首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic properties of the Na–Ca exchanger (guinea pig NCX1) expressed in Xenopus oocytes were investigated by patch clamp techniques and photolytic Ca2+ concentration jumps. Current measured in oocyte membranes expressing NCX1 is almost indistinguishable from current measured in patches derived from cardiac myocytes. In the Ca–Ca exchange mode, a transient inward current is observed, whereas in the Na–Ca exchange mode, current either rises to a plateau, or at higher Ca2+ concentration jumps, an initial transient is followed by a plateau. No comparable current was observed in membrane patches not expressing NCX1, indicating that photolytic Ca2+ concentrations jumps activate Na–Ca exchange current. Electrical currents generated by NCX1 expressed in Xenopus oocytes are about four times larger than those obtained from cardiac myocyte membranes enabling current recording with smaller concentration jumps and/or higher time resolution. The apparent affinity for Ca2+ of nonstationary exchange currents (0.1 mM) is much lower than that of stationary currents (6 μM). Measurement of the Ca2+ dependence of the rising phase provides direct evidence that the association rate constant for Ca2+ is about 5 × 108 M−1 s−1 and voltage independent. In both transport modes, the transient current decays with a voltage independent but Ca2+-dependent rate constant, which is about 9,000 s−1 at saturating Ca2+ concentrations. The voltage independence of this relaxation is maintained for Ca2+ concentrations far below saturation. In the Ca–Ca exchange mode, the amount of charge translocated after a concentration jump is independent of the magnitude of the jump but voltage dependent, increasing at negative voltages. The slope of the charge–voltage relation is independent of the Ca2+ concentration. Major conclusions are: (1) Photolytic Ca2+ concentration jumps generate current related to NCX1. (2) The dissociation constant for Ca2+ at the cytoplasmic transport binding site is about 0.1 mM. (3) The association rate constant of Ca2+ at the cytoplasmic transport sites is high (5 × 10−8 M−1s−1) and voltage independent. (4) The minimal five-state model (voltage independent binding reactions, one voltage independent conformational transition and one very fast voltage dependent conformational transition) used before to describe Ca2+ translocation at saturating Ca2+ concentrations is valid for Ca2+ concentrations far below saturation.  相似文献   

2.
The effect of the total fraction of human defensins (HNP-1, HNP-2, and HNP-3) on the cytoplasmic Ca2+ content ([Ca2+]i) in the platelets of healthy donors was studied. At concentrations of 0.1–40 μg/ml and an incubation time of 10 min defensins have no effect on [Ca2+]i in platelets labeled with Fura-2AM. However, at higher concentrations (100 μg/ml) they increased platelet [Ca2+]i. In addition, defensins (40 μg/ml) inhibited the Ca2+ increase in platelets induced by thrombin, adenosine diphosphate, and the lipopolysaccharide ofS. typhimurium endotoxin. The most pronounced inhibitory effect was observed in a suspension of thrombin-stimulated platelets. It is shown that the effect of human defensins on the functional activity of platelets is due to the alterations in the intracellular Ca2+. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 118, N o 12, pp. 600–603, December, 1994  相似文献   

3.
Mitochondrial Ca2+ plays important roles in the regulation of energy metabolism and cellular Ca2+ homeostasis. In this study, we characterized mitochondrial Ca2+ accumulation in Syrian hamster hearts with hereditary cardiomyopathy (strain BIO 14.6). Exposure of isolated mitochondria from 70 nM to 30 μM Ca2+ ([Ca2+]o) caused a concentration-dependent increase in intramitochondrial Ca2+ concentrations ([Ca2+]m). The [Ca2+]m was significantly lower in cardiomyopathic (CMP) hamsters than in healthy hamsters when [Ca2+]o was higher than 1 μM and a decrease of about 52% was detected at [Ca2+]o of 30 μM (916 ± 67 nM vs 1,932 ± 132 nM in control). A possible mechanism responsible for the decreased mitochondrial Ca2+ uptake in CMP hamsters is the depolarization of mitochondrial membrane potential (Δψ m). Using a tetraphenylphosphonium (TPP+) electrode, the measured Δψ m in failing heart mitochondria was −136 ± 1.5 mV compared with −159 ± 1.3 mV in controls. Analyses of mitochondrial respiratory chain demonstrated a significant impairment of complex I and complex IV activities in failing heart mitochondria. In summary, a less negative Δψ m resulting from defects in the respiratory chain may lead to attenuated mitochondrial Ca2+ accumulation, which in turn may contribute to the depressed energy production and myocardial contractility in this model of heart failure. In addition to other known impairments of ion transport in sarcoplasmic reticulum and plasma membrane, results from this paper on mitochondrial dysfunctions expand our understanding of the molecular mechanisms leading to heart failure.  相似文献   

4.
K+ channels play critical roles in the proliferation and activation of lymphocytes. Mouse B cells express large-conductance background K+ channel (LKbg) in addition to the voltage-gated K+ channel (Kv) and Ca2+-activated K+ channel current (IKCa1). Mibefradil, a blocker of T-type Ca2+ channels, has been reported to affect the proliferation of immune cells. In this study, we investigated the effects of mibefradil on the membrane potential and ion channels in murine B cell lines, WEHI-231 and Bal-17. In the whole-cell patch clamp experiments, mibefradil blocked Kv and LKbg current with half inhibitory concentration (IC50), 1.9 and 2.3 μM, respectively. Interestingly, IKCa1 current was increased by mibefradil. In the inside-out patch clamp study with cloned murine IKCa1 (mIKCa1) in HEK-293, mibefradil increased both Ca2+ sensitivity and maximum activity of mIKCa1. At high concentrations (>10 μM), mibefradil inhibited mIKCa1 in a voltage-dependent manner. Application of anti-IgM antibody to stimulate B cell receptors (BCR-ligation) induced transient hyperpolarization of Bal-17 and WEHI-231 cells, which became persistent with 1 μM mibefradil. The hyperpolarizing response was abolished by charybdotoxin, a selective blocker for SK4/IKCa1. In summary, our study firstly reports the ion channel-activating effects of mibefradil. The selective potent activation of IKCa1 suggests that mibefradil-derived drugs might be useful in the control of cell responses related with IKCa1. HY Yoo, H Zheng, and JH Nam contributed equally to this study.  相似文献   

5.
Simultaneous whole-cell patch-clamp and fura-2 fluorescence [Ca2+]i measurements were used to characterize Ca2+-activated K+ currents in cultured bovine chromaffin cells. Extracellular application of histamine (10 M) induced a rise of [Ca2+]i concomitantly with an outward current at holding potentials positive to –80 mV. The activation of the current reflected an increase in conductance, which did not depend on membrane potential in the range –80 mV to –40 mV. Increasing the extracellular K+ concentration to 20 mM at the holding potential of –78 mV was associated with inwardly directed currents during the [Ca2+]i elevations induced either by histamine (10 M) or short voltage-clamp depolarizations. The current reversal potential was close to the K+ equilibrium potential, being a function of external K+ concentration. Current fluctuation analysis suggested a unit conductance of 3–5 pS for the channel that underlies this K+ current. The current could be blocked by apamin (1 M). Whole-cell current-clamp recordings snowed that histamine (10 M) application caused a transient hyperpolarization, which evolved in parallel with the [Ca2+]i changes. It is proposed that a small-conductance Ca2+-activated K+ channel is present in the membrane of bovine chromaffin cells and may be involved in regulating catecholamine secretion by the adrenal glands of various species.  相似文献   

6.
Action potentials were triggered in the motor nerve by a suction electrode and calcium currents (iCa) in the nerve terminals were measured by means of a perfused macro-patch-clamp electrode on the distal portion of the end-plates. Postsynaptic currents were blocked by adding d-tubocurarine, whereas presynaptic Na+ (iNa) and K+ (iK) currents were blocked by adding tetrodotoxin (TTX), tetraethylammonium and 3,4-diaminopyridine, respectively, to the perfusate of the electrode. The current components which could be suppressed by addition of Cd2+ to the perfusate were taken as presynaptic iCa. The observed effects on the presynaptic current components were very similar to those reported previously. If the electrode was perfused with Ringer's solution containing the blockers for iNa and iK, the same, obviously complete block of iCa was obtained by 50 and 100μM Cd2+, an average of 96% block by 20μM Cd2+ and 50% block by about 5μM Cd2+. Using the same type of electrode and similar locations on motor nerve terminals, postsynaptic quantal currents and twin-pulse facilitation (Fd) were elicited by variable-duration (0.5–3 ms) depolarizing pulses. When the electrode was perfused with Ringer's solution containing TTX, 20μM Cd2+ added to the perfusate reduced the rate of phasic release of quanta insignificantly for short depolarizing pulses and by a factor of about 10 for longer pulses. Fd was blocked almost completely. Addition of 50μM Cd2+ to the perfusate had a greater depressive effect on release after short depolarizing pulses and reduced release after longer pulses by a factor of about 100. The double-logarithmic slope of the dependence of the rate of release on pulse duration was reduced from values of about 8 in the controls to about 4 in 50μM Cd2+. Fd was completely blocked. The effects of Cd2+ on release and Fd were reversible. If the Ca2+ in the perfusate of the electrode was lowered, the block by Cd2+ became more effective. Comparison of the effects of Cd2+ on presynaptic iCa and on release and facilitation shows that there is considerable phasic release at Cd2+ concentrations which block iCa, while facilitation is reduced approximately in proportion to the extent of block of iCa. The latter observation is in line with the “residual Ca2+” concept of facilitation. Phasic release in spite of block of iCa by Cd2+ is assumed to be mediated by the non-Ca, depolarization controlled activator in concert with a considerable maintained Ca2+ concentration in the terminal.  相似文献   

7.
Depolarizing 1-s pulses to 0 mV from a holding potential of −70 mV, induced whole-cell currents through Ca2+ channels (I Ca) in patch-clamped cat adrenal medulla chromaffin cells. The dihydropyridine (DHP) furnidipine (3 μM) reduced the peak current by 47% and the late current by 80%. ω-Conotoxin GVIA (CgTx, 1 μM) reduced the peak I Ca by 42% and the late I Ca by 55%. Pulses (10 s duration) with 70 mM K+/2.5 mM Ca2+ solution (70 K+/2.5 Ca2+), applied to single fura-2-loaded cat chromaffin cells increased the cytosolic Ca2+ concentration ([Ca2+]i from 0.1 to 2.21 μM; this increase was reduced by 43.7% by furnidipine and by 42.5% by CgTx. In the perfused cat adrenal gland, secretion evoked by 10-s pulses of 70 K+/2.5 Ca2+ was reduced by 25% by CgTx and by 96% by furnidipine. Similar results were obtained when secretion from superfused isolated cat adrenal chromaffin cells was studied and when using a tenfold lower [Ca2+]o. The results are compatible with the existence of DHP-sensitive (L-type) as well as CgTx-sensitive (N-type) voltage-dependent Ca2+ channels in cat chromaffin cells. It seems, howevever, that though extracellular Ca2+ entry through both channel types leads to similar increments of averaged [Ca2+]i, the control of catecholamine release is dominated only by Ca2+ entering through L-type Ca2+ channels. This supports the idea of a preferential segregation of L-type Ca2+ channels to localized “hot spots” in the plasmalemma of chromaffin cells where exocytosis occurs.  相似文献   

8.
Ca2+ release from the sarcoplasmic reticulum (SR) of mammalian cardiac myocytes occuring either due to activation by a depolarization or the resulting transmembrane Ca2+ current (I Ca), or spontaneously due to Ca2+ overload has been shown to cause inward current(s) at negative membrane potentials. In this study, the effects of different intracellular Ca2+ chelating compounds on I Ca-evoked or spontaneous Ca2+-release-dependent inward currents were examined in dialysed atrial myocytes from hearts of adult guinea-pigs by means of whole-cell voltage-clamp. As compared to dialysis with solutions containing only a low concentration of a high affinity ethylene glycol-bis(-aminoethylether) N,N,N,N-tetraacetic acid (EGTA) like chelator (50–200 M), inward membrane currents (at –50 mV) due to evoked Ca2+ release, spontaneous Ca2+ release or Ca2+ overload following long-lasting depolarizations to very positive membrane potentials are prolonged if the dialysing fluid contains a high concentration of a low affinity Ca2+ chelating compound such as citrate or free adenosine 5-triphosphate (ATP). Without such a non-saturable Ca2+ chelator in the dialysing fluid, Ca2+-release-dependent inward currents are often oscillatory and show an irregular amplitude. With a low affinity chelator in a non-saturable concentration, discrete inward currents with constant properties can be recorded. We conclude that the variability in Ca2+-release-dependent inward current seen in single cells arises from spatial inhomogeneities of intracellular Ca2+ concentration ([Ca2+]i) due to localized saturation of endogenous and exogenous high affinity Ca2+ buffers (e.g. [2]). This can be avoided experimentally by addition of a non-saturable buffer to the intracellular solution. This condition might be useful, if properties of Ca2+ release from the SR and/ or the resulting membrane current, like for example arrhythmogenic transient inward current, are to be investigated on the single cell level.  相似文献   

9.
 The techniques of small vessel isometric myography and patch clamp were used to investigate the action of neomycin on K+-induced isometric force and voltage-gated Ca2+ channel currents in rat arterial smooth muscle. Neomycin and the dihydropyridine (DHP) Ca2+ channel antagonist (–)202–791 concentration-dependently and reversibly inhibited 40 mM K+-induced isometric force in rings of rat mesenteric and basilar arteries (IC50 values of 70 μM and 1.2 nM, respectively, n = 10 and 4). Elevation of [Ca2+]o by a factor of 2 significantly reduced the IC50 values for inhibition of K+-induced force for both neomycin and (–)202–791 (192 μM and 3.7 nM, respectively, n = 6 and 4), but did not affect the Hill coefficient of the concentration/effect relationships. In patch-clamp experiments using freshly isolated basilar arterial myocytes, the voltage-gated inward current carried by Ba2+ was reversibly and concentration-dependently inhibited by neomycin (IC50 32 μM, n = 3). The concentration/effect curve for inhibition of the inward Ba2+ current by neomycin was significantly shifted to the right when [Ba2+]o was raised from 1.8 mM to 10 mM (IC50 144 μM, n = 8). Our findings suggest that neomycin relaxes high-K+-induced force in rat isolated mesenteric and basilar arteries largely by inhibition of voltage-dependent and DHP-sensitive Ca2+ channels. Received: 1 August 1996 / Received after revision and accepted: 11 September 1996  相似文献   

10.
Single-channel properties of Ca2+-activated K+ channels have been investigated in excised membrane patches of N1E-115 mouse neuroblastoma cells under asymmetric K+ concentrations at 0 mV. The SK channels are blocked by 3 nM external apamin, are unaffected by 20 mM external tetraethylammonium (TEA) and have a single-channel conductance of 5.4 pS. The half-maximum open probability and opening frequency of SK channels are observed at 1 M internal Ca2+. Concentration/effect curves of these parameters are very steep with exponential slope factors between 7 and 13. Opentime distributions demonstrate the existence of at least two open states. The mean short open time increases with [Ca2+]i, whereas the mean long open time is independent of [Ca2+]i. At low [Ca2+]i the short-lived open state predominates. At saturating [Ca2+]i the number of longlived openings is more enhanced than the number of short-lived openings and both open states occur equally frequently. The opening frequency as well as the open times of SK channels are independent of the membrane potential in the range of –16 to +40 mV. The results indicate that activation of K+ current through SK channels is mainly determined by the Ca2+-dependent single-channel opening frequency. BK channels in N1E-115 cells are insensitive to 100 nM external apamin, are sensitive to external TEA in the millimolar range and have a single-channel conductance of 98 pS. Half-maximum open probability and opening frequency of the BK channel are observed at 7.5–21 M internal Ca2+. The slope factors of concentration/effect curves range between 1.7 and 2.9. As the BK channel open time is markedly enhanced at raised [Ca2+]i, the Ca2+ dependence of the current through BK channels is determined by the single-channel opening frequency as well as the open time. SK as well as BK channels appear to be clustered and interact in a negative cooperative manner in multiple channel patches. The differences in Ca2+ dependence suggest that BK channels are activated by a local high [Ca2+]i associated with Ca2+ influx, whereas SK channels may be activated by Ca2+ released from internal stores as well.  相似文献   

11.
Ca2+-activated maxi K+ channels were studied in inside-out patches from smooth muscle cells isolated from either porcine coronary arteries or guinea-pig urinary bladder. As described by Groschner et al. (Pflügers Arch 417:517, 1990), channel activity (NP o) was stimulated by 3 M [Ca2+]c (1 mM Ca-EGTA adjusted to a calculated pCa of 5.5) and was suppressed by the addition of 1 mM Na2ATP. The following results suggest that suppression of NP o by Na2ATP is due to Ca2+ chelation and hence reduction of [Ca2+]c and reduced Ca2+ activation of the channel. The effect was absent when Mg ATP was used instead of Na2ATP. The effect was diminished by increasing the [EGTA] from 1 to 10 mM. The effect was absent when [Ca2+]c was buffered with 10 mM HDTA (apparent pK Ca 5.58) instead of EGTA (pK Ca 6.8). A Ca2+-sensitive electrode system indicated that 1 mM Na2ATP reduced [Ca2+]c in 1 mM Ca-EGTA from 3 M to 1.4 M. Na2ATP, Na2GTP, Li4AMP-PNP and NaADP reduced measured [Ca2+]c in parallel with their suppression of NP o. After the Na2ATP-induced reduction of [Ca2+]c was re-adjusted by adding either CaCl2 or MgCl2, the effect of Na2ATP on NP o disappeared. In vivo, intracellular [Mg2+] exceeds free [ATP4–], hence ATP modulation of maxi K+ channels due to Ca2+ chelation is without biological relevance.  相似文献   

12.
Cutaneous pectoris muscles of frogs were isolated, mounted in a chamber and superfused with Ringer's solution. With a macro-patch-clamp electrode [5] placed on a section of a motor nerve terminal, quantal synaptic currents were elicited by depolarizing pulses and recorded. The electorde tip and the section of the terminal recorded from were perfused rapidly by Ringer's solution alone or containing 20–500 M Cd2+ to block Ca2+ inflow. Separate superfusion of the muscle and the rest of the terminal with normal or elevated Ca2+ Ringer's solution provided a sufficiently high resting Ca2+ concentration in the terminal even when Ca2+ inflow was blocked by Cd2+. The depolarization level of maximal Ca2+ inflow into the terminal was found by measuring maximal test pulse facilitation, F c [6]. In control solution as well as in the case of Cd2+ block, the rate of phasic release after depolarizing pulses rose further when depolarization was increased past the level of F c, and reached a saturation level which was maintained at estimated depolarizations up to +200 mV. Block of Ca2+ inflow by Cd2+ decreased release substantially, but did not suppress it. The depression of release was greater in the range of large Ca2+ inflow (around F c) than for very large depolarizations. The time course of phasic release was unaltered by blockage of Ca2+inflow. It is concluded that Ca2+ inflow contributes to the promotion of evoked release only in the depolarization range in which Ca2+ inward current is large. When Ca2+ concentration in the terminal is sufficiently high, release can be evoked by depolarization in the absence of Ca2+ inflow, the voltage-dependent release factor, S, compensating to a great extent for the lack of Ca2+ inflow.  相似文献   

13.
 Possible mechanisms for run-down in the Ca2+ channel, such as proteolysis or dephosphorylation of the channel, were examined in guinea-pig ventricular myocytes. The Ca2+ channel current, recorded in inside-out patches using a pipette solution containing 50 mM Ba2+ and 3 μM Bay K 8644, ran down with a mean survival time of 2.35 min. The survival time was not significantly affected by adenosine triphosphate (ATP) (3 mM), 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) (2 mM), isoprenaline (l–5 μM), phosphate (l20 mM) and leupeptin (l0 μM). Stimulation of guanosine triphosphate (GTP)-binding proteins was also ineffective. The catalytic subunit of adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent protein kinase (PKA, 0.5–2 μM) slightly and transiently increased channel activity, but had minimal effects on the channel when applied after complete run-down. On the other hand, cytoplasm from the heart, skeletal muscle, brain and liver, but not kidney, induced channel activity. There was a positive correlation between NP o (the product of the number of channels N and the open probability P o) value before run-down and that after the application of cytoplasm, suggesting that the activity of once-active channels was restored ba the exogenous cytoplasm. The potency of cytoplasm in tissues in inducing channel activity was not related to PKA activity nor to the number of dihydropyridine binding sites. These results suggest that the run-down of the cardiac Ca2+ channel is not mediated by dephosphorylation or proteolysis of the channel, but involves other factor(s), possibly interaction of the channel protein with a cytoplasmic regulatory protein. Received: 7 June 1996 / Received after revision: 5 November 1996 / Accepted: 15 November 1996  相似文献   

14.
The influence of internal Ca2+ ions has been investigated during intracellular perfusion of isolated neurones from pedal ganglia of Helix pomatia in which serotonin (5-HT) induces a cyclic-adenosine-monophosphate-(cAMP)-dependent enhancement of high-threshold Ca2+ current (I Ca). Internal free Ca2+ ([Ca2+]i) was varied between 0.01 and 10 M by addition of Ca2+-EGTA [ethylenebis(oxonitrilo)tetraacetate] buffer. Elevation of [Ca2+]i depressed the 5-HT effect. The dose/ effect curve for the Ca2+ blockade had a biphasic character and could be described by the sum of two Langmuir's isotherms for tetramolecular binding with dissociation constants K d1=0.063 M and K d2=1 M. Addition of calmodulin (CM) antagonists (50 M trifluoperazine or 50 M chlorpromazine), phosphodiesterase (PDE) antagonists [100 M isobutylmethylxanthine (IBMX) or 5 mM theophylline] and protein phosphatase antagonists [2 M okadaic acid (OA)] in the perfusion solution caused anticalcium action and modified the Ca2+ binding isotherm. Using the effect of OA and IBMX, two components of the total Ca2+ inhibition were separated and evaluated. In the presence of one of these blockers tetramolecular curves with K d1=0.04 M and K d2=0.69 M were obtained describing the activation of the retained unblocked enzyme — PDE or calcineurin (CN) correspondingly. The sum of these isotherms gave a biphasic curve similar to that in control. Leupeptin (100 M), a blocker of Ca2+-dependent proteases did not influence the amplitude of 5-HT effect, indicating that channel proteolysis is not involved in the depression. Our findings show that the molecular mechanism of Ca2+-induced suppression of the cAMP-dependent upregulation of Ca2+ channels is due to involvement of two Ca2+-CM-dependent enzymes: PDE reducing the cAMP level, and CN causing channel dephosphorylation. No other processes are involved in the investigated phenomenon at a Ca2+ concentration of less than or equal to 10 M.  相似文献   

15.
The dynamics of the Ca-response of cardiomyocytes is studied and the efficiency of befol, verapamil, and amiodarone is compared using various experimental models of stimulation of [Ca2+]i. Befol (1–5 μM) is shown to inhibit the caffeine-and strophanthin G-induced rise of [Ca2+]i. Unlike verapamil and amiodarone, befol exhibits no Ca-blocking activity in modeled K-depolarization. It is concluded that the cardiotropic effect of befol is mediated through its primary action on Na+/Ca2+ exchange in cardiomyocytes, while the cardioplegic effect of verapamil and amiodarone is due to their ability to block the slow Ca2+ inward current. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 121, N o 3, pp. 288–291, March, 1996  相似文献   

16.
 This study was undertaken to reassess the set of voltage-dependent Ca2+ channel subtypes expressed by bovine adrenal chromaffin cells maintained in primary cultures. Previous views on the pharmacology of such channels had to be revised in the light of the novel data which arose from the use in this study of low and high micromolar concentrations of ω-agatoxin IVA, and low (2 mM) and high (10 mM) concentrations of the charge carrier Ba2+. Whole-cell Ba2+ currents (IBa) through Ca2+ channels were elicited in voltage-clamped chromaffin cells, with a holding potential of –80 mV and depolarising pulses to 0 mV. Mean peak I Ba was 425 pA in 2 mM Ba2+ (59 cells) and 787 pA in 10 mM Ba2+ (42 cells). In 2 mM Ba2+, ω-conotoxin MVIIC (3 μM) inhibited I Ba by 79%; in 10 mM Ba2+, the blockade developed much more slowly and reached only 44%. A low concentration of ω-agatoxin IVA (20 nM) inhibited I Ba by 9%; 2 μM inhibited I Ba by 60%. This blockade was similar in low and high Ba2+ concentrations. After giving furnidipine (3 μM) and ω-conotoxin GVIA (1 μM), 2 μM ω-agatoxin IVA inhibited the remaining current (about 40–45%); this blockade was independent of the Ba2+ concentration. The current could be fully blocked by the cocktail furnidipine/ω-conotoxin GVIA/high ω-agatoxin IVA, both in low and high Ba2+ concentrations. The large Q-type channel component of I Ba is blocked by micromolar concentrations of ω-agatoxin IVA and ω-conotoxin MVIIC. While solutions with a high Ba2+ concentration strongly delayed the development of blockade by ω-conotoxin MVIIC, the blockade by high concentrations of ω-agatoxin IVA was equally effective in solutions with a low or a high Ba2+ concentration. Hence, the use of appropriate Ba2+ and toxin concentrations in this study reveals that P-type Ca2+ channels are poorly expressed in bovine chromaffin cells; in contrast, a robust component of the current depends on Q-type Ca2+ channels. An R-type residual current is not present in these cells. Received: 22 April 1996 / Received after revision: 11 June 1990 / Accepted: 11 June 1996  相似文献   

17.
The whole-cell tight seal recording technique was used to investigate the effects of niguldipine, a novel dihydropyridine, on Ca2+ currents in guinea pig atrial cells. Ca2+ currents were separated into T-type and L-type components by an appropriate voltage protocol. Extracellular application of 1 M (±)-niguldipine (NIG) resulted in a pronounced blockade of both T-type (to 20±10 % of control, n=5) and L-type Ca2+ currents (to 28±12 % of control, n=5). Current to voltage relationships clearly showed that both Ca2+ currents were blocked over the whole voltage range examined (-60 to +40 mV). The inhibitory effect of niguldipine on T-type Ca2+ currents was found to be voltage-dependent, i. e. prolonged hyperpolarization to -90 mV led to a partial and transient removal of NIG block. The IC50 for T-type Ca2+ current inhibition by (±)-NIG was determined as 0.18 M. NIG action is stereospecific. (+)-niguldipine was found to be more potent than (-)-niguldipine in blocking both Ca2+ currents. This study demonstrates the Ca2+ antagonistic action of the dihydropyridine NIG, which may not discriminate between T- and L-type Ca2+ channels.  相似文献   

18.
The present study was carried out to investigate the contribution of the Ca2+-transport ATPase of the sarcoplasmic reticulum (SR) to caffeine-induced Ca2+ release in skinned skeletal muscle fibres. Chemically skinned fibres of balb-C-mouse EDL (extensor digitorum longus) were exposed for 1 min to a free Ca2+ concentration of 0.36 μM to load the SR with Ca2+. Release of Ca2+ from the SR was induced by 30 mM caffeine and recorded as an isometric force transient. For every preparation a pCa/force relationship was constructed, where pCa = −log10 [Ca2+]. In a new experimental approach, we used the pCa/force relationship to transform each force transient directly into a Ca2+ transient. The calculated Ca2+ transients were fitted by a double exponential function: Y 0 + A 1⋅exp (−t/t 1) + A 2⋅exp(t/t 2), with A 1 < 0 < A 2, t 1 < t 2 and Y 0, A 1, A 2 in micromolar. Ca2+ transients in the presence of the SR Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) were compared to those obtained in the absence of the drug. We found that inhibition of the SR Ca2+-ATPase during caffeine-induced Ca2+ release causes an increase in the peak Ca2+ concentration in comparison to the control transients. Increasing CPA concentrations prolonged the time-to-peak in a dose-dependent manner, following a Hill curve with a half-maximal value of 6.5 ± 3 μM CPA and a Hill slope of 1.1 ± 0.2, saturating at 100 μM. The effects of CPA could be simulated by an extended three-compartment model representing the SR, the myofilament space and the external bathing solution. In terms of this model, the SR Ca2+-ATPase influences the Ca2+ gradient across the SR membrane in particular during the early stages of the Ca2+ transient, whereas the subsequent relaxation is governed by diffusional loss of Ca2+ into the bathing solution. Received: 2 February 1996/Accepted: 1 April 1996  相似文献   

19.
Ca2+ channel blockers (CCB) have been shown to be protective against ischaemic damage of the kidney, suggesting an important role for intracellular Ca2+ ([Ca2+]i) in generating cell damage. To delineate the mechanism behind this protective effect, we studied [Ca2+]i in cultured proximal tubule (PT) cells during anoxia in the absence of glycolysis and the effect of methoxyverapamil (D600) and felodipine on [Ca2+]i during anoxia. A method was developed whereby [Ca2+]i in cultured PT cells could be measured continuously with a fura-2 imaging technique during anoxic periods up to 60 min. Complete absence of O2 was realised by inclusion of a mixture of oxygenases in an anoxic chamber. [Ca2+]i in PT cells started to rise after 10 min of anoxia and reached maximal levels at 30 min, which remained stable up to 60 min. The onset of this increase and the maximal levels reached varied markedly among individual cells. The mean values for normoxic and anoxic [Ca2+]i were 118±2 (n=98) and 662±22 (n=160) nM, respectively. D600 (1 M), but not felodipine (10 M), significantly reduced basal [Ca2+]i in normoxic incubations. During anoxia 1 M and 100 M D 600 significantly decreased anoxic [Ca2+]i levels by 22 and 63% respectively. Felodipine at 10 M was as effective as 1 M D600. Removal of extracellular Ca2+ and addition of 0.1 mM La3+ completely abolished anoxia-induced increases in [Ca2+]i. We conclude that anoxia induces increases in [Ca2+]i in rabbit PT cells in primary culture, which results from Ca2+ influx. Since this Ca2+ influx is partially inhibited by low doses of CCBs, Ltype Ca2+ channels may be involved.  相似文献   

20.
There is no consensus about the different types of Ca2+ transport processes in the endoplasmic reticulum that are targeted by the sulphydryl reagent thimerosal. We have therefore investigated how thimerosal affects the various Ca2+ transport processes in permeabilized A7r5 smooth-muscle cells, using an unidirectional 45Ca2+ flux technique. Thimerosal up to a concentration of 32 M did not have an effect on the passive 45Ca2+ leak from the stores, while higher concentrations increased this aspecific leak. Thimerosal inhibited the endoplasmic reticulum Ca2+ pump with an EC50 of 9 M. Thimerosal exerted a biphasic effect on the Ca2+ release induced by inositol 1,4,5-trisphosphate [Ins(1,4,5)P 3] with a stimulation of the release at thimerosal concentrations below 10 M, and an inhibitory effect at higher concentrations. Thimerosal (2.5–250 M) did not exert an effect on the specific binding of [3H]Ins(1,4,5)P 3 to its receptor, indicating that it probably did not act at the level of the binding site. This finding contrasts with the effect of the closely related sulphydryl reagent parachloromercuriphenylsulphonate, which, at high concentrations, inhibited [3H]Ins(1,4,5)P 3 binding. The effects of thimerosal were largely prevented by the sulphydryl reducing agent dithiothreitol (3 mM). We conclude that thimerosal concentrations ranging from 0.32 to 1 M can stimulate the Ins(1,4,5)P 3-induced Ca2+ release without inhibiting the Ca2+ pumps or without increasing the passive Ca2+ permeability of the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号