首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete congenital achromatopsia is a devastating hereditary visual disorder. Mutations in the CNGB3 gene account for more than 50% of all known cases of achromatopsia. This work investigated the efficiency of subretinal (SR) delivered AAV8 (Y447, 733F) vector containing a human PR2.1 promoter and a human CNGB3 cDNA in Cngb3?/?/Nrl?/? mice. The Cngb3?/?/Nrl?/? mouse was a cone-dominant model with Cngb3 channel deficiency, which partially mimicked the all-cone foveal structure of human achromatopsia with CNGB3 mutations. Following SR delivery of the vector, AAV-mediated CNGB3 expression restored cone function which was assessed by the restoration of the cone-mediated electroretinogram (ERG) and immunohistochemistry. This therapeutic rescue resulted in long-term improvement of retinal function with the restoration of cone ERG amplitude. This study demonstrated an AAV-mediated gene therapy in a cone-dominant mouse model using a human gene construct and provided the potential to be utilized in clinical trials.  相似文献   

2.
Unrelated patients with achromatopsia, macular degeneration with onset under age 50 years, cone degeneration or dysfunction, cone-rod degeneration, or macular malfunction were screened for mutations in the three genes known to be associated with achromatopsia: the GNAT2 gene encoding the alpha subunit of cone transducin and the CNGA3 and CNGB3 genes encoding the alpha and beta subunits of the cone cGMP-gated cation channel. We found no examples of patients with GNAT2 mutations. Out of 36 achromats, 12 (33%) had mutations in CNGA3 (13 different mutations including five novel mutations) and 12 (33%) had mutations in CNGB3 (six different mutations including four novel mutations). All achromats with CNG mutations had residual, presumably cone function as determined by computer-averaged 30-Hz electroretinograms (ERGs). There was considerable variability in acuity and color vision, with most patients having acuities of 20/200-20/400 and complete absence of color perception, and others having acuities of 20/25-20/40 and some color vision. Two pseudodominant achromatopsia cases were uncovered, both with CNGA3 mutations, including one family in which some compound heterozygotes with achromatopsia mutations were clinically unaffected. We found two novel CNGB3 changes in three patients with juvenile macular degeneration, a phenotype not previously associated with mutations in the cone channel subunits. These patients had subnormal acuity (20/30-20/60), normal to subnormal color vision, and normal to subnormal full-field cone ERG amplitudes. Our results indicate that some patients with channel protein mutations retain residual foveal cone function. Based on our findings, CNGB3 should be considered as a candidate gene to be evaluated in patients with forms of cone dysfunction, including macular degeneration.  相似文献   

3.
4.
Achromatopsia is a rare autosomal recessive cone disorder characterized by color vision defects, photophobia, nystagmus, and severely reduced visual acuity. The disease is caused by mutations in genes encoding crucial components of the cone phototransduction cascade (CNGA3 , CNGB3 , GNAT2 , PDE6C , and PDE6H ) or in ATF6 , involved in the unfolded protein response. CNGB3 encoding the beta subunit of the cyclic nucleotide‐gated ion channel in cone photoreceptors is the major achromatopsia gene. Here, we present a comprehensive spectrum of CNGB3 mutations and their prevalence in a cohort of 1074 independent families clinically diagnosed with achromatopsia. Of these, 485 (45.2%) carried mutations in CNGB3 . We identified a total of 98 different potentially disease‐causing CNGB3 variants, 58 of which are novel. About 10% of patients with CNGB3 mutations only harbored a single heterozygous variant. Therefore, we performed quantitative real‐time PCR in 43 of such single heterozygotes in search of the missing allele, followed by microarray‐based comparative genomic hybridization and breakpoint mapping. We discovered nine different heterozygous copy number variations encompassing one to 10 consecutive exons in 16 unrelated patients. Moreover, one additional patient with a homozygous CNGB3 deletion encompassing exons 4?18 was identified, highlighting the importance of CNV analysis for this gene.  相似文献   

5.
Achromatopsia is a congenital, autosomal recessively inherited disorder characterized by a lack of color discrimination, low visual acuity (<0.2), photophobia, and nystagmus. Mutations in the genes for CNGA3, CNGB3, and GNAT2 have been associated with this disorder. Here, we analyzed the spectrum and prevalence of CNGB3 gene mutations in a cohort of 341 independent patients with achromatopsia. In 163 patients, CNGB3 mutations could be identified. A total of 105 achromats carried apparent homozygous mutations, 44 were compound (double) heterozygotes, and 14 patients had only a single mutant allele. The derived CNGB3 mutation spectrum comprises 28 different mutations including 12 nonsense mutations, eight insertions and/or deletions, five putative splice site mutations, and three missense mutations. Thus, the majority of mutations in the CNGB3 gene result in significantly altered and/or truncated polypeptides. Several mutations were found recurrently, in particular a 1 bp deletion, c.1148delC, which accounts for over 70% of all CNGB3 mutant alleles. In conclusion, mutations in the CNGB3 gene are responsible for approximately 50% of all patients with achromatopsia. This indicates that the CNGB3/ACHM3 locus on chromosome 8q21 is the major locus for achromatopsia in patients of European origin or descent.  相似文献   

6.
Cone degeneration (cd ) is an autosomal recessive canine disease that occurs naturally in the Alaskan Malamute and German Shorthaired Pointer breeds. It is phenotypically similar to human achromatopsia, a heterogeneous autosomal recessive disorder associated with three distinct loci. Both the canine disease and its human counterparts are characterized by day-blindness and absence of retinal cone function in adults. We report linkage of the canine cd locus to marker C29.002 on canine chromosome 29 at recombination fraction theta = 0.0 with a maximum LOD score of 24.68 in a series of informative outbred pedigrees derived from cd-affected Alaskan Malamutes. Conserved gene order between CFA29 and the long arm of human chromosome 8 argued for homology between the cd locus and the human achromatopsia locus, ACHM3, at 8q21-22. The canine homolog of the cyclic nucleotide-gated channel beta-subunit gene (CNGB3), responsible for the human ACHM3 disease phenotype, was mapped within the zero-recombination interval for the cd locus. A deletion removing all exons of canine CNGB3 was identified in cd-affected Alaskan Malamute-derived dogs. A missense mutation in exon 6 (D262N, nucleotide 784) within a conserved region of the same gene was detected in German Shorthaired Pointers affected with an allelic disorder. Identification of these canine disorders as homologs of human ACHM3 underscores the power of recent developments in canine genomics, and provides a valuable system for exploring disease mechanisms and evaluating potential therapeutic measures in disorders of cone photoreceptors.  相似文献   

7.
Design and methods: A large consanguineous Pakistani family containing six subjects with autosomal recessive complete achromatopsia was ascertained. After excluding linkage to the two known achromatopsia genes (CNGA3 and CNGB3), a genome wide linkage screen was undertaken.

Results: Significant linkage was detected to a 12 cM autozygous segment between markers D1S485 and D1S2881 on chromosome 1p13. Direct sequence analysis of the candidate gene GNAT2 located within this interval identified a frameshift mutation in exon 7 (c842_843insTCAG; M280fsX291) that segregated with the disease.

Conclusions: The GNAT2 gene codes for cone α-transducin, the G protein that couples the cone pigments to cGMP-phosphodiesterase in phototransduction. Although cone α-transducin has a fundamental role in cone phototransduction, mutations in GNAT2 have not been described previously. Since mutations in the CNGA3 gene may cause a variety of retinal dystrophies (complete and incomplete achromatopsia and progressive cone dystrophy), GNAT2 mutations may also prove to be implicated in other forms of retinal dystrophy with cone dysfunction.

  相似文献   

8.
Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119-69G>C, c.161+66A>T and c.875-31G>C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation. This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and the largest family with recessive achromatopsia involving GNAT2; thus, providing a unique opportunity for genotype-phenotype correlation for this extremely rare condition.  相似文献   

9.
CNGA3 encodes the A-subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, which is a crucial component of the phototransduction cascade in cone outer segments. Mutations in the CNGA3 gene have been associated with complete and incomplete forms of achromatopsia (ACHR), a congenital, autosomal recessively inherited retinal disorder characterized by lack of color discrimination, reduced visual acuity, nystagmus, and photophobia. Here we report the identification of three novel CNGA3 missense mutations in ACHR patients: c.682G>A (p.E228 K), c.1315C>T (p.R439W), and c.1405G>A (p.A469 T), and the detailed functional analyses of these new as well as five previously reported mutations (R283Q, T291R, F547L, G557R, and E590 K), in conjunction with clinical data of patients carrying these mutations, to establish genotype-phenotype correlations. The functional characterization of mutant CNGA3 channels was performed with calcium imaging and patch clamp recordings in a heterologous HEK293 cell expression system. Results were corroborated by immunostaining and colocalization experiments of the channel protein with the plasma membrane. Several mutations evoked pronounced alterations of the apparent cGMP sensitivity of mutant channels. These functional defects were fully or partially compensated by coexpressing the mutant CNGA3 subunit with the wild-type CNGB3 subunit for channels with the mutations R439W, A469 T, F547L, and E590 K. We could show that several mutant channels with agonist dose-response relationships similar to the wild-type exhibited severely impaired membrane targeting. In addition, this study presents the positive effect of reduced cell culture temperature on surface expression and functional performance of mutant CNG channels with protein folding or trafficking defects.  相似文献   

10.
Effect of gene therapy on visual function in Leber's congenital amaurosis   总被引:1,自引:0,他引:1  
Early-onset, severe retinal dystrophy caused by mutations in the gene encoding retinal pigment epithelium-specific 65-kD protein (RPE65) is associated with poor vision at birth and complete loss of vision in early adulthood. We administered to three young adult patients subretinal injections of recombinant adeno-associated virus vector 2/2 expressing RPE65 complementary DNA (cDNA) under the control of a human RPE65 promoter. There were no serious adverse events. There was no clinically significant change in visual acuity or in peripheral visual fields on Goldmann perimetry in any of the three patients. We detected no change in retinal responses on electroretinography. One patient had significant improvement in visual function on microperimetry and on dark-adapted perimetry. This patient also showed improvement in a subjective test of visual mobility. These findings provide support for further clinical studies of this experimental approach in other patients with mutant RPE65. (ClinicalTrials.gov number, NCT00643747 [ClinicalTrials.gov].).  相似文献   

11.
The CNGA3 gene encodes the A3 subunit of the cone photoreceptor cyclic nucleotide‐gated (CNG) channel, an essential component of the phototransduction cascade. Certain mutations in CNGA3 cause autosomal recessive achromatopsia, a retinal disorder characterized by severely reduced visual acuity, lack of color discrimination, photophobia, and nystagmus. We identified three novel mutations in the pore‐forming region of CNGA3 (L363P, G367V, and E376K) in patients diagnosed with achromatopsia. We assessed the expression and function of channels with these three new and two previously described mutations (S341P and P372S) in a heterologous HEK293 cell expression system using Western blot, subcellular localization on the basis of immunocytochemistry, calcium imaging, and patch clamp recordings. In this first comparative functional analysis of disease‐associated mutations in the pore of a CNG channel, we found impaired surface expression of S341P, L363P, and P372S mutants and reduced macroscopic currents for channels with the mutations S341P, G367V, and E376K. Calcium imaging and patch clamp experiments after incubation at 37°C revealed nonfunctional homo‐ and heteromeric channels in all five mutants, but incubation at 27°C combined with coexpression of the B3 subunit restored residual function of channels with the mutations S341P, G367V, and E376K. Hum Mutat 31:830–839, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Complete achromatopsia is genetically heterogeneous and segregates with mutations in CNGA3 or CNGB3 genes, which respectively encode for alpha- and beta-subunits of the cyclic-nucleotide-gated (CNG) cation channel expressed in cone photoreceptors. High incidence of the disease (1 in 60) was detected in a rural isolate in central Chile. We excluded previously reported mutations in a consanguineous kindred with five affected members. Genotype analysis with short tandem repeat polymorphic (STRP) markers provided evidence to search for the causative mutation in CNGB3. Two sequence variations, c.492_493insT and c.488A>G, flanking an adenosine (A(5)) repeat in exon 4 were identified. The frameshift mutation creates two consecutive stop codons in exon 5 that would induce premature translation termination. The severely truncated beta-subunit is likely to render a nonfunctional cone CNG channel and cause total colour blindness in this kindred.  相似文献   

13.
Safety and efficacy of gene transfer for Leber's congenital amaurosis   总被引:1,自引:0,他引:1  
Leber's congenital amaurosis (LCA) is a group of inherited blinding diseases with onset during childhood. One form of the disease, LCA2, is caused by mutations in the retinal pigment epithelium-specific 65-kDa protein gene (RPE65). We investigated the safety of subretinal delivery of a recombinant adeno-associated virus (AAV) carrying RPE65 complementary DNA (cDNA) (ClinicalTrials.gov number, NCT00516477 [ClinicalTrials.gov]). Three patients with LCA2 had an acceptable local and systemic adverse-event profile after delivery of AAV2.hRPE65v2. Each patient had a modest improvement in measures of retinal function on subjective tests of visual acuity. In one patient, an asymptomatic macular hole developed, and although the occurrence was considered to be an adverse event, the patient had some return of retinal function. Although the follow-up was very short and normal vision was not achieved, this study provides the basis for further gene therapy studies in patients with LCA.  相似文献   

14.
Mutations in the nuclear receptor gene, NR2E3, cause a disorder of human retinal photoreceptor development characterized by hyperfunction and excess of the minority S (short wavelength or blue) cone photoreceptor type, but near absence of function of the majority rod receptor. NR2E3 disease can also progress to blindness. How the human retina accommodates mis-specified types and numbers of neurons and advances to retinal degeneration are unknown. We studied the retinal organization in vivo of patients with NR2E3 mutations. Early human NR2E3 disease with S cone hyperfunction showed thickened retinal layers within an otherwise normally structured retina. With visual loss, however, lamination was coarse and there was a strikingly thick and bulging appearance to the retina, localized to an annulus encircling the central fovea. This pattern was not found in other retinal degenerations. The abnormal laminar retinal architecture of early NR2E3 disease may be due in part to larger cells with an S cone phenotype in place of rods that failed to differentiate. The later-stage dysplastic appearance suggests a previously unrecognized proliferative response in human retinal degeneration.  相似文献   

15.
The retinal degeneration slow (rds or Prph2(Rd2/Rd2)) mouse, a model of recessive retinitis pigmentosa, lacks a functional gene encoding peripherin 2. This membrane glycoprotein is required for the formation of photoreceptor outer segment discs. The striking feature of the rds mouse is the complete failure to develop outer segments. We have previously examined the short-term effect of gene replacement therapy using an adeno-associated (AAV) vector and demonstrated induction of outer segments and improvement of photoreceptor function. Here we have extended our analysis and have demonstrated that the potential for ultrastructural improvement is dependent upon the age at which animals are treated, but the effect of a single injection on photoreceptor ultrastructure may be long-term. However, there was no significant effect on photoreceptor cell loss, irrespective of the date of administration, despite the improvements in morphology and function. Our investigation excluded procedure-related damage, vector toxicity and immune responses as major factors which might counteract the benefits of photoreceptor restoration, but suggested that transgene over-expression is of significance. These findings suggest that successful gene therapy in patients with photoreceptor defects may ultimately depend upon intervention in early stages of disease and upon accurate control of transgene expression.  相似文献   

16.
17.
X-linked retinoschisis is the leading cause of macular degeneration in males and leads to splitting within the inner retinal layers leading to visual deterioration. Many missense and protein truncating mutations have now been identified in the causative retinoschisis gene (RS1) which encodes a 224 amino acid secretory retinal protein, retinoschisin. Retinoschisin octamerisation is implicated in cell-cell interactions and cell adhesion perhaps by interacting with beta2 laminin. Mutations cause loss of retinoschisin function by one of the three mechanisms: by interfering with protein secretion, by preventing its octamerisation or by reducing function in the secreted octamerised protein. The development of retinoschisis mouse models have provided a model system that closely resembles the human disease. Recent reports of RS1 gene transfer to these models and the sustained restoration of some retinal function and morphology suggest gene replacement may be a possible future therapy for patients.  相似文献   

18.

OBJECTIVE:

Bardet-Biedl syndrome is a genetic, multisystem disorder that causes severe visual impairment. This condition is characterized by retinal dystrophy, obesity, digit anomalies, renal disease, and hypogonadism. The purpose of this study was to analyze visual acuity and full-field electroretinogram findings in patients with the Bardet-Biedl syndrome phenotype.

METHODS:

The visual acuity of a group of 23 patients (15 males) with ages ranging from 6-36 years (mean = 15.8±6.4; median = 14.7) was assessed. Retinal function was evaluated by full-field electroretinography, and dark-adapted thresholds were assessed.

RESULTS:

Visual acuity in the better-seeing eye was 20/40 or better in 5 patients (21.7%), 20/50-20/150 in 13 (56.5%) patients, 20/200-20/400 in 2 (8.7%) patients and worse than 20/400 in one (4.3%) patient. The mean acuity in the better-seeing eye was 0.7±0.6 logMAR (20/100, Snellen equivalent). Scotopic rod and maximal responses were non-detectable in 21 (91.3%) patients, and cone responses were non-detectable in 15 (65.2%) patients. Elevated dark-adapted visual thresholds were observed in all 19 patients who were able to be assessed, with 10 (52.6%) patients having thresholds greater than 30 dB.

CONCLUSIONS:

In a relatively young cohort of patients with Bardet-Biedl syndrome, only 21% had 20/40 or better vision. ERG scotopic responses were absent in the majority of cases, with cone responses being observed in less than half of cases. These findings showed the early deleterious effects in retinal function and visual acuity caused by this condition.  相似文献   

19.
The processing of biosignals is increasingly being utilized in ambulatory situations in order to extract significant signals’ features that can help in clinical diagnosis. However, this task is hampered by the fact that biomedical signals exhibit a complex behavior characterized by strong nonlinear and non-stationary properties that cannot always be perceived by simple visual examination. New processing methods need be considered. In this context, we propose a signal processing method, based on empirical mode decomposition and artificial neural networks, to analyze electroretinograms, i.e., the retinal response to a light flash, with the aim to detect and classify retinal diseases. The present application focuses on two retinal pathologies: achromatopsia, which is a cone disease, and congenital stationary night blindness, which affects the photoreceptoral signal transmission. The results indicate that, under suitable conditions, the method proposed here has the potential to provide a powerful tool for routine clinical examinations, since it is able to recognize with high level of confidence the eventual presence of one of the two pathologies.  相似文献   

20.
Inherited retinal dystrophies are a major cause of childhood blindness. Here, we describe the identification of a homozygous frameshift mutation (c.1194_1195delAG, p.Arg398Serfs*9) in TUB in a child from a consanguineous UK Caucasian family investigated using autozygosity mapping and whole‐exome sequencing. The proband presented with obesity, night blindness, decreased visual acuity, and electrophysiological features of a rod cone dystrophy. The mutation was also found in two of the proband's siblings with retinal dystrophy and resulted in mislocalization of the truncated protein. In contrast to known forms of retinal dystrophy, including those caused by mutations in the tubby‐like protein TULP‐1, loss of function of TUB in the proband and two affected family members was associated with early‐onset obesity, consistent with an additional role for TUB in energy homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号