首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, it has been reported that modulating serotonergic neurones by use of selective serotonin reuptake inhibitors (SSRI) can alter the hypothermic response produced by Delta(9)-tetrahydrocannabinol (Delta(9)-THC). The aim of the present study was to investigate the effect that activation or antagonism of 5-hydroxytryptamine (5-HT(1A)) receptors has on Delta(9)-THC-induced hypothermia. Delta(9)-THC (0.5, 2 and 5 mg/kg iv) decreased body temperature in a dose-related manner. Whilst having no significant effect on body temperature when administered 40 min prior to vehicle injection, the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride (WAY 100635; 1 mg/kg sc) significantly potentiated the hypothermia produced by 2 and 5 mg/kg Delta(9)-THC. In order to investigate whether this effect was due to antagonism at somatodendritic autoreceptors in midbrain raphe nuclei, WAY 100635 or the 5-HT(1A) agonist 8-hydroxy-(di-n-propylamino) tetralin (8-OH-DPAT) was microinjected into either the median raphe nuclei (MRN) or dorsal raphe nuclei (DRN) 40 min prior to Delta(9)-THC injection. Following microinjection into the DRN, neither WAY 100635 (0.5 nmol/0.5 microl/10 s) nor 8-OH-DPAT (15.2 nmol/0.5 microl/10 s) had any significant effect on Delta(9)-THC-induced hypothermia. However, WAY 100635 when microinjected into the MRN significantly potentiated Delta(9)-THC-induced hypothermia, and 8-OH-DPAT microinjected into the MRN significantly inhibited Delta(9)-THC-induced hypothermia. It is suggested from these studies that the potentiation of Delta(9)-THC-induced hypothermia by WAY 100635 when administered peripherally is mainly due to antagonism at somatodendritic 5-HT(1A) autoreceptors in the MRN.  相似文献   

2.
Key proteins regulating serotonergic activity, specifically the serotonin transporter and 5-HT(1A) receptor, were examined in the midbrain raphe nuclei of young (3-4 months) and old (17-19 months) hamsters (N=7-10/group). An age-related decrease in the maximal density of serotonin transporter sites labelled with [(3)H]paroxetine (fmol/mg protein, Old: 396+/-13; Young: 487+/-27) was observed in the dorsal raphe nucleus (DRN) but not the median raphe nucleus (MRN), without affecting the affinity of [(3)H]paroxetine. In the DRN and MRN, the stimulation of [(35)S]GTP gamma S binding by the 5-HT(1A) receptor agonist 8-OH-DPAT, or the number of 5-HT(1A) receptor sites labeled with [(3)H] MPPF, was not different in old versus young animals. Thus in the DRN, aging decreased serotonin transporter sites without changing 5-HT(1A) receptor activation of G proteins or 5-HT(1A) receptor density. In the CA(1) region of hippocampus, 8-OH-DPAT-stimulated [(35)S]GTP gamma S binding was increased in the older animals (% above basal, Old: 141+/-21; Young: 81+/-17) without changing specific [(3)H] MPPF binding sites, suggesting that the capacity of 5-HT(1A) receptors to activate G proteins is enhanced. Aging also appears to enhance this capacity in the dentate gyrus, because this region exhibited a constant level of 8-OH-DPAT-stimulated [(35)S]GTP gamma S binding in spite of an age-related decrease in the number of [(3)H] MPPF binding sites (fmol/mg protein, Old: 203+/-21; Young: 429+/-51).  相似文献   

3.
1. Extracellular 5-hydroxytryptamine (5-HT) was determined in dorsal raphe nucleus (DRN), median raphe nucleus (MRN) and nucleus accumbens by use of microdialysis in unanaesthetized rats. 2. Infusion of the gamma-aminobutyric acid (GABA)A receptor agonist muscimol into DRN and MRN resulted in decreased 5-HT in DRN and MRN, respectively. Muscimol infusion into nucleus accumbens had no effect on 5-HT. 3. Infusion of the GABAA receptor antagonist bicuculline into DRN resulted in increased DRN and nucleus accumbens 5-HT. Bicuculline infusion into MRN had no effect on 5-HT. This suggests that endogenous GABA had a tonic, GABAA receptor-mediated inhibitory effect on 5-HT in DRN, but not in MRN. 4. Infusion of the GABAB receptor agonist baclofen into DRN produced a decrease in DRN 5-HT. Baclofen infusion into nucleus accumbens resulted in decreased nucleus accumbens 5-HT. This suggests that GABAB receptors are present in the area of cell bodies and terminals of 5-hydroxytryptaminergic neurones. 5. Infusion of the GABAB receptor antagonists phaclofen and 2-hydroxysaclofen had no effect on midbrain raphe and forebrain 5-HT. This suggests that GABAB receptors did not contribute to tonic inhibition of 5-HT release. 6. In conclusion, 5-HT release is physiologically regulated by distinct subtypes of GABA receptors in presynaptic and postsynaptic sites.  相似文献   

4.
The aim of this study was to investigate the cardiovascular effects of the 5-HT1A receptor agonists, 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin), flesinoxan and 5-carboxamidotryptamine (5-CT) following injection into the dorsal raphe nucleus of conscious rats. 8-OH-DPAT (0.5-2.5 micrograms), hypotension, bradycardia and flat body posture. In contrast, injection of 8-OH-DPAT (0.5 microgram) into the median raphe nucleus caused no cardiovascular changes or flat body posture. (-)Pindolol (0.5 microgram dorsal raphe nucleus) had little effect on cardiovascular parameters, but significantly attenuated the cardiovascular effects of 8-OH-DPAT (0.5 microgram dorsal raphe nucleus). N-Methylatropine (1 mg/kg i.v.) antagonised the cardiovascular effects of 8-OH-DPAT (0.5 microgram dorsal raphe nucleus), suggesting these were vagally mediated. Both pretreatments also appeared to reduce 8-OH-DPAT-induced flat body posture. The results suggest that 8-OH-DPAT activates 5-HT1A receptors in the dorsal raphe nucleus to cause hypotension and bradycardia.  相似文献   

5.
Microinfusion of the selective 5-HT1A receptor agonist, 8-hydroxy-(di-N-propylamino)tetralin (8-OHDPAT), into the dorsal raphe nucleus (DRN) produced a marked behavioural hypoactivity and flat body posture. Injections of similar doses into the median raphe nucleus (MRN) elicited hyperactivity but no postural change. Reductions in rearing and grooming were also observed after DRN and MRN infusions of 8-OHDPAT. The behavioural profiles of other 5-HT1A selective compounds, gepirone and BMY7378 were found to be similar to 8-OHDPAT. The contrasting behavioural profiles of the 5-HT1A agents observed after DRN or MRN microinfusions are probably related to the differential innervation of forebrain structures by each raphe nucleus. Thus, the present data confirms and extends previous results illustrating the influence of 5-HT systems on motor behaviour in the rat and identifies unique behavioural profiles following activation of the DRN and MRN.  相似文献   

6.
Prepulse inhibition (PPI) is a measure of sensorimotor gating that is deficient in schizophrenia. In rats, administration of the serotonin-1A (5-HT1A) receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), causes a disruption of PPI. It is unclear whether this effect is due to the activation of pre- or post-synaptic 5-HT1A receptors, however pre-synaptic receptors located in the dorsal raphe nucleus (DRN) may play a role. Our previous research showed that castrated rats have a reduced sensitivity to 8-OH-DPAT-induced disruptions of PPI. Therefore, in , male Sprague-Dawley rats were sham-operated or castrated and micro-injected with 8-OH-DPAT directly into the DRN. In , male rats were sham-operated or received a selective serotonergic, 5,7-dihydroxytryptamine lesion of the DRN. 8-OH-DPAT was injected subcutaneously in these rats. In both sham-operated and castrated rats, a micro-injection of 8-OH-DPAT into the DRN did not disrupt PPI. Instead, in castrated rats, 8-OH-DPAT treatment tended to increase PPI. A DRN lesion caused a significant reduction in 5-HT content in the frontal cortex (70% reduction), striatum (69%) and ventral hippocampus (76%). In both sham-operated and DRN-lesioned rats, systemic 8-OH-DPAT significantly disrupted PPI. Taken together, these data suggest that the disruption of PPI observed in rats with systemic 8-OH-DPAT treatment is predominantly due to an activation of post-synaptic, rather than pre-synaptic, 5-HT1A receptors.  相似文献   

7.
These experiments were designed to examine the effects of repeated 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) treatment on the autoregulatory control of cortical 5-HT release and dorsal raphe nucleus (DRN) 5-HT neuronal cell firing. Repeated DOI treatment decreased the behavioural responsiveness (wet-dog shakes) of 5-HT2 receptors and attenuated the inhibitory effects of the 5-HT1A receptor agonist, 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin), on both cortical 5-HT release and DRN 5-HT neuronal firing. In contrast, the inhibitory effect of acute DOI on cortical 5-HT release and DRN 5-HT neuronal firing was unaffected by repeated DOI treatment. The results demonstrate that changes in the responsiveness of 5-HT2 receptor function may influence the responsiveness of presynaptic 5-HT1A receptors regulating 5-HT neuronal function. The results also provide further evidence that the inhibition of cortical 5-HT release and DRN 5-HT neuronal firing produced by DOI is not mediated by 5-HT2 receptor activation.  相似文献   

8.
Previous work has shown that 5-hydroxytryptamine (5-HT) receptor agonists such as 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) reduce 5-HT neurotransmission and induce feeding in rats. The effects of 8-OH-DPAT appear to be mediated in part in the dorsal raphe nucleus by serotonergic somatodendritic autoreceptors which normally regulate impulse flow in 5-HT dorsal raphe neurons. The present experiments sought to examine whether suppression of dorsal raphe serotonergic neural activity induced by exogenously applied, or endogenously released 5-HT would increase feeding. Free-feeding rats were microinjected in the dorsal raphe with 5-HT, the 5-HT releasing compound d-fenfluramine, the 5-HT re-uptake inhibitor zimelidine, or the type-A monoamine oxidase inhibitor brofaromine. Dose dependent increases in food intake over a 1 h period were found following treatment with 5-HT and the three indirectly acting compounds. Thus, increased serotonergic activity within the dorsal raphe increases feeding, presumably by inhibiting the activity of dorsal raphe 5-HT neurons. In addition the effects of 5-HT were blocked by pretreatment with haloperidol, indicating the involvement of a dopaminergic mechanism in mediating the effects of feeding of a suppression in dorsal raphe 5-HT neural activity. The results are discussed in terms of the general role which serotonergic neurons arising from the dorsal raphe may play in behavioural inhibition.  相似文献   

9.
8-OH-DPAT [8-hydroxy-2-(di-N-propylamino)tetralin], a 5-HT(1A) receptor agonist, and S 15535 (4-benzodioxan-5-yl)1-(indan-2-yl)piperazine, a partial agonist at 5-HT(1A) receptors, were administered into the dorsal raphe nucleus and dorsal hippocampus and their behavioral effects were assessed in a modified Geller-Seifter conflict model. Injected into the dorsal raphe nucleus 8-OH-DPAT, 1 microg but not 0.04 or 0.2 microg 0.5 microl(-1), and S 15535, 2.5 microg but not 0.1 or 0.5 microg 0.5 microl(-1), significantly increased punished responding with no effect on rates of unpunished or time-out responding. WAY 100635, a selective 5-HT(1A) receptor antagonist, injected subcutaneously at 0. 3 mg kg(-1) 30 min before 1 microg 8-OH-DPAT or 2.5 microg S 15535 in the dorsal raphe, completely antagonized their effects on punished responding. At doses ranging from 1 to 10 microg microl(-1) injected into the CA1 region of the dorsal hippocampus neither 8-OH-DPAT nor S 15535 modified punished responding or the rates of time-out. At the highest doses, 8-OH-DPAT significantly reduced unpunished responding whereas S 15535 had the opposite effect. The results suggest that stimulation of 5-HT(1A) receptors in the dorsal raphe nucleus has anxiolytic-like effects whereas stimulation of postsynaptic receptors in the dorsal hippocampus has no anxiolytic or anxiogenic effects, at least judging from changes in rates of punished responding. These results are compatible with the hypothesis that 5-HT(1A) receptor agonists and partial agonists attenuate anxiety by reducing serotonergic transmission in brain areas innervated by the dorsal raphe nucleus.  相似文献   

10.
The microdialysis technique was used to examine interactions between 5-HT(1A) and galanin receptors in the dorsal raphe nucleus (DRN), by measuring the extracellular levels of 5-HT in the ventral hippocampus of awake rats. The rats were pretreated with the 5-HT(1A) receptor agonist (R,S)-8-OH-DPAT (0.3 mg/kg, s.c.) or saline. 8-OH-DPAT caused a time-dependent reduction of basal 5-HT levels down to 43-48% at 40 min while at 140 min, the hippocampal 5-HT had returned to control values. At that time point, the rats received a second injection of 8-OH-DPAT or galanin (0.15, 0.5 and 1.5 nmol/0.5 microl) infused into the lateral ventricle. The second injection of 8-OH-DPAT caused a significantly smaller reduction of hippocampal 5-HT levels. In contrast, galanin at all three doses in the 8-OH-DPAT-pretreated groups, was significantly more potent in reducing 5-HT levels (maximal reduction to 74%, 52% and 49%, respectively) than it was in saline-pretreated rats (maximal reduction to 96%, 85% and 69%, respectively). The inhibitory effect of galanin (1.5 nmol) on extracellular 5-HT levels in the rat hippocampus was significantly attenuated by co-administration of the 5-HT(1A) receptor antagonists WAY-100635 (0.3 and 0.6 mg/kg s.c.) and, to a lesser extent, with pindolol (20 mg/kg s.c.). These data provide direct in vivo evidence of agonistic 5-HT(1A)-galanin receptor interaction at the presynaptic level. Furthermore, the findings indicate that a down-regulation of the somato-dendritic 5-HT(1A) autoreceptors, following their stimulation with 8-OH-DPAT and possibly also indirectly with 5-HT reuptake inhibitors, may be compensated by a subsequent 'sensitization' of the inhibitory galanin receptors in the DRN. Thus, the enhanced galanin receptor-mediated inhibition of 5-HT neurotransmission may contribute to the pathophysiology of depression or to the reduced and delayed efficacy of antidepressant therapies.  相似文献   

11.
The neuroleptic spiperone, which binds to 5-HT1A, 5-HT2 and dopamine (DA) receptors, was studied for its effects on serotonin (5-HT) and DA neurons in dorsal raphe nucleus and substantia nigra pars compacta, respectively. We found that 1 mg/kg i.v. spiperone, but not LY53837 (a 5-HT2 antagonist), antagonized the inhibition induced by 5-HT1A agonists 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) and buspirone in the dorsal raphe nucleus. Lower spiperone doses blocked DA receptors in substantia nigra pars compacta, but did not affect 5-HT neurons. Doses of 8-OH-DPAT completely silencing dorsal raphe neurons were ineffective in substantia nigra pars compacta. However, buspirone antagonized DA receptors in substantia nigra pars compacta with doses similar to those depressing dorsal raphe neurons. It is concluded that spiperone is an antagonist of 5-HT1A receptors in the dorsal raphe nucleus.  相似文献   

12.
Selective serotonin reuptake inhibitors (SSRIs) reduce the 5-HT release in vivo. This effect is due to the activation of somatodendritic 5-HT1A receptors and it displays a regional pattern comparable to that of selective 5-HT1A agonists, i.e., preferentially in forebrain areas innervated by the dorsal raphe nucleus (DRN). However, despite a comparatively lower 5-HT1A-mediated inhibition of 5-HT release and a greater density of serotonergic uptake sites in hippocampus, the net elevation produced by the systemic administration of SSRIs is similar in various forebrain areas, regardless of the origin of serotonergic fibres. As terminal autoreceptors may also limit the SSRI-induced elevations of 5-HT in the extracellular brain space, we reasoned that a differential control of 5-HT release by terminal autoreceptors in DRN- and median raphe-innervated areas might be accountable. To examine this possibility, we have conducted a regional microdialysis study in the DRN, MRN and four forebrain regions preferentially innervated either by the DRN (frontal cortex, striatum) or the median raphe nucleus (MRN; dorsal and ventral hippocampus) using freely moving rats. Dialysis probes were perfused with 1 μM of the SSRI citalopram to augment the endogenous tone on terminal 5-HT autoreceptors. The non-selective 5-HT1 antagonist methiothepin (10 and 100 μM, dissolved in the dialysis fluid) increased extracellular 5-HT in frontal cortex and dorsal hippocampus in a concentration-dependent manner. The 5-HT1B/1D antagonist GR 127935 was ineffective at 10 μM and tended to reduce 5-HT in dorsal hippocampus at 100 μM. The local infusion of 100 μM methiothepin significantly elevated the extracellular 5-HT concentration to 142–173% of baseline (mean values of 260 min post-administration) in the DRN, MRN, frontal cortex, striatum and hippocampus (dorsal and ventral). Comparable elevations were noted in the four forebrain regions examined. As observed in frontal cortex and dorsal hippocampus, the perfusion of 10 μM GR 127935 did not elevate 5-HT in DRN, MRN, striatum or ventral hippocampus. Because the stimulated 5-HT release in the DRN has been suggested to be under control of 5-HT1B/1D receptors, we examined the possible contribution of these receptor subtypes to the effects of methiothepin in the DRN. The perfusion of sumatriptan (0.01–10 μM) or GR 127935 (0.01–10 μM) did not significantly modify the 5-HT concentration in dialysates from the DRN. Thus, the present data suggest that the comparable effects of SSRIs in DRN- and MRN-innervated forebrain regions are not explained by a preferential attenuation of 5-HT release by terminal 5-HT1B autoreceptors in hippocampus, an area with a low inhibitory influence of somatodendritic 5-HT1A receptors. Methiothepin-sensitive autoreceptors (possibly 5-HT1B) appear to play an important role not only in the projection areas but also with respect to the control of 5-HT release in the DRN and MRN. In addition, our findings indicate that GR 127935 is not an effective antagonist of the actions of 5-HT at rat terminal autoreceptors. Received: 27 February 1998 / Accepted: 12 June 1998  相似文献   

13.
In order to describe the interaction of morphine and 5-hydroxytryptamine (5-HT) in the raphe-hippocampus system we tested the influence on the antinocifensive effect of topic administrations of morphine and serotonergic substances into the dorsal hippocampus and the median raphe nucleus in rats. 5-HT administered into the dorsal hippocampus increased the morphine analgesia. Lysergic acid diethylamide injected into the raphe nucleus antagonized the morphine effect. Morphine given into the raphe nucleus was highly effective, while its injection into the striatum was ineffective. The effect of the intrahippocampal morphine was antagonized by methysergide. The results indicate the important role of the serotonergic raphe-hippocampus system in the mechanism of the morphine analgesia.  相似文献   

14.
  1. The regulation of 5-hydroxytryptamine (5-HT) release by excitatory amino acid (EAA) receptors was examined by use of microdialysis in the CNS of freely behaving rats. Extracellular 5-HT was measured in the dorsal raphe nucleus (DRN), median raphe nucleus (MRN), nucleus accumbens, hypothalamus, frontal cortex, dorsal and ventral hippocampus.
  2. Local infusion of kainate produced increases in extracellular 5-HT in the DRN and MRN. Kainate infusion into forebrain sites had a less potent effect.
  3. In further studies of the DRN and nucleus accumbens, kainate-induced increases in extracellular 5-HT were blocked by the EAA receptor antagonists, kynurenate and 6,7-dinitroquinoxaline-2,3-dione (DNQX).
  4. The effect of infusing kainate into the DRN or nucleus accumbens was attenuated or abolished by tetrodotoxin (TTX), suggesting that the increase in extracellular 5-HT is dependent on 5-HT neuronal activity. In contrast, ibotenate-induced lesion of intrinsic neurones did not attenuate the effect of infusing kainate into the nucleus accumbens. Thus, the effect of kainate in the nucleus accumbens does not depend on intrinsic neurones.
  5. Infusion of α-amino-3-hydroxy-5-methyl-4-isoxazolaproprionate (AMPA) into the DRN and nucleus accumbens induced nonsignificant changes in extracellular 5-HT. Cyclothiazide and diazoxide, which attenuate receptor desensitization, greatly enhanced the effect of AMPA on 5-HT in the DRN, but not in the nucleus accumbens.
  6. In conclusion, AMPA/kainate receptors regulate 5-HT in the raphe and in forebrain sites.
  相似文献   

15.
The ventral part of the medial prefrontal cortex (mPFC) plays an important role in mood and cognition. This study examined the effect of the 5-HT in this region by measuring the electrophysiological response of ventral mPFC neurones to electrical stimulation of the dorsal and median raphe nuclei (DRN and MRN), which are the source of the 5-HT input. DRN or MRN stimulation evoked a consistent, short-latency, post-stimulus inhibition in the majority of ventral mPFC neurones tested (DRN: 44/73 neurones; MRN: 24/31 neurones). Some neurones responded to DRN or MRN stimulation with antidromic spikes indicating that they were mPFC-raphe projection neurones. Both DRN- and MRN-evoked inhibitions were attenuated by systemic administration of the 5-HT1A antagonist WAY 100635 (0.1 mg/kg i.v.). DRN-evoked inhibition was also attenuated by iontophoretic application of WAY 100635 and by systemic administration of the 5-HT1A antagonist, NAD-299 (4 mg/kg i.v.) but not the 5-HT2 antagonist ketanserin (4 mg/kg, i.v.). These data suggest that DRN and MRN 5-HT neurones inhibit neurones in the ventral mPFC via activation of 5-HT1A receptors. Some of these mPFC neurones may be part of a 5-HT1A receptor-controlled postsynaptic feedback loop to the DRN and MRN.  相似文献   

16.
It has been reported that the sedative component of pentobarbital is mediated by GABA receptors in an endogenous sleep pathway and the ventrolateral preoptic area (VLPO)-tuberomammillary nucleus (TMN) or VLPO-dorsal raphe nucleus (DRN) neural circuit is important in the sedative response to pentobarbital. Our previous findings indicated that the VLPO-TMN neuronal circuit may play crucial part in the augmentative effect of diltiazem on pentobarbital sleep and the serotonergic system may be involved. This study was designed to investigate the role of DRN and the serotonergic receptors 5-HT1A and 5-HT2A/2C in the augmentative effect of diltiazem on pentobarbital-induced hypnosis in rats. The results showed that diltiazem (5 mg/kg, i.g.) significantly reversed pentobarbital-induced (35 mg/kg, i.p.) reduction of c-Fos expression in 5-HT neurons of DRNV (at − 7.5 mm Bregma), DRND, DRNVL and MRN (at − 8.0 mm Bregma). However it did not influence this reducing effect of pentobarbital on non-5-HT neurons either in DRN or in MRN. Moreover, the effect of diltiazem (1 or 2 mg/kg, i.g.) on pentobarbital-induced (35 mg/kg, i.p.) hypnosis was significantly inhibited by 5-HT1A agonist 8-OH-DPAT (0.5 mg/kg, i.p.) and 5-HT2A/2C agonist DOI (0.5 mg/kg, i.p.), and potentiated by 5-HT1A antagonist p-MPPI (2 mg/kg, i.p.) and 5-HT2A/2C antagonist ritanserin (2 mg/kg, i.p.), respectively. From these results, it should be presumed that the augmentative effect of diltiazem on pentobarbital-induced sleep may be related to 5-HT1A and 5-HT2A/2C receptors, and DRN may be involved. In addition, it also suggested that the DRN may play a multi-modulating role in sleep-wake regulation rather than being recognized simply as arousal nuclei.  相似文献   

17.
In the rat forced swimming test, systemic application of the serotonin 1A (5-HT(1A)) receptor agonist 8-OH-DPAT reduced immobility (ID(50) 0.17-1.37mg/kg, depending on route of application and application schedule). Intracerebroventricular (i.c.v.) or local application into the dorsal raphe nucleus (DRN), a brain area rich in presynaptic 5-HT(1A) receptors, resulted in a parallel shift of the dose-response curve to the left (ID(50) 5.1 and 3.9μg/rat, respectively). Systemic application of the 5-HT(1A) receptor partial agonist ipsapirone resulted in a U-shaped dose-response curve (maximal effect about 30% immobility reduction at 3-10mg/kg). Local application of ipsapirone in the DRN reduced immobility (maximal effect 40% at 60μg/rat). However, 8-OH-DPAT and ipsapirone were still effective after depletion of brain 5-HT by means of 5,7-DHT (150μg, i.c.v.) or pCPA (either 2 x 150mg/kg or 2 x 350mg/kg, i.p.) Additionally, in non-lesioned rats: (1) the putative (postsynaptic) 5-HT(1A) antagonist NAN-190, but not spiperone, haloperidol, prazosin or 1-PP, was able to block the anti-immobility effects of 8-OH-DPAT in a behaviorally specific manner; (2) local application of 8-OH-DPAT and ipsapirone in the lateral septum (a brain area rich in postsynaptic 5-HT(1A) receptors) reduced immobility (8-OH-DPAT: ID(50) 11.4μg/rat; ipsapirone; maximal effect at 30μg/rat 38%); and (3) pretreatment with ipsapirone resulted in an attenuation of the effect of 8-OH-DPAT when both compounds were administered either systemically or in the lateral septum but not when both compounds were microinjected into the DRN. It is hypothesized that the anti-immobility effects of 5-HT(1A) receptor agonists are mediated by pre- and postsynaptic 5-HT(1A) receptors and that they closely reflect the intrinsic activity of these compounds at these receptors.  相似文献   

18.
We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory amino acid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Pre-administration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN.  相似文献   

19.
Postsynaptic 5-hydroxytryptamine(1A) (5-HT(1A)) receptors have been proposed to participate in the control of dorsal raphe 5-HT neurone activity. To further investigate this hypothesis we performed single-unit extracellular recordings in anaesthetized rats. Pertussis toxin (2 microg/4 microl/day; 2 days, 24-72 h before the experiment) was applied close to the dorsal raphe nucleus to uncouple somatodendritic 5-HT(1A) autoreceptors from their effector system. After this treatment the spontaneous firing rate was higher (approximately +60% P<0.005) than in the vehicle-pretreated group. In addition, intravenous administration of 8-hydroxy-2-(di-n-propylamino)tetralin HBr (8-OH-DPAT) inhibited 5 out of 11 cells of the pertussis toxin-pretreated group (ED(50)=1.65+/-0.94 microg/kg), whereas in the vehicle-pretreated group, all tested cells were inhibited (ED(50)=1.87+/-0.39 microg/kg). Local administration of 8-OH-DPAT did not affect cells (n=12) in pertussis toxin-pretreated rats, even at doses much higher than those needed to completely inhibit 5-HT cells in vehicle-pretreated rats (ED(50)=3.34+/-0.62 fmol). These results confirm the involvement of distal postsynaptic 5-HT(1A) receptors in the control of 5-HT neurone activity in the dorsal raphe nucleus. However, this control does not appear to be exerted on all 5-HT neurones, but rather on a subpopulation of them.  相似文献   

20.
Recent studies have used raphe stimulation combined with in vivo measurements of extracellular dopamine to investigate interactions between the 5-hydroxytryptamine (5-HT) and dopamine systems. Here we have tested whether the same approach can be used to investigate interactions between the 5-HT and noradrenaline systems. Electrical stimulation of the dorsal raphe nucleus (DRN) or median raphe nucleus (MRN) was performed in anaesthetised rats implanted with microdialysis probes in the hippocampus and locus coeruleus (LC). DRN stimulation (3, 5 and 10 Hz) evoked a frequency-dependent increase in extracellular noradrenaline in the hippocampus. MRN stimulation had a similar effect. Both DRN and MRN stimulations enhanced extracellular 5-HT levels in the LC and previous studies have demonstrated that extracellular 5-HT also increases in the hippocampus. However, the increase in hippocampal noradrenaline evoked by DRN stimulation was not altered by 5-HT neuronal lesions, which reduced 5-HT metabolite levels by 90%. In conclusion, electrical stimulation of the midbrain raphe increases extracellular noradrenaline in the hippocampus, however, experiments in 5-HT-lesioned animals suggest that this response is not mediated by 5-HT. Although raphe stimulation may be useful to investigate interactions between 5-HT and dopamine, our data indicate that the same approach may not be feasible for 5-HT and noradrenaline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号