首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Purpose. To show that thermally stimulated depolarization currents (TSDC), which is a dielectric experimental technique relatively unknown in the pharmaceutical scientists community, is a powerful technique to study molecular mobility in pharmaceutical solids, below their glass transition temperature (Tg). Indomethacin (Tg = 42°C) is used as a model compound. Methods. TSDC is used to isolate the individual modes of motion present in indomethacin, in the temperature range between –165°C and +60°C. From the experimental output of the TSDC experiments, the kinetic parameters associated with the different relaxational modes of motion were obtained, which allowed a detailed characterization of the distribution of relaxation times of the complex relaxations observed in indomethacin. Results. Two different relaxational processes were detected and characterized: the glass transition relaxation, or -process, and a sub-Tg relaxation, or secondary process. The lower temperature secondary process presents a very low intensity, a very low activation energy, and a very low degree of cooperativity. The fragility index (Angell's scale) of indomethacin obtained from TSDC data is m = 64, which can be compared with other values reported in the literature and obtained from other experimental techniques. Conclusions. TSDC data indicate that indomethacin is a relatively strong glass former (fragility similar to glycerol but lower than sorbitol, trehalose, and sucrose). The high-resolution power of the TSDC technique is illustrated by the fact that it detected and characterized the secondary relaxation in indomethacin, which was not possible by other techniques.  相似文献   

2.
In this study we have investigated the features of the glass transition relaxation of indomethacin using Differential Scanning Calorimetry (DSC). The purpose of this work is to provide an estimation of the activation energy at the glass transition temperature, as well as of the fragility index, of amorphous indomethacin from DSC data. To do so, the glass transition temperature region of amorphous indomethacin was characterized in both cooling and heating regimes. The activation energy for structural relaxation (directly related to glass fragility) was estimated from the heating and cooling rate dependence of the location of the DSC profile of the glass transition. The obtained results were similar in the heating and in the cooling modes. The results on the fragility index of indomethacin obtained in the present study, m = 60 in the cooling mode and m = 56 in the heating mode, are compared with other values previously published in the literature.  相似文献   

3.
Purpose The aims of the study are to characterize the slow molecular mobility in solid raffinose in the crystalline pentahydrate form, as well as in the anhydrous amorphous form (Tg = 109°C at 5°C/min), and to analyze the differences and the similarities of the molecular motions in both forms.Methods Thermally stimulated depolarization current (TSDC) is used to isolate the individual modes of motion present in raffinose, in the temperature range between −165 and +60°C. From the experimental output of the TSDC experiments, the kinetic parameters associated with the different relaxational modes of motion were obtained, which allowed a detailed characterization of the distribution of relaxation times of the complex relaxations observed in raffinose. The features of the glass transition relaxation in raffinose were characterized by differential scanning calorimetry (DSC).Results A complex mobility was found in the crystalline form of raffinose. From the analysis of the TSDC data, we conclude that these molecular motions are local and noncooperative. A sub-Tg relaxation, or secondary process, was also detected and analyzed by TSDC in the amorphous phase. It has low activation energy and low degree of cooperativity. The glass transition was studied by DSC. The fragility index (Angell’s scale) of raffinose obtained from DSC data is m = 148.Conclusions TSDC proved to be an adequate technique to study the molecular mobility in the crystalline pentahydrate form of raffinose. In the amorphous form, on the other hand, the secondary relaxation was analyzed by TSDC, but the study of the glass transition relaxation was not possible by this experimental technique as a consequence of conductivity problems. The DSC study of the glass transition indicates that raffinose is an extremely fragile glass former.  相似文献   

4.
Purpose. To evaluate a simple calorimetric method for estimating the fragility of amorphous pharmaceutical materials from the width of the glass transition region. Methods. The glass transition temperature regions of eleven amorphous pharmaceutical materials were characterized at six different heating and cooling rates by differential scanning calorimetry (DSC). Results. Activation energies for structural relaxation (which are directly related to glass fragility) were estimated from the scan rate dependence of the glass transition temperature, and correlations between the glass transition widths and the activation energies were examined. The expected correlations were observed, and the exact nature of the relationship varied according to the type of material under consideration. Conclusions. The proposed method of determining the fragility of amorphous materials from the results of simple DSC experiments has some utility, although "calibration of the method for each type of materials is necessary. Further work is required to establish the nature of the relationships for a broad range of amorphous pharmaceutical materials.  相似文献   

5.
In this work we study the molecular mobility in the amorphous solid state and in the glass transformation region of two compounds, diazepam and nordazepam; these are two benzodiazepines, a family of psychotropic drugs with sedative, anxiolytic and muscle-relaxing properties. The experimental techniques used are thermostimulated currents (TSC) and differential scanning calorimetry (DSC). TSC is a time-dependent technique recognized for its high resolving power; the use of this technique in the depolarization and polarization modes (TSDC and TSPC respectively), provides results that confirm and complement results of dielectric relaxation spectroscopy (DRS) published recently. On the other hand, the variation with the heating rate of the temperature position of the DSC glass transition signal also allowed the estimation of the activation energy at Tg and of the dynamic fragility of the two glass formers.  相似文献   

6.
Purpose. To determine the relaxation times of supercooled indomethacin as a function of temperature and relative humidity above Tg, and to analyze the results in the context of being able to predict such behavior at various storage conditions. Methods. Dielectric relaxation times were measured in the frequency domain (12 to 105 Hz) for amorphous indomethacin equilibrated at 0, 56, and 83% relative humidity. The heating rate dependence of Tg for dry supercooled indomethacin was measured with differential scanning calorimetry and used to determine relaxation times. The results were compared with previously published shear relaxation times and enthalpy recovery data. Results. Very good agreement was observed between dielectric and shear relaxation times, and those obtained from the heating rate dependence of the Tg, for dry indomethacin as a function of temperature above Tg. The introduction of water lowered the dielectric relaxation times of supercooled indomethacin without significantly affecting its fragility. The relaxation times below Tg, found to be lower than those predicted by extrapolation of the data obtained above Tg, were analyzed in the context of the Adam-Gibbs-Vogel equation. Conclusions. The relaxation times of amorphous indomethacin obtained from the heating rate dependence of Tg were in good agreement with those obtained from shear and dielectric measurements, thus validating a relatively simple approach of assessing molecular mobility. The significant molecular mobility of amorphous indomethacin observed below Tg, and the significant plasticizing effects of sorbed water, help to explain why amorphous indomethacin crystallizes well below Tg over relatively short time scales.  相似文献   

7.
Purpose. The ability of TSDC to characterize further amorphous materials beyond that possible with DSC was presented in part I (16) of this work. The purpose of part II presented here is to detect and quantitatively characterize time-scales of molecular motions (relaxation times) in amorphous solids at and below the glass transition temperature, to determine distributions of relaxation times associated with different modes of molecular mobility and their temperature dependence, and to determine experimentally the impact upon these parameters of combining the drug with excipients (i.e., solid dispersions at different drug to polymer ratios). The knowledge gleaned may be applied toward a more realistic correlation with physical stability of an amorphous drug within a formulation during storage. Methods. Preparation of amorphous drug and its solid dispersions with PVPK-30 was described in part I (16). Molecular mobility and dynamics of glass transition for these systems were studied using TSDC in the thermal windowing mode. Results. Relaxation maps and thermodynamic activation parameters show the effect of formulating the drug in a solid dispersion on converting the system (drug alone) from one with a wide distribution of motional processes extending over a wide temperature range at and below Tg to one that is homogeneous with very few modes of motion (20% dispersion) that becomes increasingly less homogeneous as the drug load increases (40% dispersion). This is confirmed by the high activation enthalpy (due to extensive intra- and intermolecular interactions) as well as high activation entropy (due to higher extent of freedom) for the drug alone vs. a close to an ideal system (lower enthalpy), with less extent of freedom (low entropy) especially for the 20% dispersion. The polymer PVPK-30 exhibited two distinct modes of motion, one with higher values of activation enthalpies and entropy corresponding to -relaxations, the other with lower values corresponding to -relaxations characterized by local noncooperative motional processes. Conclusions. Using thermal windowing, a distribution of temperature-dependent relaxation times encountered in real systems was obtained as opposed to a single average value routinely acquired by other techniques. Relevant kinetic parameters were obtained and used in mechanistically delineating the effects on molecular mobility of temperature and incorporating the drug in a polymer. This allows for appropriate choices to be made regarding drug loading, storage temperature, and type of polymer that would realistically correlate to physical stability.  相似文献   

8.
Purpose To develop a calorimetry-based model for estimating the time-dependence of molecular mobility during the isothermal relaxation of amorphous organic compounds below their glass transition temperature (T g).Methods The time-dependent enthalpy relaxation times of amorphous sorbitol, indomethacin, trehalose and sucrose were estimated based on the nonlinear Adam‐Gibbs equation. Fragility was determined from the scanning rate dependence of T g. Time evolution of the fictive temperature was determined from T g, the heat capacity of the amorphous and crystalline forms, and from the enthalpy relaxation data.Results Relaxation time changes significantly upon annealing for all compounds studied. The magnitude of the increase in relaxation time does not depend on any one parameter but on four parameters: T g, fragility, and the crystal–liquid and glass–liquid heat capacity differences. The obtained mobility data for indomethacin and sucrose, both stored at T g−16 K, correlated much better with their different crystallization tendencies than did the Kohlrausch‐Williams‐Watts (KWW) equation.Conclusions The observed changes in relaxation time help explain and address the limitations of the KWW approach. Due consideration of the time-dependence of molecular mobility upon storage is a key element for improving the understanding necessary for stabilizing amorphous formulations.  相似文献   

9.
Tong  Ping  Zografi  George 《Pharmaceutical research》1999,16(8):1186-1192
Purpose. Having previously studied the amorphous properties of indomethacin (IN) as a model compound for drugs rendered amorphous during processing, we report on the formation and characterization of its sodium salt in the amorphous state and a comparison between the two systems. Methods. Sodium indomethacin (SI) was subjected to lyophilization from aqueous solution, rapid precipitation from methanol solution, and dehydration followed by grinding to produce, in each case, a completely amorphous form. The amorphous form of SI was analyzed using DSC, XRD, thermomicroscopy and FTIR. The method of scanning rate dependence of the glass transition temperature, Tg, was used to estimate the fragility of the SI system. Enthalpy relaxation experiments were carried out to probe the molecular mobility of the SI system below Tg. Results. The amorphous form of SI formed by different methods had a Tg equal to 121°C at a scanning rate of 20°C/min. This compares with a Tgfor indomethacin of 45°C. Estimation of fragility by the scanning rate dependence of Tg indicates no significant differences in fragility between ionized and unionized forms. Enthalpy relaxation measurements reveal very similar relaxation patterns between the two systems at the same degree of supercooling relative to their respective Tg values. Conclusions. The amorphous form of SI made by various methods has a Tg that is about 75°C greater than that of IN, most likely because of the greater density and hence lower free volume of SI. Yet, the change of molecular mobility as a function of temperature relative to Tgis not very different between the ionized and unionized systems.  相似文献   

10.
Purpose. To evaluate thermomechanical analysis (TMA) as a technique for determining the viscosity of amorphous pharmaceutical materials. This property of amorphous drugs and excipients is related to their average rate of molecular mobility and thus to their physical and chemical stability. Methods. Indomethacin was selected as a model amorphous drug whose viscosity has previously been reported in the literature. A Seiko TMA 120C thermomechanical analyzer was utilized in isothermal penetration mode to determine the viscosity of the amorphous drug over the maximum possible range of temperatures. Results. Using a cylindrical penetration geometry it was possible to accurately determine the viscosity of amorphous indomethacin samples by TMA over the temperature range from 35 to 75°C. The results were consistent with those reported in the literature using a controlled strain rheometer over the range 44–75°C. The limiting lower experimental temperature for the TMA technique was extended to significantly below the calorimetric glass transition temperature (Tg 42°C), thus allowing a direct experimental determination of the viscosity at Tg to be made. Conclusions. Thermomechanical analysis can be used to accurately determine the viscosity of amorphous pharmaceutical materials at temperatures near and above their calorimetric glass transition temperatures.  相似文献   

11.
Purpose. To measure solid-state features of amorphous molecular dispersions of indomethacin and various molecular weight grades of poly(vinylpyrrolidone), PVP, and poly(vinylpyrrolidone-co-vinylacetate), PVP/VA, in relation to isothermal crystallization of indomethacin at 30°C Methods. The glass transition temperatures (Tg) of molecular dispersions were measured using differential scanning calorimetry (DSC). FT-IR spectroscopy was used to investigate possible differences in interactions between indomethacin and polymer in the various dispersions. The enthalpy relaxation of 5% w/w and 30% w/w polymer dispersions was determined following various aging times. Quantitative isothermal crystallization studies were carried out with pure indomethacin and 5% w/w polymers in drug as physical mixtures and molecular dispersions. Results. All coprecipitated mixtures exhibited a single glass transition temperature. All polymers interacted with indomethacin in the solid state through hydrogen bonding and in the process eliminated the hydrogen bonding associated with the carboxylic acid dimers of indomethacin. Molecular mobility at 16.5°C below Tg was reduced relative to indomethacin alone, at the 5% w/w and 30% w/w polymer level. No crystallization of indomethacin at 30°C was observed in any of the 5% w/w polymer molecular dispersions over a period of 20 weeks. Indomethacin alone and in physical mixtures with various polymers completely crystallized to the form at this level within 2 weeks. Conclusions. The major basis for crystal inhibition of indomethacin at 30°C at the 5% w/w polymer level in molecular dispersions is not related to polymer molecular weight and to the glass transition temperature, and is more likely related to the ability to hydrogen bond with indomethacin and to inhibit the formation of carboxylic acid dimers that are required for nucleation and growth to the crystal form of indomethacin.  相似文献   

12.
Purpose. The use of modulated differential scanning calorimetry (MDSC) as a novel means of characterising the glass transition of amorphous drugs has been investigated, using the protease inhibitor saquinavir as a model compound. In particular, the effects of measuring variables (temperature cycling, scanning period, heating mode) have been examined. Methods. Saquinavir samples of known moisture content were examined using a TA Instruments 2920 MDSC at a heating rate of 2°C/min and an amplitude of ± 0.159°C with a period of 30 seconds. These conditions were used to examine the effects of cycling between - 50°C and 150°C. A range of periods between 20 and 50 seconds were then studied. Isothermal measurements were carried out between 85°C and 120°C using an amplitude of ± 0.159°C with a period of 30 seconds. Results. MDSC showed the glass transition of saquinavir (0.98 ± 0.05%w/w moisture content) in isolation from the relaxation endotherm to give an apparent glass transition temperature of 107.0° C ± 0.4C. Subsequent temperature cycling gave reproducible glass transition temperatures of approximately 105°C for both cooling and heating cycles. The enthalpic relaxation peak observed in the initial heating cycle had an additional contribution from a Tg 'shift' effect brought about by the difference in response to the glass transition of the total and reversing heat flow signals. Isothermal studies yield a glass transition at 105.9°C ± 0.1°C. Conclusions. MDSC has been shown to be capable of separating the glass transition of saquinavir from the relaxation endotherm, thereby facilitating measurement of this parameter without the need for temperature cycling. However, the Tg 'shift' effect and the number of modulations through the transition should be taken into account to avoid drawing erroneous conclusions from the experimental data. MDSC has been shown to be an effective method of characterising the glass transition of an amorphous drug, allowing the separate characterisation of the Tg and endothermic relaxation in the first heating cycle.  相似文献   

13.
Purpose. To find out if the physical instability of a lyophilized dosage form is related to molecular mobility below the glass transition temperature. Further, to explore if the stability data generated at temperatures below the glass transition temperature can be used to predict the stability of a lyophilized solid under recommended storage conditions. Methods. The temperature dependence of relaxation time constant, , was obtained for sucrose and trehalose formulations of the monoclonal antibody (5 mg protein/vial) from enthalpy relaxation studies using differential scanning calorimetry. The non-exponentiality parameter, , in the relaxation behavior was also obtained using dielectric relaxation spectroscopy. Results. For both sucrose and trehalose formulations, the variation in with temperature could be fitted Vogel-Tammann-Fulcher (VTF) equation. The two formulations exhibited difference sensitivities to temperature. Sucrose formulation was more fragile and exhibited a stronger non-Arrhenius behavior compared to trehalose formulation below glass transition. Both formulations exhibited <2% aggregation at t values <10, where t is the time of storage. Conclusions. Since the relaxation times for sucrose and trehalose formulations at 5°C are on the order of 108 and 106 hrs, it is likely that both formulations would undergo very little (<2%) aggregation in a practical time scale under refrigerated conditions.  相似文献   

14.
The analysis of the thermal behavior of efavirenz showed a high glass-forming ability and good glass stability of this glass-forming liquid at room temperature. No polymorphic forms were formed either by cold crystallization or by recrystallization from solvent acetone. The determination of the dynamic fragility by the differential scanning calorimetry, thermally stimulated depolarization currents (TSDC), and dielectric relaxation spectroscopy (DRS) techniques is unanimous in suggesting efavirenz as a moderately fragile liquid. With DRS, secondary relaxations were detected, however, with weak intensities that did not allow the respective kinetic analysis; in contrast, TSDC allows clearly resolving the components of the secondary β-relaxation below Tg, with activation energies distributed between about 75 and 90 kJ mol?1 and Arrhenius prefactors of the order of 10?13 s. In this regard, the TSDC technique proved to be more effective compared to DRS in characterizing the secondary relaxation. The glass forming ability and glass stability found for efavirenz have been discussed in terms of various thermodynamic and kinetic parameters such as the reduced glass transition temperature, Tgred, the dynamic fragility, m, the stretching exponent, βKWW, the melting entropy, ΔSfus, and the molecular stiffness. The exceptionally low value of efavirenz fusion entropy was highlighted as a key feature of the thermal behavior of this glass-forming liquid.  相似文献   

15.
Purpose. To determine the viscosity and the frequency-dependent shear modulus of supercooled indomethacin as a function of temperature near and above its glass transition temperature and from these data to obtain a quantitative measure of its molecular mobility in the amorphous state. Methods. Viscoelastic measurements were carried with a controlled strain rheometer in the frequency domain, at 9 temperatures from 44° to 90°C. Results. The viscosity of supercooled indomethacin shows a strong non-Arrhenius temperature dependence over the temperature range studied, indicative of a fragile amorphous material. Application of the viscosity data to the VTF equation indicates a viscosity of 4.5 × 1010 Pa.s at the calorimetric Tg of 41°C, and a T0 of –17°C. From the complex shear modulus and the Cole-Davidson equation the shear relaxation behaviour is found to be non-exponential, and the shear relaxation time at Tg is found to be approximately 100 sec. Conclusions. Supercooled indomethacin near and above its Tg exhibits significant molecular mobility, with relaxation times similar to the timescales covered in the handling and storage of pharmaceutical products.  相似文献   

16.
Purpose. The purpose of the current study was to evaluate the molecular mobility of amorphous indomethacin and salicin in the relaxed glassy state based on spin-lattice relaxation times (T1c) and to clarify the effects of molecular mobility on their physical stability.Methods. Pulverized glassy amorphous indomethacin and salicin samples were completely relaxed, and the T1c values were investigated using solid-state 13C-nuclear magnetic resonance (NMR) at temperatures below the glass transition temperature (Tg). All NMR spectra were obtained using the T1c measurement method combined with variable-amplitude cross-polarization, the Torchia method, and total sideband suppression method.Results. The T1c value of amorphous indomethacin indicated that 73% of carbons were in a state of monodispersive relaxation, suggesting that the amorphous state was relatively homogeneous and restricted, particularly in backbone carbons. On the other hand, 92% of carbons of amorphous salicin exhibited both fast and slow biphasic relaxation. Individual structures of the salicin molecules behaved heterogeneously, and thus the entire molecule showed relatively fast local as well as slow mobility.Conclusions. At temperatures below Tg, amorphous salicin had relatively greater molecular mobility than amorphous indomethacin. This difference in the molecular mobility of the two compounds is correlated with their crystallization behavior. Solid-state 13C NMR provides valuable information on the physical stability of amorphous pharmaceuticals.  相似文献   

17.
Purpose. To study the molecular structure of indomethacin-PVP amorphous solid dispersions and identify any specific interactions between the components using vibrational spectroscopy. Methods. Solid dispersions of PVP and indomethacin were prepared using a solvent evaporation technique and IR and FT-Raman spectra were obtained. Results. A comparison of the carbonyl stretching region of indomethacin, known to form carboxylic acid dimers, with that of amorphous indomethacin indicated that the amorphous phase exists predominantly as dimers. The hydrogen bonding of indomethacin is not as dimers. Addition of PVP to amorphous indomethacin increased the intensity of the infrared band assigned to non-hydrogen bonded carbonyl. Con-comitantly, the PVP carbonyl stretch appeared at a lower wavenumber indicating hydrogen bonding. Model solvent systems aided spectral interpretation. The magnitude of the spectral changes were comparable for an indomethacin-PVP solid dispersion and a solution of indomethacin in methylpyrrolidone at the same weight percent. Conclusions. Indomethacin interacts with PVP in solid dispersions through hydrogen bonds formed between the drug hydroxyl and polymer carbonyl resulting in disruption of indomethacin dimers. PVP may influence the crystallisation kinetics by preventing the self association of indomethacin molecules. The similarity of results for solid dispersions and solutions emphasises the 'solution' nature of this binary amorphous state.  相似文献   

18.
Thermal analysis of aqueous solutions in which the solute does not crystallize immediately upon freezing was carried out to define the effects of experimental parameters on thermograms in the glass transition region. The intensity of enthalpy relaxations in the glass transition region is related to both the rate of cooling and the rate of heating through the glass transition region—slow cooling or slow heating increases the extent of structural relaxation in the glassy state and increases the intensity of the endotherm. Plots of the logarithm of heating rate versus l /Tg are linear, and activation enthalpies for structural relaxation are in the range of 210–350 kJ/mol. For polymeric solutes, both the activation enthalpies for structural relaxation and the heat capacity change accompanying the glass transition increase with increasing molecular weight of the solute. Molecular weight dependence of the observed midpoint of the glass transition agrees with the Fox–Flory relationship. Results are compared and contrasted with glass transitions in solid polymers and with the glass transition of hyperquenched water. Practical implications for characterization of formulations intended for freeze-drying are discussed.  相似文献   

19.
The purpose of this study is to investigate the quantitative relationship between the width of the glass transition, DeltaTg, and glass fragility or activation energy for structural relaxation. The ultimate objective is the estimation of structural relaxation time as a function of temperature from the width of the glass transition region, allowing characterization of glass dynamics by a single simple measurement. The Moynihan correlation indicates that activation energy for structural relaxation should be inversely proportional to the width of the glass transition, but recent experimental studies suggest this relationship is a poor approximation for glasses of pharmaceutical interest. The present study is an effort to better understand the validity of the Moynihan correlation by selected experimental studies and a theoretical analysis of those factors that impact the glass transition width. Experimental data for glass transition widths for (poly)vinylpyrrolidone, sucrose, and trehalose are obtained using a variety of procedures, and relaxation time data are obtained using the thermal activity monitor. The theoretical analysis begins by simulating the temperature dependence of the heat capacity by breaking the cooling and heating scans into a large number of temperature steps followed by isothermal holds, during which relaxation of the material is calculated. Here, the modified VTF equation is used for relaxation time and the generalized Kohlraush-Williams-Watts stretched exponential function is used to describe the relaxation kinetics. Simulations are performed for materials of varying fragility and varying "stretched exponential" constants, beta, and the width of the glass transition region, DeltaTg, is evaluated from the simulated heat capacity versus temperature curves as one would do with experimental data. Agreement between the theoretical simulations and experimental DeltaTg data is excellent. The simulations demonstrate that although the Moynihan correlation is not valid for variable beta, a modification of the Moynihan correlation which includes variation in beta is a good approximation. Thus, an estimate of fragility may be obtained from glass transition width data provided an estimate of beta is available. Furthermore, it is shown that a first approximation for beta may be obtained from the magnitude (i.e., height) of the differential scanning calorimetry thermal overshoot. We also find that using the modified VTF equation to evaluate the temperature dependence of the structural relaxation time at the glass transition, and integrating this expression to lower temperatures, it is possible to obtain an evaluation of the relaxation time constant, tau(beta), in the glass at any temperature, using only the DeltaTg and beta values obtained from a single differential scanning calorimetry scan. These estimated time constants correlate very well with the values directly measured with the thermal activity monitor.  相似文献   

20.
Purpose: This article explores the use of a remote electrode dielectric measurement system to monitor the water content of hydrated ovalbumin inside a glass vial. Methods: The intrinsic dielectric properties of hydrated ovalbumin were characterized first using conventional parallel plate electrodes. The second stage was to simulate a remote electrode measurement by placing nonconductive, nondispersive polyethylene films between the sample and electrodes. Finally, a study on the dielectric measurement of ovalbumin contained in a 10 ml glass vial was undertaken with the electrodes external to the glass vial. Results: The dielectric behavior of hydrated ovalbumin was characterized by charge transfer (i.e., protons) in the hydrogen bonded network of water molecules in the bulk sample. The mechanism was identified as an anomalous low-frequency dispersion and a dielectric loss peak (3). The dielectric relaxation time, 3, of the 3 dispersion was especially sensitive to water content. Moreover, a good correlation (R2 = 93%) was observed between relaxation times 3 obtained from measurements using conventional parallel plate electrodes and the remote electrode system. Conclusions: Dielectric measurements using remote electrodes attached to a glass vial are therefore applicable for the in situ measurement of water content in materials. The application of this technology to the determination of the lyophilization end point is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号