首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The vasculoprotective effects of sex hormones, particularly estrogens, have been attributed to their ability to increase the bioavailability of nitric oxide through activation of endothelial nitric oxide synthase (eNOS). To dissect the relative contribution in vivo of eNOS, sex hormones, and their interaction in two complex vascular phenotypes, hypertension and atherosclerosis, we used mice doubly deficient in eNOS and apoE (nnee) or lacking only apoE (NNee). Females and males were gonadectomized at 1 month of age and implanted either with control pellets or pellets releasing 17beta-estradiol (E2). Hormonally intact nnee mice have elevated blood pressure (BP) and increased atherosclerosis compared with NNee mice, but on removal of gonads, BP and atherosclerosis decreased significantly in nnee mice but not in NNee mice. Three months of treatment with exogenous E2 dramatically reduced atherosclerosis and significantly lowered BP in both NNee and nnee mice compared with animals treated with control pellets. Thus exogenous E2 has strong BP-lowering and atheroprotective effects in apoE-deficient mice, but eNOS is not essential for either effect. Endogenous sex hormones, on the other hand, cause significant damage to the vasculature in the absence of eNOS, but these effects are overridden by interactions between eNOS and sex hormones.  相似文献   

2.
Activated T lymphocytes are present in human atherosclerotic lesions and autoantibodies to antigens within lesions have been detected in serum, but the roles of the cellular and humoral immune systems in atherogenesis have not been determined. The effect of total lymphocyte deficiency on atherogenesis was investigated by crossing apo E-deficient mice (which develop atherosclerosis resembling human disease) with mice deficient in RAG2 (which is required for normal B and T lymphocyte development). Mice were placed on a fat- and cholesterol-enriched diet for 12 wk. RAG2-deficient mice had no serum autoantibodies, in contrast to the high titers in RAG2+/- littermates. There were no T lymphocytes and a markedly reduced number of MHC class II-positive macrophages in atherosclerotic lesions of RAG2-deficient mice. Despite these differences, RAG2-deficient mice developed atherosclerosis similar in extent to that in immunocompetent littermates, based on quantification by two independent methods. In conclusion, the absence of autoantibodies and T lymphocytes did not influence the extent of aortic atherosclerotic lesions in apo E-deficient mice.  相似文献   

3.
Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is regarded as a protective factor against atherosclerosis. Therefore, augmentation of eNOS expression or NO production by pharmacological intervention is postulated to inhibit atherosclerosis. We crossed eNOS-overexpressing (eNOS-Tg) mice with atherogenic apoE-deficient (apoE-KO) mice to determine whether eNOS overexpression in the endothelium could inhibit the development of atherosclerosis. After 8 weeks on a high-cholesterol diet, the atherosclerotic lesion areas in the aortic sinus were unexpectedly increased by more than twofold in apoE-KO/eNOS-Tg mice compared with apoE-KO mice. Also, aortic tree lesion areas were approximately 50% larger in apoE-KO/eNOS-Tg mice after 12 weeks on a high-cholesterol diet. Expression of eNOS and NO production in aortas from apoE-KO/eNOS-Tg mice were significantly higher than those in apoE-KO mice. However, eNOS dysfunction, demonstrated by lower NO production relative to eNOS expression and enhanced superoxide production in the endothelium, was observed in apoE-KO/eNOS-Tg mice. Supplementation with tetrahydrobiopterin, an NOS cofactor, reduced the atherosclerotic lesion size in apoE-KO/eNOS-Tg mice to the level comparable to apoE-KO mice, possibly through the improvement of eNOS dysfunction. These data demonstrate that chronic overexpression of eNOS does not inhibit, but accelerates, atherosclerosis under hypercholesterolemia and that eNOS dysfunction appears to play important roles in the progression of atherosclerosis in apoE-KO/eNOS-Tg mice.  相似文献   

4.
Inhibitors of acyl CoA:cholesterol acyltransferase (ACAT) have attracted considerable interest as a potential treatment for atherosclerosis. Currently available inhibitors probably act nonselectively against the two known ACATs. One of these enzymes, ACAT1, is highly expressed in macrophages in atherosclerotic lesions, where it contributes to foam-cell formation. In this study, we examined the effects of selective ACAT1 deficiency in two mouse models of atherosclerosis. In the setting of severe hypercholesterolemia caused by deficiency in apoE or the LDL receptor (LDLR), total ACAT1 deficiency led to marked alterations in cholesterol homeostasis and extensive deposition of unesterified cholesterol in the skin and brain. Bone marrow transplantation experiments demonstrated that ACAT1 deficiency in macrophages was sufficient to cause dermal xanthomas in hyperlipidemic LDLR-deficient mice. ACAT1 deficiency did not prevent the development of atherosclerotic lesions in either apoE-deficient or LDLR-deficient mice, despite causing relatively lower serum cholesterol levels. However, the lesions in ACAT1-deficient mice were atypical in composition, with reduced amounts of neutral lipids and a paucity of macrophages in advanced lesions. Although the latter findings may be associated with increased lesion stability, the marked alterations in cholesterol homeostasis indicate that selectively inhibiting ACAT1 in the setting of severe hyperlipidemia may have detrimental consequences.  相似文献   

5.
We have previously reported that endothelium-dependent relaxation to acetylcholine is impaired in small mesenteric arteries from spontaneously diabetic (db/db) mice. The objective of the present study was to examine the effects of treatment of the db/db and the insulin-resistant ob/ob mice with the PPARgamma agonist 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (COOH). In the db/db model, an 8-week treatment with COOH (30 mg/kg/day) reduced plasma glucose from 48.0 +/- 2.5 (untreated) to 12.6 +/- 1.1 mM. In contrast, plasma glucose was not elevated in untreated ob/ob mice. Relaxation of small mesenteric arteries mediated by acetylcholine was impaired in the untreated db/db diabetic mice (51.7 +/- 7.4% maximal relaxation, n = 6) but not in the ob/ob mice (70.8 +/- 8.6% maximal relaxation, n = 3). This impairment was reversed with COOH treatment (86.9 +/- 0.4% maximal relaxation, n = 5). Malondialdehyde was elevated in plasma from diabetic db/db mice (13.9 +/- 1.1 versus 12.0 +/- 0.7 micromol/ml); however, when normalized to total cholesterol, no significant differences in the ratio of lipid peroxidation in plasma were identified. Western blot analysis and quantitative polymerase chain reaction for eNOS was performed on the isolated mesenteric vessels and revealed no differences in the relative levels of eNOS expression in diabetic and control animals; in addition, treatment with COOH had no significant effect on eNOS levels in either group. In summary, endothelial dysfunction and hyperglycemia were completely normalized in COOH-treated db/db mice. In contrast, nonhyperglycemic ob/ob mice exhibited normal vasodilatory responses to acetylcholine and, consequently, COOH treatment had no effect on endothelial function.  相似文献   

6.
Diabetes in humans accelerates cardiovascular disease caused by atherosclerosis. The relative contributions of hyperglycemia and dyslipidemia to atherosclerosis in patients with diabetes are not clear, largely because there is a lack of suitable animal models. We therefore have developed a transgenic mouse model that closely mimics atherosclerosis in humans with type 1 diabetes by breeding low-density lipoprotein receptor-deficient mice with transgenic mice in which type 1 diabetes can be induced at will. These mice express a viral protein under control of the insulin promoter and, when infected by the virus, develop an autoimmune attack on the insulin-producing beta cells and subsequently develop type 1 diabetes. When these mice are fed a cholesterol-free diet, diabetes, in the absence of associated lipid abnormalities, causes both accelerated lesion initiation and increased arterial macrophage accumulation. When diabetic mice are fed cholesterol-rich diets, on the other hand, they develop severe hypertriglyceridemia and advanced lesions, characterized by extensive intralesional hemorrhage. This progression to advanced lesions is largely dependent on diabetes-induced dyslipidemia, because hyperlipidemic diabetic and nondiabetic mice with similar plasma cholesterol levels show a similar extent of atherosclerosis. Thus, diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions.  相似文献   

7.
Absence of P-selectin delays fatty streak formation in mice.   总被引:20,自引:5,他引:20       下载免费PDF全文
P-selectin is expressed on activated endothelium and platelets where it can bind monocytes, neutrophils, stimulated T cells, and platelets. Because recruitment of these cells is critical for atherosclerotic lesion development, we examined whether P-selectin might play a role in atherosclerosis. We intercrossed P-selectin-deficient mice with mice lacking the low density lipoprotein receptor (LDLR) because these mice readily develop atherosclerotic lesions on diets rich in saturated fat and cholesterol. The atherogenic diet stimulated leukocyte rolling in the mesenteric venules of LDLR-deficient mice, and the increase in adhesiveness of the vessels was P-selectin-dependent. Most likely due to the reduced leukocyte interaction with the vessel wall, P-selectin-deficient mice on diet for 8-20 wk formed significantly smaller fatty streaks in the cusp region of the aortae than did P-selectin-positive mice. This difference was more prominent in males. At 37 wk on diet, the lesions in the LDLR-deficient animals progressed to the fibrous plaque stage and were distributed throughout the entire aorta; their size or distribution was no longer dependent on P-selectin. Our results show that P-selectin-mediated adhesion is an important factor in the development of early atherosclerotic lesions, and that adhesion molecules such as P-selectin are involved in the complex process of atherosclerosis.  相似文献   

8.
Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid that has pleiotropic effects in a variety of cell types including ECs, SMCs, and macrophages, all of which are central to the development of atherosclerosis. It may therefore exert stimulatory and inhibitory effects on atherosclerosis. Here, we investigated the role of the S1P receptor S1PR2 in atherosclerosis by analyzing S1pr2-/- mice with an Apoe-/- background. S1PR2 was expressed in macrophages, ECs, and SMCs in atherosclerotic aortas. In S1pr2-/-Apoe-/- mice fed a high-cholesterol diet for 4 months, the area of the atherosclerotic plaque was markedly decreased, with reduced macrophage density, increased SMC density, increased eNOS phosphorylation, and downregulation of proinflammatory cytokines compared with S1pr2+/+Apoe-/- mice. Bone marrow chimera experiments indicated a major role for macrophage S1PR2 in atherogenesis. S1pr2-/-Apoe-/- macrophages showed diminished Rho/Rho kinase/NF-κB (ROCK/NF-κB) activity. Consequently, they also displayed reduced cytokine expression, reduced oxidized LDL uptake, and stimulated cholesterol efflux associated with decreased scavenger receptor expression and increased cholesterol efflux transporter expression. S1pr2-/-Apoe-/- ECs also showed reduced ROCK and NF-κB activities, with decreased MCP-1 expression and elevated eNOS phosphorylation. Pharmacologic S1PR2 blockade in S1pr2+/+Apoe-/- mice diminished the atherosclerotic plaque area in aortas and modified LDL accumulation in macrophages. We conclude therefore that S1PR2 plays a critical role in atherogenesis and may serve as a novel therapeutic target for atherosclerosis.  相似文献   

9.
The inhibitory effects of estrogen (17beta-estradiol) on atherosclerosis have been well documented in numerous animal models, and epidemiological evidence supports this protective effect in humans. The detailed mechanisms for this protection are not understood, but most are thought to be mediated through estrogen receptors (ERs), of which two are known (ERalpha and ERbeta). To investigate the role of ERalpha in the atheroprotective effect of 17beta-estradiol (E2), we ovariectomized female mice that lack apoE (AAee) or lack both apoE and ERalpha (alphaalphaee), and treated half of them with E2 for three months. E2 treatment of ovariectomized AAee females dramatically reduced the size of the lesions as well as their histological complexity. Plasma cholesterol was significantly reduced in this group, although the observed extent of protection by E2 was greater than could be explained solely by the change in lipid levels. In contrast, E2 treatment of ovariectomized alphaalphaee females caused minimal reduction in lesion size and no reduction in total plasma cholesterol compared with alphaalphaee mice without E2, demonstrating that ERalpha is a major mediator of the atheroprotective effect of E2. Nevertheless, E2 treatment significantly reduced the complexity of plaques in the alphaalphaee females, although not to the same degree as in AAee females, suggesting the existence of ERalpha-independent atheroprotective effects of E2.  相似文献   

10.
The human plasma lipoprotein Lp(a) has gained considerable clinical interest as a genetically determined risk factor for atherosclerotic vascular diseases. Numerous (including prospective) studies have described a correlation between elevated Lp(a) plasma levels and coronary heart disease, stroke and peripheral atherosclerosis. Lp(a) consists of a large LDL-like particle to which the specific glycoprotein apo(a) is covalently linked. The apo(a) gene is located on chromosome 6 and belongs to a gene family including the highly homologous plasminogen. Lp(a) plasma concentrations are controlled to a large extent by the extremely polymorphic apo(a) gene. More than 30 alleles at this locus determine a size polymorphism. The size of the apo(a) isoform is inversely correlated with Lp(a) plasma concentrations, which are non-normally distributed in most populations. To a minor extent, apo(a) gene-independent effects also influence Lp(a) concentrations. These include diet, hormonal status and diseases like renal disease and familial hypercholesterolemia. The standardisation of Lp(a) quantification is still an unresolved problem due to the enormous particle heterogeneity of Lp(a) and homologies of other members of the gene family. Stability problems of Lp(a) as well as statistical pitfalls in studies with small group sizes have created conflicting results. The apo(a)/Lp(a) secretion from hepatocytes is regulated at various levels including postranslationally by apo(a) isoform-dependent prolonged retention in the endoplasmic reticulum. This mechanism can partly explain the inverse correlation between apo(a) size and plasma concentrations. According to numerous investigations, Lp(a) is assembled extracellularly from separately secreted apo(a) and LDL. The sites and mechanisms of Lp(a) removal from plasma are only poorly understood. The human kidney seems to represent a major catabolic organ for Lp(a) uptake. The underlying mechanism is rather unclear; several candidate receptors from the LDL-receptor gene family do not or poorly bind Lp(a) in vitro. Lp(a) plasma levels are elevated over controls in patients with renal diseases like nephrotic syndrome and end-stage renal disease. Following renal transplantation, Lp(a) concentrations decrease to values observed in controls matched for apo(a) type. Controversial data on Lp(a) in diabetes mellitus mainly result from insufficient sample sizes in numerous studies. Large studies and those including apo(a) phenotype analysis have come to the conclusion that Lp(a) levels are not or only moderately elevated in insulin-dependent patients. In non-insulin-dependent diabetics Lp(a) is not elevated. Several rare disorders, such as LCAT and LPL deficiency, as well as liver diseases and abetalipoproteinemia are associated with low plasma levels or lack of Lp(a).  相似文献   

11.
In this mini-review several commonly used animal models of atherosclerosis have been discussed. Among them, emphasis has been made on mice, rabbits, pigs and non-human primates. Although these animal models have played a significant role in our understanding of induction of atherosclerotic lesions, we still lack a reliable animal model for regression of the disease. Researchers have reported several genetically modified and transgenic animal models that replicate human atherosclerosis, however each of current animal models have some limitations. Among these animal models, the apolipoprotein (apo) E-knockout (KO) mice have been used extensively because they develop spontaneous atherosclerosis. Furthermore, atherosclerotic lesions developed in this model depending on experimental design may resemble humans’ stable and unstable atherosclerotic lesions. This mouse model of hypercholesterolemia and atherosclerosis has been also used to investigate the impact of oxidative stress and inflammation on atherogenesis. Low density lipoprotein (LDL)-r-KO mice are a model of human familial hypercholesterolemia. However, unlike apo E-KO mice, the LDL-r-KO mice do not develop spontaneous atherosclerosis. Both apo E-KO and LDL-r-KO mice have been employed to generate other relevant mouse models of cardiovascular disease through breeding strategies. In addition to mice, rabbits have been used extensively particularly to understand the mechanisms of cholesterol-induced atherosclerosis. The present review paper details the characteristics of animal models that are used in atherosclerosis research.  相似文献   

12.
Angiopoietin-like 3(Angptl3)-deficiency results in abnormally low lipid levels in mice. Angptl3-deficient mice showed enhanced very low density lipoprotein(VLDL) clearance compared with wild-type mice. Recombinant human ANGPTL3 protein inhibited lipoprotein lipase(LPL) activity in vitro, suggesting that Angptl3 affects VLDL triglyceride clearance by interfering with LPL activity. Liver X receptor(LXR) ligands and LXR-retinoid X receptor complex increased the promoter activity of Angptl3 gene. LXR ligand treatment did not increased plasma triglyceride levels in Angptl3-deficient mice at all, suggesting that hypertriglyceridemia associated with LXR ligand treatment is due to overproduction of Angptl3. Angptl3-deficiency decreases both plasma lipid levels and aorta atherogenic lesions in apoE-deficient mice, suggesting that repression of ANGPTL3 could decrease plasma lipid levels and could be protective against atherosclerosis.  相似文献   

13.
OBJECTIVES: To produce a monoclonal antibody (MAb) against electronegative LDL (LDL-) for detecting this modified lipoprotein in blood plasma and tissues. DESIGN AND METHODS: LDL- was isolated from human blood plasma and used as an antigen for immunization of Balb/c mice. Lymphocytes of immunized mice were fused with myeloma cells (SP2/0) to obtain the hybridomas. LDL- was detected in blood plasma and atherosclerotic lesions of humans and rabbits by MAb-based ELISA and immunohistochemistry, respectively. RESULTS: LDL- concentrations were higher (P < 0.05) in the blood plasma of hypercholesterolemic subjects (HC, 248 +/- 77 mg/dL of total cholesterol) than in normolipidemic subjects (NL, 173 +/- 82 mg/dL of total cholesterol) and rabbits (HC, 250 +/- 15 mg/dL of cholesterol versus NL, 81 +/- 12 mg/dL of cholesterol). Moreover, LDL- was detected in the atherosclerotic lesions of humans and rabbits. CONCLUSION: These MAb-based immunoassays are adequate to detect LDL- in biological samples and represent an important tool for investigating the role of LDL- in atherosclerosis.  相似文献   

14.
15.
Atherosclerosis is an inflammatory disease that is associated with monocyte recruitment and subsequent differentiation into lipid-laden macrophages at sites of arterial lesions, leading to the development of atherosclerotic plaques. PLC is a key member of signaling pathways initiated by G protein-coupled ligands in macrophages. However, the role of this enzyme in the regulation of macrophage function is not known. Here, we studied macrophages from mice lacking PLC beta2, PLC beta3, or both PLC isoforms and found that PLC beta3 is the major functional PLC beta isoform in murine macrophages. Although PLC beta3 deficiency did not affect macrophage migration, adhesion, or phagocytosis, it resulted in macrophage hypersensitivity to multiple inducers of apoptosis. PLC beta3 appeared to regulate this sensitivity via PKC-dependent upregulation of Bcl-XL. The significance of PLC beta signaling in vivo was examined using the apoE-deficient mouse model of atherosclerosis. Mice lacking both PLC beta3 and apoE exhibited fewer total macrophages and increased macrophage apoptosis in atherosclerotic lesions, as well as reduced atherosclerotic lesion size when compared with mice lacking only apoE. These results demonstrate what we believe to be a novel role for PLC activity in promoting macrophage survival in atherosclerotic plaques and identify PLC beta3 as a potential target for treatment of atherosclerosis.  相似文献   

16.
17.
Atherosclerosis is an inflammatory-fibrotic response to accumulation of cholesterol in the artery wall. In hypercholesterolemia, low density lipoproteins (LDL) accumulate and are oxidized to proinflammatory compounds in the arterial intima, leading to activation of endothelial cells, macrophages, and T lymphocytes. We have studied immune cell activation and the autoimmune response to oxidized LDL in atherosclerotic apo E-knockout mice. Autoantibodies to oxidized LDL exhibited subclass specificities indicative of T cell help, and the increase in antibody titers in peripheral blood was associated with increased numbers of cytokine-expressing T cells in the spleen. In addition to T cell-dependent antibodies, IgM antibodies to oxidized LDL were also increased in apo E-knockout mice. This suggests that both T cell-dependent and T cell-independent epitopes may be present on oxidized LDL. In moderate hypercholesterolemia, IgG antibodies were largely of the IgG2a isotype, suggesting that T cell help was provided by proinflammatory T helper (Th) 1 cells, which are prominent components of atherosclerotic lesions. In severe hypercholesterolemia induced by cholesterol feeding of apo E-knockout mice, a switch to Th2-dependent help was evident. It was associated with a loss of IFN-gamma-producing Th1 cells in the spleen, whereas IL-4-producing Th2 cells were more resistant to hypercholesterolemia. IFN-gamma but not IL-4 mRNA was detected in atherosclerotic lesions of moderately hypercholesterolemic apo E-knockout mice, but IL-4 mRNA appeared in the lesions when mice were made severely hypercholesterolemic by cholesterol feeding. These data show that IFN-gamma-producing Th1 cells infiltrate atherosclerotic lesions and provide T cell help for autoimmune responses to oxidized LDL in apo E-knockout mice. However, severe hypercholesterolemia is associated with a switch from Th1 to Th2, which results not only in the formation of IgG1 autoantibodies to oxidized LDL, but also in the appearance of Th2-type cytokines in the atherosclerotic lesions. Since the two subsets of T cells counteract each other, this switch may have important consequences for the inflammatory/immune process in atherosclerosis.  相似文献   

18.
The expression of leukocyte and endothelial cell adhesion molecules (CAMs) is essential for the emigration of leukocytes during an inflammatory response. The importance of the inflammatory response in the development of atherosclerosis is indicated by the increased expression of adhesion molecules, proinflammatory cytokines, and growth factors in lesions and lesion-prone areas and by protection in mice deficient in various aspects of the inflammatory response. We have quantitated the effect of deficiency for intercellular adhesion molecule (ICAM)-1, P-selectin, or E-selectin on atherosclerotic lesion formation at 20 wk of age in apolipoprotein (apo) E(-/-) (deficient) mice fed a normal chow diet. All mice were apo E(-/-) and CAM(+/+) or CAM(-/-) littermates, and no differences were found in body weight or cholesterol levels among the various genotypes during the study. ICAM-1(-/-) mice had significantly less lesion area than their ICAM-1(+/+) littermates: 4.08 +/- 0.70 mm(2) for -/- males vs. 5.87 +/- 0.66 mm(2) for +/+ males, and 3.95 +/- 0. 65 mm(2) for -/- females vs. 5.59 +/- 1.131 mm(2) for +/+ females, combined P < 0.0001. An even greater reduction in lesion area was observed in P-selectin(-/-) mice: 3.06 +/- 1.04 mm(2) for -/- males vs. 5.09 +/- 1.22 mm(2) for +/+ males, and 2.85 +/- 1.26 mm(2) for -/- females compared with 5.60 +/- 1.19 mm(2) for +/+ females, combined P < 0.001. The reduction in lesion area for the E-selectin null mice, although less than that seen for ICAM-1 or P-selectin, was still significant (4.54 +/- 2.14 mm(2) for -/- males vs. 5.92 +/- 0.63 mm(2) for +/+ males, and 4.38 +/- 0.85 mm(2) for -/- females compared with 5.94 +/- 1.44 mm(2) for +/+ females, combined P < 0.01). These results, coupled with the closely controlled genetics of this study, indicate that reductions in the expression of P-selectin, ICAM-1, or E-selectin provide direct protection from atherosclerotic lesion formation in this model.  相似文献   

19.
Epidemiological investigations have linked Chlamydia pneumoniae infection to atherosclerosis. It is not clear, however, whether C. pneumoniae infection plays a causal role in the development of atherosclerosis. Mice with low-density lipoprotein receptor deficiency were induced to develop atherosclerotic lesions in aorta with a cholesterol-enriched diet that increased serum cholesterol by two- to threefold. Using this mouse model, we found that the chlamydial infection alone with either the C. pneumoniae AR39 or the C. trachomatis MoPn strain failed to induce any significant atherosclerotic lesions in aorta over a period of nine months. However, in the presence of a high-cholesterol diet, infection with the C. pneumoniae AR39 strain significantly exacerbated the hypercholesterolemia-induced atherosclerosis, demonstrating that a hypercholesterolemic condition is required for the C. pneumoniae to aggravate the development of atherosclerosis. Although both AR39 and MoPn antigens were detected in aorta of mice infected with the corresponding strains, only mice infected with the C. pneumoniae strain AR39 displayed enhanced atherosclerotic lesions, suggesting that the C. pneumoniae species may possess a unique atherogenic property. This study may provide a model for further understanding the mechanisms of C. pneumoniae atherogenesis and evaluating chlamydial intervention strategies for preventing the advancement of atherosclerotic lesions enhanced by C. pneumoniae infection.  相似文献   

20.
Numerous animal studies have consistently shown that early life exposure to LP (low-protein) diet programmes risk factors for CVD (cardiovascular disease) such as dyslipidaemia, high BP (blood pressure) and cardiac dysfunction in the offspring. However, studies on the effect of maternal under-nutrition on offspring development of atherosclerosis are scarce. Applying our LP model to the ApoE(-/-) atherosclerosis-prone mouse model, we investigated the development of atherosclerotic lesions in the aortic root of 6-month-old offspring. In addition, markers of plaque progression including SMA (smooth muscle actin) and Mac3 (macrophage marker 3) were studied. Pregnant dams were fed on a control (20% protein) or on an isocaloric LP diet (8% protein) throughout pregnancy and lactation. After weaning, male offspring were maintained on 20% normal laboratory chow. At 6 months of age, LP offspring showed a significantly greater plaque area (P<0.05) with increased cholesterol clefts and significantly higher indices of DNA damage compared with controls (P<0.05). The expression of HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-CoA reductase) (P<0.05) and LDL (low-density lipoprotein) receptor in the liver of LP offspring were increased. Furthermore, LP offspring had higher LDL-cholesterol levels (P<0.05) and a trend towards elevated insulin. There were no differences in other lipid measurements and fasting glucose between groups. These observations suggest that early exposure to an LP diet accelerates the development and increases the progression of atherosclerotic lesions in young adult offspring. Future studies are needed to elucidate the specific mechanisms linking in utero exposure to a diet low in protein to the development of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号