首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 1 diabetes is a T-cell-mediated disease that is associated with loss of immunological tolerance to self-antigens. The mechanisms involved in maintenance of peripheral tolerance include a specialized subset of regulatory T-cells (Treg) within the CD4(+)CD25(+) T-cell population, but the function and phenotype of these cells in type 1 diabetes have not been investigated. We hypothesized that a deficiency in the CD4(+)CD25(+) Treg population or its function could contribute to the lack of self-tolerance evident in patients with type 1 diabetes. We show that although levels of CD4(+)CD25(+) T-cells are normal in patients with recent-onset adult type 1 diabetes, the ability of the Tregs in this population to suppress T-cell proliferation during in vitro cocultures is markedly reduced compared with control subjects (P = 0.007). Moreover, in patients with type 1 diabetes, these cocultures display a more proinflammatory phenotype, with increased secretion of interferon-gamma (P = 0.005) and decreased interleukin-10 production (P = 0.03). These deficiencies may reflect a disturbance in the balance of the CD4(+)CD25(+) population, because in patients with type 1 diabetes, a higher proportion of these cells coexpress the early activation marker CD69 (P = 0.007) and intracellular CTLA-4 (P = 0.01). These data demonstrate deficiency in function of the CD4(+)CD25(+) Treg population that may influence the pathogenesis of type 1 diabetes.  相似文献   

2.
Type 1 diabetes presents clinically with overt hyperglycemia resulting from progressive immune-mediated destruction of pancreatic β-cells and associated metabolic dysfunction. Combined genetic and immunological studies now highlight deficiencies in both the interleukin-2 (IL-2) receptor and its downstream signaling pathway as a central defect in the pathogenesis of type 1 diabetes. Prior intervention studies in animal models indicate that augmenting IL-2 signaling can prevent and reverse disease, with protection conferred primarily by restoration of regulatory T-cell (Treg) function. In this article, we will focus on studies of type 1 diabetes noting deficient IL-2 signaling and build what we believe forms the molecular framework for their contribution to the disease. This activity results in the identification of a series of potentially novel therapeutic targets that could restore proper immune regulation in type 1 diabetes by augmenting the IL-2 pathway.  相似文献   

3.
Latent autoimmune diabetes in adults or type 1.5 diabetes is considered to be a T-cell-mediated autoimmune disease. However, identification of patients is based commonly on autoantibody (Ab) detection. To determine whether measuring T-cell reactivity to islet proteins compared with measuring Abs improves detection of autoimmune diabetes and how beta-cell function correlates with T-cell reactivity compared with Ab positivity, we assessed the T-cell proliferative responses and Ab responses (islet cell autoantibodies, insulin autoantibodies, insulinoma-associated protein-2 autoantibodies, and GAD Abs) to islet proteins of 36 phenotypic type 2 diabetic patients. To be considered Ab(+) or T-cell(+), patients were required to be positive for a minimum of two consecutive time points. beta-Cell function was measured with fasting and glucagon-stimulated C-peptide. Independent of T-cell reactivity, Ab(+) and Ab(-) patients had comparable fasting and glucagon-stimulated C-peptide. Independent of Ab status, T-cell(+) patients demonstrated significantly lower glucagon-stimulated (P < 0.003) C-peptide compared with T-cell(-) patients. These data suggest that measuring T-cell responses to multiple islet proteins in phenotypic type 2 diabetic patients improves identification of patients with autoimmune diabetes and delineates those who have a more severe beta-cell lesion compared with Ab assessment alone.  相似文献   

4.
In vivo induction of beta-cell apoptosis has been demonstrated to be effective in preventing type 1 diabetes in NOD mice. Based on the notion that steady-state cell apoptosis is associated with self-tolerance and the need for developing a more practical approach using apoptotic beta-cells to prevent type 1 diabetes, the current study was designed to investigate apoptotic beta-cells induced ex vivo in preventing type 1 diabetes. The NIT-1 cell line serves as a source of beta-cells. Apoptotic NIT-1 cells were prepared by ultraviolet B (UVB) irradiation. Three weekly transfusions of UVB-irradiated NIT-1 cells (1 x 10(5)/mouse) or PBS were used to determine whether transfusions of UVB-irradiated NIT-1 cells induce immune tolerance to beta-cell antigens in vivo and prevent type 1 diabetes. The suppression of anti-beta-cell antibodies, polarization of T-helper (Th) cells, and induction of regulatory T-cells by UVB-irradiated NIT-1 cell treatment were investigated. The transfusions of apoptotic NIT-1 cells suppress anti-beta-cell antibody development and induce Th2 responses and interleukin-10-producing regulatory type 1 cells. Importantly, this treatment significantly delays and prevents the onset of diabetes when 10-week-old NOD mice are treated. Adoptive transfer of splenocytes from UVB-irradiated NIT-1 cell-treated mice prevents diabetes caused by simultaneously injected diabetogenic splenocytes in NOD-Rag(-/-) mice. Moreover, the proliferation of adoptively transferred carboxyfluorescein diacetate succinimidyl ester-labeled beta-cell antigen-specific T-cell receptor-transgenic T-cells in UVB-irradiated NIT-1-cell treated mice is markedly suppressed. The transfusion of apoptotic beta-cells effectively protects against type 1 diabetes in NOD mice by inducing immune tolerance to beta-cell antigens. This approach has great potential for immune intervention for human type 1 diabetes.  相似文献   

5.
Type 1 diabetes is considered to be a T-cell-mediated autoimmune disease in which insulin-producing beta-cells are destroyed. Immunity to insulin has been suggested to be one of the primary autoimmune mechanisms leading to islet cell destruction. We have previously shown that the first immunization to insulin occurs by exposure to bovine insulin (BI) in cow's milk (CM) formula. In this study, we analyzed the development of insulin-specific T-cell responses by proliferation test, emergence of insulin-binding antibodies by enzyme immunoassay, and insulin autoantibodies by radioimmunoassay in relation to CM exposure and family history of type 1 diabetes in infants with a first-degree relative with type 1 diabetes and increased genetic risk for the disease. The infants were randomized to receive either an adapted CM-based formula or a hydrolyzed casein (HC)-based formula after breast-feeding for the first 6-8 months of life. At the age of 3 months, both cellular and humoral responses to BI were higher in infants exposed to CM formula than in infants fully breast-fed (P = 0.015 and P = 0.007). IgG antibodies to BI were higher in infants who received CM formula than in infants who received HC formula at 3 months of age (P = 0.01), but no difference in T-cell responses was seen between the groups. T-cell responses to BI at 9 months of age (P = 0.05) and to human insulin at 12 (P = 0.014) and 24 months of age (P = 0.009) as well as IgG antibodies to BI at 24 months of age (P = 0.05) were lower in children with a diabetic mother than in children with a diabetic father or a sibling, suggesting possible tolerization to insulin by maternal insulin therapy. The priming of insulin-specific humoral and T-cell immunity occurs in early infancy by dietary insulin, and this phenomenon is influenced by maternal type 1 diabetes.  相似文献   

6.
Posttranslational modification (PTM) of self-proteins has been shown to elicit clinically relevant immune responses in rheumatoid arthritis and celiac disease. Accumulating evidence suggests that recognition of modified self-proteins may also be important in type 1 diabetes. Our objective was to identify posttranslationally modified GAD65 peptides, which are recognized by subjects with type 1 diabetes, and to assess their disease relevance. We show that citrullination and transglutamination of peptides can enhance their binding to DRB1*04:01, a diabetes-susceptible HLA allele. These and corresponding modifications to amino acids at T-cell contact positions modulated the recognition of multiple GAD65 peptides by self-reactive T cells. Using class II tetramers, we verified that memory T cells specific for these modified epitopes were detectable directly ex vivo in the peripheral blood of subjects with type 1 diabetes at significantly higher frequencies than healthy controls. Furthermore, T cells that recognize these modified epitopes were either less responsive or nonresponsive to their unmodified counterparts. Our findings suggest that PTM contributes to the progression of autoimmune diabetes by eliciting T-cell responses to new epitope specificities that are present primarily in the periphery, thereby circumventing tolerance mechanisms.  相似文献   

7.
Insulin has been used to modify T-cell autoimmunity in experimental models of type 1 diabetes. In a large clinical trial, the effect of insulin to prevent type 1 diabetes is currently investigated. We here show that insulin can adversely trigger autoimmune diabetes in two mouse models of type 1 diabetes, using intramuscular DNA vaccination for antigen administration. In female nonobese diabetic (NOD) mice, diabetes development was enhanced after preproinsulin (ppIns) DNA treatment, and natural diabetes resistance in male NOD mice was diminished by ppIns DNA vaccination. In contrast, GAD65 DNA conferred partial diabetes protection, and empty DNA plasmid was without effect. In RIP-B7.1 C57BL/6 mice (expressing the T-cell costimulatory molecule B7.1 in pancreatic beta-cells), autoimmune diabetes occurred in 70% of animals after ppIns vaccination, whereas diabetes did not develop spontaneously in RIP-B7.1 mice or after GAD65 or control DNA treatment. Diabetes was characterized by diffuse CD4(+)CD8(+) T-cell infiltration of pancreatic islets and severe insulin deficiency, and ppIns, proinsulin, and insulin DNA were equally effective for disease induction. Our work provides a new model of experimental autoimmune diabetes suitable to study mechanisms and outcomes of insulin-specific T-cell reactivity. In antigen-based prevention of type 1 diabetes, diabetes acceleration should be considered as a potential adverse result.  相似文献   

8.
Faideau B  Larger E  Lepault F  Carel JC  Boitard C 《Diabetes》2005,54(Z2):S87-S96
Whether autoimmunity results primarily from a defect of the immune system, target organ dysfunction, or both remains an open issue in most human autoimmune diseases. The highly multigenic background on which diabetes develops in the NOD mouse and in the human suggests that numerous gene variants associate in contributing to activation of autoimmunity to beta-cells. Both immune genes and islet-related genes are involved. The presence of beta-cells is required for initiation of diabetes autoimmunity to proceed. Available experiments in the NOD mouse and epidemiological evidence in the human point to proinsulin as a key autoantigen in diabetes. The functional importance of insulin, the high number of autoantigens characterized at different stages of diabetes, and their clustering within beta-cell subparticles point to the islet as a starting point in the initiation phase of the disease. Genes that direct the autoimmune reaction toward the beta-cell target, autoantigens that are recognized by autoreactive B- and T-cells along the autoimmune process, the importance of beta-cells in the activation of autoreactive lymphocytes, and the expression level of key beta-cell molecules along diabetes development are successively considered in this review.  相似文献   

9.
Type 1 diabetes is a chronic autoimmune disease mediated by autoreactive T-cells. Several experimental therapies targeting T-cells are in clinical trials. To understand how these therapies affect T-cell responses in vivo, assays that directly measure human T-cell function are needed. In a blinded, multicenter, case-controlled study conducted by the Immune Tolerance Network, we tested responses in an immunoblot and T-cell proliferative assay to distinguish type 1 diabetic patients from healthy control subjects. Peripheral blood cells from 39 healthy control subjects selected for DR4 and 23 subjects with recently diagnosed type 1 diabetes were studied. Autoantibody responses were measured in serum samples. Positive responses in both assays were more common in peripheral blood mononuclear cells from new-onset type 1 diabetic patients compared with control subjects. The proliferative, immunoblot, and autoantibody assays had sensitivities of 58, 91, and 78% with specificities of 94, 83, and 85%, respectively. When cellular assays were combined with autoantibody measurements, the sensitivity of the measurements was 75% with 100% specificity. We conclude that cellular assays performed on peripheral blood have a high degree of accuracy in discriminating responses in subjects with type 1 diabetes from healthy control subjects. They may be useful for assessment of cellular autoimmune responses involved in type 1 diabetes.  相似文献   

10.
T-cell responses to enterovirus antigens in children with type 1 diabetes   总被引:3,自引:0,他引:3  
Enterovirus infections, implicated in the pathogenesis of type 1 diabetes in a number of studies, may precipitate the symptoms of clinical diabetes and play a role in the initiation of the beta-cell damaging process. The aim of this study was to evaluate whether cellular immune responses to enterovirus antigens are abnormal in children with type 1 diabetes. Lymphocyte proliferation responses to enterovirus antigens were analyzed in 41 children with new-onset type 1 diabetes, 23 children with type 1 diabetes for 4-72 months, and healthy control children in subgroups matched for HLA-DQB1 risk alleles, sex, and age. Children with diabetes for 4-72 months more often had T-cell responses to the Coxsackievirus B4-infected cell lysate antigen than children with new-onset diabetes (P < 0.01) or control children (P < 0.01). Responses to recombinant nonstructural protein 2C of Coxsackievirus B4 were also more frequent in children with type 1 diabetes for 4-72 months when compared with control subjects (P = 0.03), whereas the responses to purified Coxsackievirus B4 and recombinant VP0 protein, which did not contain nonstructural proteins, did not differ. These data suggest that T-cell responses to Coxsackievirus B4 proteins and particularly to the antigens containing the nonstructural proteins of the virus are increased in children with type 1 diabetes after the onset of the disease. However, in children with new-onset diabetes, responses were normal or even decreased. This phenomenon was specific for enteroviruses and could be caused by trapping of enterovirus-specific T-cells in the pancreas.  相似文献   

11.
Involvement of gut immune system has been implicated in the pathogenesis of type 1 diabetes. However, few studies have been performed on the gut mucosa from patients with type 1 diabetes. Thus, we characterized the stage of immune activation in jejunal biopsy samples from 31 children with type 1 diabetes by immunohistochemistry, in situ hybridization, and RT-PCR. We found enhanced expressions of HLA-DR, HLA-DP, and intercellular adhesion molecule-1 by immunohistochemistry even on structurally normal intestine of patients with type 1 diabetes and no signs of celiac disease. In addition, the densities of IL-1 alpha- and IL-4-positive cells detected by immunohistochemistry and IL-4 mRNA-expressing cells evaluated by in situ hybridization were increased in the lamina propria in patients with type 1 diabetes and normal mucosa. Instead, the densities of IL-2, gamma-interferon (IFN-gamma), and tumor necrosis factor alpha-positive cells, the density of IFN-gamma mRNA positive cells, and the amounts of IFN-gamma mRNA detected by RT-PCR correlated with the degree of celiac disease in patients with type 1 diabetes. Our study supports the hypothesis that a link exists between the gut immune system and type 1 diabetes.  相似文献   

12.
M E Pauza  H Neal  A Hagenbaugh  H Cheroutre  D Lo 《Diabetes》1999,48(10):1948-1953
In a number of animal models of spontaneous autoimmune diabetes, pathogenesis has been highly correlated with autoreactive T-cell production of the type 1 cytokine interferon-gamma (IFN-gamma), while protection from disease was associated with type 2 cytokines such as interleukin (IL)-4. Curiously, in some models, diabetes is associated with unexpected cytokine patterns; for example, diabetes can develop in NOD mice lacking a functional IFN-gamma gene. In another situation, acceleration of diabetes occurs in transgenic mice with constitutive beta-cell expression of the type 2 cytokine IL-10. IL-10 has generally been associated with immunosuppression, including the modulation of class II expression on antigen-presenting cells and the generation of regulatory CD4 T-cells. Because it is possible that unregulated expression of any cytokine might lead to unphysiological effects in vivo, we tested the notion that an inducible T-cell-specific IL-10 transgene might yet mediate a more physiological protection from autoimmune diabetes. Our results show that indeed, regulated T-cell production of IL-10 does not accelerate diabetes and instead can provide significant protection from disease. These results help rectify the apparent discrepancies between the effect of IL-10 on various models of autoimmune diabetes.  相似文献   

13.
Fas (CD95) triggers programmed cell death and is involved in cell-mediated cytotoxicity and in shutting off the immune response. Inherited loss-of-function mutations hitting the Fas system cause the autoimmune/lymphoproliferative syndrome (ALPS). We have recently shown that ALPS patients' families display increased frequency of common autoimmune diseases, including type 1 diabetes. This work evaluates Fas function in type 1 diabetic patients without typical ALPS. Cell death induced by anti-Fas monoclonal antibody was investigated in T-cells from 13 patients with type 1 diabetes alone and 19 patients with type 1 diabetes plus other autoimmune diseases (IDDM-P). Moreover, we analyzed 19 patients with thyroiditis alone (TYR), because most IDDM-P patients displayed thyroiditis. Frequency of resistance to Fas-induced cell death was significantly higher in patients with IDDM-P (73%) than in type 1 diabetic (23%) or TYR (16%) patients or in normal control subjects (3%). The defect was specific because resistance to methyl-prednisolone-induced cell death was not significantly increased in any group. Fas was always expressed at normal levels, and no Fas mutations were detected in four Fas-resistant IDDM-P patients. Analysis of the families of two Fas-resistant patients showing that several members were Fas-resistant suggests that the defect has a genetic component. Moreover, somatic fusion of T-cells from Fas-resistant subjects and the Fas-sensitive HUT78 cell line generates Fas-resistant hybrid cells, which suggests that the Fas resistance is due to molecules exerting a dominant-negative effect on a normal Fas system. These data suggest that Fas defects may be a genetic factor involved in the development of polyreactive type 1 diabetes.  相似文献   

14.
Type 1 diabetes results from autoimmune destruction of the insulin-producing pancreatic beta-cells. Evidence from our laboratory and others has suggested that the IDDM2 locus determines diabetes susceptibility by modulating levels of insulin expression in the thymus: the diabetes-protective class III alleles at a repeat polymorphism upstream of the insulin gene are associated with higher levels than the predisposing class I. To directly demonstrate the effect of thymic insulin expression levels on insulin-specific autoreactive T-cell selection, we have established a mouse model in which there is graded thymic insulin deficiency in linear correlation with insulin gene copy numbers, while pancreatic insulin remains unaltered. We showed that mice expressing low thymic insulin levels present detectable peripheral reactivity to insulin, whereas mice with normal levels show no significant response. We conclude that thymic insulin levels play a pivotal role in insulin-specific T-cell self-tolerance, a relation that provides an explanation for the mechanism by which the IDDM2 locus predisposes to or protects from diabetes.  相似文献   

15.
Henry RA  Kendall PL  Thomas JW 《Diabetes》2012,61(8):2037-2044
Eliminating autoantigen-specific B cells is an attractive alternative to global B-cell depletion for autoimmune disease treatment. To identify the potential for targeting a key autoimmune B-cell specificity in type 1 diabetes, insulin-binding B cells were tracked within a polyclonal repertoire using heavy chain B-cell receptor (BCR) transgenic (VH125Tg) mice. Insulin-specific B cells are rare in the periphery of nonautoimmune VH125Tg/C57BL/6 mice and WT/NOD autoimmune mice, whereas they clearly populate 1% of mature B-cell subsets in VH125Tg/NOD mice. Autoantigen upregulates CD86 in anti-insulin B cells, suggesting they are competent to interact with T cells. Endogenous insulin occupies anti-insulin BCR beginning with antigen commitment in bone marrow parenchyma, as identified by a second anti-insulin monoclonal antibody. Administration of this monoclonal antibody selectively eliminates insulin-reactive B cells in vivo and prevents disease in WT/NOD mice. Unexpectedly, developing B cells are less amenable to depletion, despite increased BCR sensitivity. These findings exemplify how a critical type 1 diabetes B-cell specificity escapes immune tolerance checkpoints. Disease liability is corrected by eliminating this B-cell specificity, providing proof of concept for a novel therapeutic approach for autoimmune disease.  相似文献   

16.
Pihoker C  Gilliam LK  Hampe CS  Lernmark A 《Diabetes》2005,54(Z2):S52-S61
Islet cell autoantibodies are strongly associated with the development of type 1 diabetes. The appearance of autoantibodies to one or several of the autoantigens-GAD65, IA-2, or insulin-signals an autoimmune pathogenesis of beta-cell killing. A beta-cell attack may be best reflected by the emergence of autoantibodies dependent on the genotype risk factors, isotype, and subtype of the autoantibodies as well as their epitope specificity. It is speculated that progression to beta-cell loss and clinical onset of type 1 diabetes is reflected in a developing pattern of epitope-specific autoantibodies. Although the appearance of autoantibodies does not follow a distinct pattern, the presence of multiple autoantibodies has the highest positive predictive value for type 1 diabetes. In the absence of reliable T-cell tests, dissection of autoantibody responses in subjects of genetic risk should prove useful in identifying triggers of islet autoimmunity by examining seroconversion and maturation of the autoantibody response that may mark time to onset of type 1 diabetes. The complexity of the disease process is exemplified by multiple clinical phenotypes, including autoimmune diabetes masquerading as type 2 diabetes in youth and adults. Autoantibodies may also provide prognostic information in clinically heterogeneous patient populations when examined longitudinally.  相似文献   

17.
The loss of self-tolerance leading to autoimmune type 1 diabetes in the NOD mouse model involves at least 19 genetic loci. In addition to their genetic defects in self-tolerance, NOD mice resist peripheral transplantation tolerance induced by costimulation blockade using donor-specific transfusion and anti-CD154 antibody. Hypothesizing that these two abnormalities might be related, we investigated whether they could be uncoupled through a genetic approach. Diabetes-resistant NOD and C57BL/6 stocks congenic for various reciprocally introduced Idd loci were assessed for their ability to be tolerized. Surprisingly, in NOD congenic mice that are almost completely protected from diabetes, costimulation blockade failed to prolong skin allograft survival. In reciprocal C57BL/6 congenic mice with NOD-derived Idd loci, skin allograft survival was readily prolonged by costimulation blockade. These data indicate that single or multiple combinations of evaluated Idd loci that dramatically reduce diabetes frequency do not correct resistance to peripheral transplantation tolerance induced by costimulation blockade. We suggest that mechanisms controlling autoimmunity and transplantation tolerance in NOD mice are not completely overlapping and are potentially distinct, or that the genetic threshold for normalizing the transplantation tolerance defect is higher than that for preventing autoimmune diabetes.  相似文献   

18.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of tumor cells but not most normal cells. Its roles in normal nontransformed tissues are not clear. To explore the potential roles of TRAIL in type 1 diabetes, we examined the consequences of TRAIL blockade or TRAIL deficiency in two animal models of autoimmune diabetes. In the first model, NOD mice received an injection of a soluble TRAIL receptor to block TRAIL function. This significantly accelerated the diabetes and increased the degree of autoimmune inflammation in both pancreatic islets and salivary glands. The GAD65-specific immune responses were also significantly enhanced in animals that received the soluble TRAIL receptor. In the second model, we treated normal and TRAIL-deficient C57BL/6 mice with multiple low-dose streptozotocin to induce diabetes. We found that both the incidence and the degree of islet inflammation were significantly enhanced in TRAIL-deficient animals. On the basis of these observations, we conclude that TRAIL deficiency accelerates autoimmune diabetes and enhances autoimmune responses.  相似文献   

19.
It has been 100 years since the first successful clinical use of insulin, yet it remains the only treatment option for type 1 diabetes mellitus (T1DM) patients. Advances in diabetes care, such as insulin analogue therapies and new devices, including continuous glucose monitoring with continuous subcutaneous insulin infusion have improved the quality of life of patients but have no impact on the pathogenesis of the disease. They do not eliminate long-term complications and require several lifestyle sacrifices. A more ideal future therapy for T1DM, instead of supplementing the insufficient hormone production (a consequence of β-cell destruction), would also aim to stop or slow down the destructive autoimmune process. The discovery of the autoimmune nature of type 1 diabetes mellitus has presented several targets by which disease progression may be altered. The goal of disease-modifying therapies is to target autoimmune mechanisms and prevent β-cell destruction. T1DM patients with better β-cell function have better glycemic control, reduced incidence of long-term complications and hypoglycemic episodes. Unfortunately, at the time symptomatic T1DM is diagnosed, most of the insulin secreting β cells are usually lost. Therefore, to maximize the salvageable β-cell mass by disease-modifying therapies, detecting autoimmune markers in an early, optimally presymptomatic phase of T1DM is of great importance. Disease-modifying therapies, such as immuno- and regenerative therapies are expected to take a relevant place in diabetology. The aim of this article was to provide a brief insight into the pathogenesis and course of T1DM and present the current state of disease-modifying therapeutic interventions that may impact future diabetes treatment.  相似文献   

20.
Onset of type 1 diabetes: a dynamical instability.   总被引:11,自引:0,他引:11  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号