient oocyte in an effort to increase embryo viability, has been applied in the human, with resulting pregnancies and births. Neither the safety nor efficacy of this method has been adequately investigated. Mitochondrial heteroplasmy in the blood of children conceived using ooplasm donation has recently been described. A follow-up study of children born following the use of this technique primarily focused on the presence of mitochondria from the donor oocyte highlighting possible problems due to mitochondrial heteroplasmy. Other effects related to epigenetic events may also arise, but have not been addressed. Studies using inbred mouse strains reveal that genetically diverse ooplasms can impose diverse epigenetic modifications on parental genomes. Incompatibilities produced by combining maternal genome and ooplasm from different genotypes leads to defects in gene expression and development. Such defects can be heritable and observed in the next generation. Given the potential for epigenetic modifications to arise following ooplasm donation, the safety and efficacy of this method need to be evaluated in a suitable animal model.  相似文献   

6.
Mitochondria are the largest generator of ATP in the cell. It is therefore expected that energy‐requiring processes such as oocyte maturation, early embryonic or fetal development, would be adversely impacted in case of mitochondrial deficiency. Human mitochondrial DNA (mtDNA) mutations constitute a spontaneous model of mitochondrial failure and offer the opportunity to study the consequences of energetic defects over fertility and embryofetal development. This review provides an update on the mtDNA metabolism in the early preimplantation embryo, and compiles data showing the impact of mtDNA mutations over mtDNA segregation. Despite convincing evidences about the essential role of mitochondria in oogenesis and preimplantation development, no correlation between the presence of a mtDNA mutation and fertilization failure, impaired oocyte quality, or embryofetal development arrest was found. In some cases, mutant cells might upregulate their mitochondrial content to overcome the bioenergetic defects induced by mtDNA mutations, and might escape negative selection. Finally we discuss some of the clinical consequences of these observations.  相似文献   

7.
Over 170 known mutations of the mitochondrial genome are responsible for disease. Due to the unique features of mitochondrial genetics, such patients are clinically diverse and difficult to diagnose. As pathogenic mitochondrial DNA (mtDNA) mutations are mostly heteroplasmic, denaturing high-performance liquid chromatography (DHPLC) could be used to detect these heteroplasmic species and therefore act as a rapid screening test for mtDNA mutations. The entire mitochondrial genome was amplified by PCR in 40 overlapping regions. In addition, known mtDNA mutants were constructed for each of these regions using a PCR-based site-directed mutagenesis approach. These mutants were used as positive controls and showed a detection limit of 3-10% heteroplasmy by DHPLC (depending on the specific mutation) compared to 40% for conventional sequencing. To further validate the screening test, mtDNA from 17 patients with seven different pathogenic mutations was used to compare mutation detection by DHPLC and conventional sequencing. DHPLC had a sensitivity of 88% compared to 82% for sequencing. This increased to 100% sensitivity for DHPLC when excluding the m.8993T>G mutation. DHPLC analysis is therefore a sensitive, rapid and cost-effective method to screen for mutations in the mitochondrial genome. The role of pyrosequencing in the quantitation of mutant load for known mtDNA mutations was highlighted using the m.3243A>G mutation as an illustrative example. Pyrosequencing analysis was able to discriminate samples containing as little as 5% heteroplasmy and proved to be an accurate and reproducible method for estimation of mutant load.  相似文献   

8.
Little is known about the load of mutations and polymorphisms in the mitochondrial DNA (mtDNA) of human oocytes and the possible effect these mutations may have during life. To investigate this, we optimised at the single cell level the recently developed method to screen the entire mtDNA for mainly heteroplasmic mutations by denaturing high performance liquid chromatography analysis. This method is sensitive (approximately 1% heteroplasmy detectable), specific and rapid. The entire mtDNA of 26 oocytes of 13 women was screened by this method. Ten different heteroplasmic mutations, of which only one was located in the D-loop and two were observed twice, were detected in seven oocytes with mutation loads ranging from <5% to 50%. From eight women >1 oocyte was received and in four of them heteroplasmic differences between oocytes of the same woman were observed. In one of these four, two homoplasmic D-loop variants were also detected. Additionally, four oocytes of a single woman were sequenced using the MitoChip (which lacks the D-loop region), but all sequences were identical. It is concluded that heteroplasmic mtDNA mutations are common in oocytes and that, depending on the position and mutation load, they might increase the risk of developing OXPHOS disease early or later in life.  相似文献   

9.
Mitochondrial DNA (mtDNA) mutations cause a wide range of serious diseases with high transmission risk and maternal inheritance. Tissue heterogeneity of the heteroplasmy rate ("mutant load") accounts for the wide phenotypic spectrum observed in carriers. Owing to the absence of therapy, couples at risk to transmit such disorders commonly ask for prenatal (PND) or preimplantation diagnosis (PGD). The lack of data regarding heteroplasmy distribution throughout intrauterine development, however, hampers the implementation of such procedures. We tracked the segregation of the m.3243A>G mutation (MT-TL1 gene) responsible for the MELAS syndrome in the developing embryo/fetus, using tissues and cells from eight carrier females, their 38 embryos and 12 fetuses. Mutant mtDNA segregation was found to be governed by random genetic drift, during oogenesis and somatic tissue development. The size of the bottleneck operating for m.3243A>G during oogenesis was shown to be individual-dependent. Comparison with data we achieved for the m.8993T>G mutation (MT-ATP6 gene), responsible for the NARP/Leigh syndrome, indicates that these mutations differentially influence mtDNA segregation during oogenesis, while their impact is similar in developing somatic tissues. These data have major consequences for PND and PGD procedures in mtDNA inherited disorders.  相似文献   

10.
BACKGROUND: The biopsy of both polar bodies and a blastomere from the same embryo was investigated as an approach aimed at increasing the quantity of DNA available for genetic analysis in preimplantation embryos. METHODS: In 113 cycles, preimplantation genetic diagnosis (PGD) was performed for aneuploidy: 19 cycles underwent polar body biopsy, 32 cycles had both polar body and blastomere biopsy done, and the remaining 62 cycles underwent blastomere biopsy. The chromosomal analysis was performed in a two-round fluorescence in situ hybridization (FISH) protocol with probes specific for the chromosomes X, Y, 13, 15, 16, 18, 21 and 22. RESULTS: The morphological evaluation of the analysed embryos demonstrated similar rates of development irrespective of the biopsy procedure. Accordingly, the implantation rate did not differ significantly in the three biopsy groups and was 15% after polar body biopsy, 26% after the combined biopsy procedures of polar bodies and blastomeres, and 25% after blastomere biopsy. CONCLUSIONS: The removal of a blastomere subsequent to polar body biopsy does not seem to have negative effects on embryo viability. This approach could be especially valuable for a combined diagnosis of aneuploidy and single-gene disorders in preimplantation embryos generated by couples at high reproductive risk.  相似文献   

11.
The mitochondrial heteroplasmy present in offspring from IVF and human ooplasm donation is troublesome and merits further exploration in a debate that is already complex and controversial. Improving the understanding of mitochondrial genomics in this context is important because mitochondriopathies can impact crucial cellular processes in renal, cardiovascular, central nervous, and endocrine systems. Relevant epigenetic consequences of mitochondrial heteroplasmy include associated abnormalities in mitochondrial translation products. Furthermore, as transmission and inheritance patterns of mtDNA are species-specific, it remains to be proven if findings derived from animal studies are applicable to human offspring. As an alternative to gamete research and proteomics based on animal experimentation, continued molecular characterization of the de novo human mitochondriopathies is posed to offer further insights regarding mitochondrial heteroplasmy. In this context, because knowledge of human mitochondrial genetics remains limited and the risks associated with ooplasm donation cannot be quantified, we do not favor its use for our patients at present. However, the small number of infants already conceived from this experimental approach warrant careful longitudinal evaluation. In particular, observational study of the few children born after ooplasm donation could provide opportunities to assess human mtDNA transmission and inheritance. Such findings could help identify features distinguishing natural mtDNA heteroplasmy from heteroplasmy observed after ooplasm donation. Future investigations should also quantify the degree any such heteroplasmy can exist innocuously. Disclosure of mtDNA mutations potentially affecting children conceived from IVF and ooplasm donation must be included during patient education at centers contemplating such treatment.  相似文献   

12.
Using PCR in preimplantation genetic disease diagnosis.   总被引:10,自引:1,他引:9  
Preimplantation diagnosis of genetic disease can be accomplished by embryo biopsy or polar body analysis using in-vitro gene amplification (PCR). PCR analysis of single cells is subject to a number of errors which decrease the reliability of the diagnosis. Using realistic assumptions about error rates based on experimental data, we analyse some of the practical consequences to be faced by whose wishing to use this diagnostic procedure. We considered both autosomal dominant and recessive diseases. We calculate the probability of making mistakes in the diagnosis, assuming a realistic range in the magnitude of PCR efficiency, cell transfer, and contamination errors. We conclude that, in general, analysing blastomeres is subject to less mis-diagnosis than polar body analysis, except in the case of dominant diseases which are caused by genes which lie extremely close to the centromere. We also show that typing multiple blastomeres from a single embryo or combining polar body typing with blastomere analysis results in significantly lower levels of mis-diagnosis with unacceptable consequences. The preimplantation diagnosis of X-linked diseases based upon Y chromosome sequence analysis is also discussed.  相似文献   

13.
We identified a novel heteroplasmic mitochondrial DNA (mtDNA) (m.4322dupC) mutation in tRNA gene associated with isolated dilated cardiomyopathy (DCM) as maternal trait. Mutation screening techniques and automated DNA sequencing were performed to identify mtDNA mutations and to assess heteroplasmy in family's proband and healthy control subjects. All family members tested had heteroplasmic mtDNA m.4322dupC mutation. We also screened 350 normal controls for this mutation and found no evidence of heteroplasmy. The m.4322dupC mutation was found in the skeletal tissue from the proband that exhibited slightly reduced deficiency of mitochondrial respiratory chain enzymes (complex III). The present study reports the novel m.4322dupC mutation in tRNA gene, which is possibly associated to the disease, to isolated DCM. It was localized in a hot-spot region for mutations and is possibly pathogenic because of a cosegregation with the matrilineal transmission of DCM.  相似文献   

14.
15.
采用PCR技术对我国两个Leber遗传性视神经病(LHON)家系成员外周血、头发和口腔粘膜3种组织线粒体DNA进行扩增,限制性酶切分析、以探讨组织间mtDNA基因型是否存在差异。结果发现一例患者mtDNA基因型杂合,并且3种组织间突变型mtDNA所占比例不同,证明线粒体DNA组织间存在差异性。  相似文献   

16.
This study is part of a strategy aimed at using fluorescent polymerase chain reaction (PCR) on informative genetic microsatellite markers as a diagnostic tool in preimplantation genetic diagnosis (PGD) of severe monogenic disease. Two couples, both of whom had previously had children who were compound heterozygote for severe cystic fibrosis mutations, were offered PGD using fluorescent PCR of the highly polymorphic cystic fibrosis transmembrane conductance regulator (CFTR) intragenic microsatellite marker IVS17bTA. Cleavage-stage embryo biopsy followed by PCR resulted in transfer of one unaffected carrier embryo for each couple. This approach eliminates the need for single cell multiplex PCR strategies to detect CF compound heterozygotes. It also provides a control of chromosome 7 ploidy in the blastomeres and a selection against allele dropout by positive detection of each CFTR copy of all genotypes in preimplantation embryos from genetically informative families.  相似文献   

17.
This paper describes a method for obtaining metaphase chromosomes from human second polar bodies. The second polar body nucleus was injected into the cytoplasm of an enucleated oocyte, which is activated shortly after injection. When the polar body nucleus is transformed into a haploid pronucleus, treatment with okadaic acid was used to induce premature chromosome condensation. A total of 25 analysable chromosome plates were obtained from 38 polar bodies karyotyped using this technique. Whole chromosome painting was used to detect second polar bodies (and respectively, oocytes) with unbalanced translocations. In combination with the first polar body analysis, this technique may be useful in preimplantation genetic diagnosis for patients carrying maternal translocations.  相似文献   

18.
Most patients with mitochondrial disorders are diagnosed by finding a respiratory chain enzyme defect or a mutation in the mitochondrial DNA (mtDNA). The provision of accurate genetic counseling and reproductive options to these families is complicated by the unique genetic features of mtDNA that distinguish it from Mendelian genetics. These include maternal inheritance, heteroplasmy, the threshold effect, the mitochondrial bottleneck, tissue variation, and selection. Although we still have much to learn about mtDNA genetics, it is now possible to provide useful guidance to families with an mtDNA mutation or a respiratory chain enzyme defect. We describe a range of current reproductive options that may be considered for prevention of transmission of mtDNA mutations, including the use of donor oocytes, prenatal diagnosis (by chorionic villus sampling or amniocentesis), and preimplantation genetic diagnosis, plus possible future options such as nuclear transfer and cytoplasmic transfer. For common mtDNA mutations associated with mitochondrial cytopathies (such as NARP, Leigh Disease, MELAS, MERRF, Leber's Hereditary Optic Neuropathy, CPEO, Kearns-Sayre syndrome, and Pearson syndrome), we summarize the available data on recurrence risk and discuss the relative advantages and disadvantages of reproductive options.  相似文献   

19.
Mitochondria are the organelles responsible for producing the majority of a cell's ATP and also play an essential role in gamete maturation and embryo development. ATP production within the mitochondria is dependent on proteins encoded by both the nuclear and the mitochondrial genomes, therefore co-ordination between the two genomes is vital for cell survival. To assist with this co-ordination, cells normally contain only one type of mitochondrial DNA (mtDNA) termed homoplasmy. Occasionally, however, two or more types of mtDNA are present termed heteroplasmy. This can result from a combination of mutant and wild-type mtDNA molecules or from a combination of wild-type mtDNA variants. As heteroplasmy can result in mitochondrial disease, various mechanisms exist in the natural fertilization process to ensure the maternal-only transmission of mtDNA and the maintenance of homoplasmy in future generations. However, there is now an increasing use of invasive oocyte reconstruction protocols, which tend to bypass mechanisms for the maintenance of homoplasmy, potentially resulting in the transmission of either form of mtDNA heteroplasmy. Indeed, heteroplasmy caused by combinations of wild-type variants has been reported following cytoplasmic transfer (CT) in the human and following nuclear transfer (NT) in various animal species. Other techniques, such as germinal vesicle transfer and pronuclei transfer, have been proposed as methods of preventing transmission of mitochondrial diseases to future generations. However, resulting embryos and offspring may contain mtDNA heteroplasmy, which itself could result in mitochondrial disease. It is therefore essential that uniparental transmission of mtDNA is ensured before these techniques are used therapeutically.  相似文献   

20.
We have applied time-resolved fluorometry (TRF) to construct a DNA hybridization assay for the diagnosis of Leber hereditary optic neuroretinopathy (LHON). A rapid and reliable detection of the most prevalent mitochondrial DNA (mtDNA) point mutation associated with LHON is demonstrated. In addition, the TRF-method can be used in the quantification of heteroplasmy, a phenomenon commonly present in mtDNA mutations. The assay includes PCR amplification of a fragment encompassing the mutation site followed by hybridization reactions with allele-specific europium (Eu)-labelled oligonucleotide probes. A time-resolved fluorometer is used to measure the bound label. The TRF assay was succesfully used to demonstrate the ND4/11778 mutation in patient samples. For quantification of heteroplasmy, synthetic target oligonucleotide mixtures with known ratios of wild-type and mutated sequences were used as standards to control the hybridization step. The assay allowed the detection of heteroplasmy ranging from 5 to 95%. This was also shown in a family with several heteroplasmic members. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号