首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
J Lino  S Baranao  J M Hammond 《Endocrinology》1985,116(6):2143-2151
FSH, LH, and estradiol are known to modulate ovarian follicular differentiation. However, the cellular site of action and relative importance of the three hormones have remained uncertain. The recent development of a serum-free system for the culture of immature porcine granulosa cells has enabled us to reinvestigate these issues with better control of pituitary peptides and gonadal steroids. Progesterone production in response to FSH was higher in cells cultured in serum-free complete medium than in those grown in the presence of 10% fetal calf serum [10-fold vs. 1.5-2 fold (control)]. Ovine LH alone was also able to stimulate progesterone production in serum-free free complete medium (6-fold); this effect could not be accounted for by FSH contamination. The LH stimulation, however, was enhanced by FSH. Insulin was required for both FSH and LH stimulation of progesterone production. Estradiol stimulated progesterone production per se (2- to 3-fold) and also enhanced FSH and LH actions. The estimated ED50 for estradiol in FSH-treated cells was 20 ng/ml. Maximal levels of progesterone after 6 days were observed when the combination of FSH, LH, and estradiol was present from the onset of the culture. Incubations carried out in the presence of 5-cholesten-3 beta-25-diol indicated that the hormonal interactions take place, at least in part, at the level of the side-chain cleavage enzyme. These results indicate that FSH is the most important hormonal stimulus for progesterone synthesis in immature granulosa cells. However, LH, estradiol, and insulin (or insulin-like growth factors) exert direct actions on the granulosa cell that may be required for the development of optimal steroidogenic potential.  相似文献   

2.
T H Welsh  L Z Zhuang  A J Hsueh 《Endocrinology》1983,112(6):1916-1924
The influence of estrogens on gonadotropin-stimulated production of progesterone and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OH-P) was examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of FSH in the presence or absence of either diethylstilbestrol (DES) or estradiol. FSH treatment increased progestin production in a dose-dependent manner, whereas treatment with estrogens alone were ineffective. In contrast, concomitant addition of either DES or estradiol augmented FSH-stimulated production of progesterone and 20 alpha-OH-P. Increasing concentrations of estradiol (10(-10) - 10(-7) M) augmented the stimulatory effect of FSH (30 ng/ml) on progesterone production in a dose-dependent manner with ED50 values of approximately 3 X 10(-9) M. The facilitatory action of estradiol was time-related, becoming significant after 36 h of treatment. Granulosa cells were also cultured for 2 days with FSH to induce functional LH receptors. The FSH-primed cells were treated for an additional 3 days with increasing concentrations of LH (0.3-30 ng/ml) in the absence or presence of DES (10(-7) M). LH stimulated progesterone and 20 alpha-OH-P production in a dose-dependent manner, whereas concomitant addition of DES further enhanced LH-induced progestin biosynthesis. (Bu)2cAMP also increased progesterone and 20 alpha-OH-P production by the granulosa cells; however, concurrent addition of DES did not augment the actions of (Bu)2cAMP. The effect of estrogens on gonadotropin-stimulated cAMP accumulation was also examined. FSH treatment dose-dependently increased cAMP accumulation, whereas concomitant treatment with estradiol further increased the FSH action. Similarly, LH treatment also stimulated cAMP accumulation in FSH-primed cells, whereas concurrent addition of DES further augmented LH action. Thus, the stimulatory effect of estrogens upon gonadotropin-stimulated progestin production may be related to the augmentation of cAMP biosynthesis. The present observations suggest that intraovarian estrogens may act locally to enhance the sensitivity of granulosa cells to FSH and LH, thereby increasing the biosynthesis of progestins and cAMP by the granulosa cells.  相似文献   

3.
The effect of epidermal growth factor (EGF) on inhibin production by rat granulosa cells has been investigated using a recently developed inhibin radioimmunoassay (RIA). Granulosa cells from intact immature diethylstilbestrol (DES)-treated rats were exposed to EGF (1-100 ng/ml) in the presence or absence of FSH for varying periods in vitro. An inhibitory effect of EGF on basal inhibin secretion was evident at day 2 of culture and was sustained over the subsequent 2 days. This action on basal inhibin secretion was dose-dependent, and maximal inhibition to 50% of control was observed at a dose of 100 ng EGF/ml at day 4. EGF also inhibited basal progesterone secretion in a similar manner. EGF caused a dose-dependent inhibition of FSH-stimulated inhibin secretion, with an ID50 (0.5 ng/ml, 0.08 nM) about one-eighth that in the absence of FSH. In addition, EGF also inhibited the stimulation of inhibin production by 8-Br-cAMP and prostaglandin E2. To exclude the possibility that EGF was toxic to the granulosa cells, several biochemical parameters related to cell growth were measured. EGF treatment did not alter cell number but slightly increased [3H]thymidine incorporation into cellular DNA. The effect of EGF on [35S]methionine incorporation into cellular protein was biphasic, being stimulatory at doses less than 10 ng/ml but inhibitory at 100 ng/ml. The present data have demonstrated a direct inhibitory effect of EGF on basal and FSH-stimulated inhibin production by granulosa cells suggesting an important regulatory role of this growth factor in the differentiation of ovarian function.  相似文献   

4.
The direct effect of somatomedin-C (Sm-C) and FSH on inhibin production by rat granulosa cells in vitro has been examined. FSH stimulated accumulation of inhibin in culture media in a dose-dependent manner with maximal stimulation (6-fold) being observed at a dose of 300 ng FSH/ml. Addition of Sm-C (30 ng/ml) either alone or in the presence of FSH (3-300 ng/ml) increased inhibin production (up to 5-fold). Sm-C alone was effective over the physiological dose range of 3-100 ng/ml. Concomitant addition of FSH (100 ng/ml) and Sm-C (3-100 ng/ml) resulted in a significant increase in inhibin production at all doses of Sm-C. The dose-dependent effects of FSH and Sm-C were also time dependent with a synergistic effect apparent after 48 h of culture. The Sm-C induced FSH inhibitory activity of granulosa cell culture media was confirmed as authentic inhibin by the demonstration of a dose-dependent neutralization of this activity by a monoclonal antibody raised against purified bovine inhibin. The data indicate a direct role for both FSH and Sm-C in ovarian inhibin production and provide additional evidence for an autocrine-paracrine role for Sm-C in granulosa cell differentiation.  相似文献   

5.
Effects of inhibin (recombinant human inhibin-A) on ovarian androgen synthesis were tested in vitro using serum-free monolayer cultures of human thecal cells. Treatment for 4 days with inhibin alone at doses between 10 and 100 ng/ml caused modest (approximately 2-fold) increases in production of androgen (androstenedione and dehydroepiandrosterone): similar to the maximal level of stimulation caused by luteinizing hormone (LH) (10 ng/ml) alone but only about one-third of that caused by insulin-like growth factor I (IGF-I) (30 ng/ml) alone. Combined treatment with LH and inhibin elicited additive effects on androgen production whereas LH and IGF-I were synergistic, giving rise to androgen production rates at least 40 times greater than control. Additional presence of inhibin caused up to 10-fold augmentation of the response to LH + IGF-I. Activin (recombinant human activin-A) was previously shown to inhibit LH + IGF-I-induced androgen synthesis in this human thecal cell culture system. In the present study we found that the additional presence of inhibin (greater than 1 ng/ml) completely neutralized this inhibitory action of activin (10 ng/ml). These effects of inhibin were dose-dependent (ED50 1-10 ng/ml) and maximal at approximately 100 ng/ml. Inhibin stimulation of androgen synthesis occurred in the absence of measurable effects on progesterone production, and cell numbers in cultured cell monolayers were unaltered by the protein. It is concluded that inhibin exerts potent and selective stimulation of human thecal cell androgen synthesis in vitro. These results a paracrine role for inhibin(s) in modulating follicular androgen biosynthesis in the human ovary.  相似文献   

6.
C Wang  V Chan 《Endocrinology》1982,110(4):1085-1093
The effect of PRL on ovarian steroidogenesis was studied in cultured granulosa cells isolated from follicles of mature cycling rats on the morning of proestrus. Ovine PRL 10-1000 ng/ml) inhibited estradiol production but stimulated progesterone biosynthesis in a dose-dependent manner. The effect of PRL was most prominent after 4 days of culture: 1000 ng/ml PRL suppressed estradiol production by 80% but increased progesterone synthesis by 290%, whereas the lower dose of 10 ng/ml inhibited estrogen secretion by 20% without altering progesterone synthesis. The divergent effect of PRL was not shown to be species specific, since ovine, rat and human PRL had similar effects. Using increasing concentrations of androstenedione (the aromatase substrate), estrogen secretion remained suppressed and progesterone production was stimulated by PRL. FSH stimulated both estrogen and progesterone production. The FSH-induced increased in estrogen production was inhibited by concomitant treatment with PRL. In contrast, PRL and FSH had an additive action in stimulating progesterone production. Although LH alone had no effect on steroidogenesis, concomitant treatment with LH and PRL resulted in a stimulation of progesterone production that was additive. This study demonstrates that PRL acts directly on granulosa cells of Graafian follicles of adult cycling rats to stimulate the secretion of progesterone and to suppress estradiol production.  相似文献   

7.
Roles of follicle-stimulating hormone (FSH) and sex steroids in regulating the expression of mRNA species encoding the alpha-, beta A- and beta B-subunits of inhibin were studied in cultured granulosa cells from immature rat ovaries. Inhibin subunit mRNAs were detected by Northern blot analysis of total RNA extracted from granulosa cell monolayers which had been incubated for 48 h in serum-free medium containing FSH (100 ng/ml) and/or a steroid (10(-6) M): estradiol (E), testosterone (T) or 5 alpha-dihydrotestosterone (DHT). Levels of mRNA encoding each inhibin subunit in untreated (control) cultures were low. In cultures treated with FSH alone, levels of inhibin alpha-, beta A- and beta B-subunit mRNA were approximately 60-fold, 70-fold and 66-fold greater than control, respectively. In cultures treated with E alone, levels of inhibin alpha- and beta B-subunit mRNA were elevated approximately 4-fold and 2-fold, respectively, but the level of inhibin beta A-subunit mRNA was not measurably affected. Treatment with T or DHT alone had no consistent effect on the levels of any inhibin subunit mRNA. The stimulatory effects of FSH were not consistently altered by the presence of either androgen or estrogen. These results confirm the role of FSH in regulating inhibin alpha-subunit gene expression and provide direct evidence that both inhibin beta-subunit genes are inducible by FSH in granulosa cells. All three inhibin subunit mRNAs followed the same pattern, suggesting that their expression is coordinately regulated by FSH during granulosa cell differentiation.  相似文献   

8.
Direct roles of follicle-stimulating hormone (FSH)-suppressing protein (FSP) and activin in regulation of ovarian granulosa cell differentiation have been reported recently. The present study further investigated the effects of these peptides on steroidogenesis and inhibin production as well as cAMP generation in cultured granulosa cells from immature, diethylstilbestrol (DES)-treated rats. In the presence of FSH (20 ng/ml) and activin (30 ng/ml), which enhanced FSH-induced aromatase activity, progesterone production and inhibin production, FSP (1-100 ng/ml) reversed the stimulating activities of activin in a dose-dependent manner. In addition, activin reversed the inhibitory effects of FSP on FSH-induced aromatase activity and inhibin production. In the presence of FSH, activin enhanced FSH-stimulated extracellular cAMP accumulation, and FSP caused a reduction in extracellular cAMP. Activin but not FSP also stimulated basal cAMP level. In the presence of forskolin, a potent stimulant of adenyl cyclase activity which stimulated extracellular cAMP, aromatase activity, progesterone production and inhibin production, activin augmented the effect of forskolin on all four parameters, whereas FSP significantly enhanced progesterone production without changing the other three parameters. Our findings suggest that activin action on rat granulosa cells may be mediated via regulation of cAMP generation. The action of FSP and FSH and/or activin-dependent, consistent with either an action as an activin binding protein or by a direct action of FSP on the granulosa cells.  相似文献   

9.
Transforming growth factor beta (TGF beta) caused a dose-dependent increase in both basal and follicle-stimulating hormone (FSH)-stimulated inhibin production by rat granulosa cells in culture. The TGF beta dose-response curve in the absence of FSH was approximately parallel to that in the presence of either a minimally effective dose (1 ng/ml) or a maximally effective dose (30 ng/ml) of FSH, suggesting an additive effect of these two agents on inhibin production. There was also a suggestion of an increased sensitivity of granulosa cell inhibin production to FSH when the cells were coincubated with TGF beta. The time course study showed that similar to FSH, the stimulatory effect of TGF beta on basal and FSH-stimulated inhibin production was evident on day 1 and was maximal by day 4. In addition, epidermal growth factor (EGF) reduced FSH-stimulated inhibin production with an ID50 value of 1.3 ng/ml. Coincubation of cells with EGF and 1 ng TGF beta/ml enhanced greatly the inhibitory action of EGF on FSH-induced inhibin production (ID50 less than 0.1 ng/ml). It is concluded that: (1) TGF beta directly stimulates inhibin production by rat granulosa cells and the combined effect with FSH was largely additive, (2) the inhibitory effect of EGF on FSH-induced inhibin production was enhanced by TGF beta, (3) individual members of the TGF beta/inhibin gene family regulate ovarian function, not only by direct action on follicle cells but also indirectly by influencing the production rate of other members of that family.  相似文献   

10.
In the present study, we have examined the role of hormones and growth factors in regulating dimeric inhibin production in immature rat granulosa cells. Purified granulosa cells from estrogen-primed immature rats were cultured under defined conditions. Inhibins A and B in the culture media were measured using a two-site enzyme-linked immunosorbent assay specific for each dimer. Under basal conditions, granulosa cells produced 14-fold more inhibin A than inhibin B (inhibin A, 2.0; inhibin B, 0.14 ng/ml, measured against human standards; average A/B apparent ratio, 14). Addition of increasing doses of FSH elicited dose-dependent increases in both inhibins, the effects being more pronounced on inhibin A than on inhibin B (9.4- and 4.1-fold increases, respectively; average A/B ratio, 34). Estradiol, when added alone, stimulated inhibin A production 3- to 6-fold, whereas minor changes were observed in inhibin B production. Insulin-like growth factor-I produced a similar stimulation of both inhibins (3-fold stimulation over control). This growth factor, however, induced a marked dissociation in the sensitivity of inhibins A and B to FSH stimulation, with maximal stimulation of inhibin B observed at comparatively lower concentrations of the gonadotropin. Transforming growth factor-beta (TGF-beta, 5 ng/ml) had a more marked stimulatory effect on inhibin B than on inhibin A production (7- to 14-fold vs. 2- to 5-fold for inhibin B and A, respectively). A more pronounced differential stimulation of inhibin B was also exerted by another member of the TGF-beta superfamily, activin A (A/B ratio, 0.66). This preferential stimulation of inhibin B by TGF-beta and activin A was amplified in the presence of FSH. Coculture of rat granulosa cells with freshly isolated bovine oocytes was also associated with a marked stimulation of inhibin B production (100-fold increase) and a comparatively lower stimulation of inhibin A (10-fold increase; A/B ratio, 1). The discrepancy between the proportion of inhibin dimers in serum (A/B ratio, 0.13) and those produced by untreated granulosa cells may suggest that intraovarian factors, such as TGF-beta, activin A, or oocyte-derived factor(s), are responsible for the shift of the ratio toward the predominance of inhibin B.  相似文献   

11.
J D Veldhuis 《Endocrinology》1985,117(3):1076-1083
Although both inhibitory and stimulatory actions of estradiol on swine granulosa cells have been described, the bases for these inconsistent effects are not clear. We have tested properties of ovarian follicles and in vitro culture conditions that result in consistently stimulatory effects of estradiol on progesterone biosynthesis. Stimulatory actions of estradiol (in contrast to inhibitory effects) were critically dependent upon the density of granulosa cells in culture and the size and maturational status of the parent Graafian follicles. Granulosa cells isolated from small, rather than medium or large sized, swine follicles exhibited the greatest peak response to estradiol, although half-maximally stimulatory concentrations (ED50) of estradiol were similar (mean, 81 ng/ml). Granulosa cells from atretic follicles also secreted increased quantities of progesterone in response to estradiol, but the ED50 for estrogen stimulation was significantly higher (ED50 = 322 ng/ml estradiol) than that of comparable healthy follicles (ED50 = 109 ng/ml). This estrogen-responsive system was used to test the mechanisms subserving estrogen's trophic actions on granulosa cells. Estradiol significantly enhanced the activity of 3 beta-hydroxysteroid dehydrogenase with consequently increased production of progesterone and 20 alpha-hydroxypregn-4-en-3-one. Estrogen also augmented functional cholesterol side-chain cleavage activity in a dose- and time-dependent fashion with a resultant increase in pregnenolone biosynthesis. Moreover, parallel observations documented concordant dose responses for the synthesis of all three major progestins by pig granulosa cells. The trophic actions of estrogen on the steroidogenic pathway were associated with enhanced hydrolysis of endogenous cholesteryl ester stores but were not significantly antagonized by inhibition of de novo cholesterol biosynthesis. We conclude that suitable follicle selection and appropriate in vitro culture conditions provide a consistently estrogen-responsive granulosa-cell system, in which estradiol modulates certain key aspects of progestin and cholesterol metabolism. These trophic actions of estrogen are likely to prepare granulosa cells for the increased rates of progesterone biosynthesis ultimately required by fully differentiated luteal cells.  相似文献   

12.
13.
Ovarian granulosa cells produce inhibin and activin, structurally related proteins with potentials to directly modulate follicular steroidogenesis. The aim of the present study was to compare development-related effects of inhibin-A and activin-A on steroidogenesis in marmoset monkey (Callithrix jacchus) granulosa cells. Granulosa cells from "immature" (< 1.0 mm diameter) and "mature" (> 2 mm diameter) follicles were incubated in serum-free culture medium for 96 h with and without peptide (1-100 ng/mL), in the presence and absence of gonadotropins [human (h) FSH or hLH] (10 ng/mL). Spent medium was collected and stored frozen for progesterone assay. Aromatase activity was determined by incubating cells for a further 6 h in the presence of 1 mumol testosterone and assaying accumulation of oestradiol. Granulosa cells from immature follicles showed characteristically low basal rates of steroid synthesis that were unaffected by treatment alone with either inhibin or activin. Treatment with hFSH stimulated both progesterone production and aromatase activity. Cotreatment with activin and hFSH further enhanced aromatase activity by up to 4-fold. The progesterone response to activin plus hFSH was related to the effect of hFSH in the absence of activin: high-level responsiveness to hFSH was suppressed by activin while low-level responsiveness was enhanced. Inhibin had no significant effect on FSH-responsive progesterone production, but at high concentrations (> 10 ng/mL) it caused slight (up to 30%) reduction in FSH-induced aromatase activity. Granulosa cells from mature follicles showed relatively high basal rates of steroidogenesis, and treatment with inhibin did not influence either basal or gonadotropin responsive steroidogenesis. Treatment with activin had divergent effects on aromatase activity and progesterone synthesis in that it increased both basal and hLH-responsive aromatase activity (up to 11-fold), had no effect on basal progesterone production, and markedly suppressed (by more than 50%) the progesterone response to hLH. These data reveal development-dependent effects of inhibin and activin on granulosa cell steroidogenesis that are likely to have physiological relevance to ovarian function in vivo.  相似文献   

14.
In addition to gonadotropins, steroidogenesis and proliferation of granulosa cells during follicular development are controlled by a number of intraovarian factors including growth differentiation factor-9 (GDF-9), bone morphogenetic protein-4 (BMP-4), and IGF-I. The objective of this study was to determine the effect of GDF-9 and BMP-4 and their interaction with IGF-I and FSH on ovarian granulosa cell function in cattle. Granulosa cells from small (1-5 mm) and large (8-22 mm) follicles were collected from bovine ovaries and cultured for 48 h in medium containing 10% fetal calf serum and then treated with various hormones in serum-free medium for an additional 48 h. We evaluated the effects of GDF-9 (150-600 ng/ml) and BMP-4 (30 ng/ml) during a 2-day exposure on hormone-induced steroidogenesis and cell proliferation. In FSH plus IGF-I-treated granulosa cells obtained from small follicles, 300 ng/ml GDF-9 reduced (P < 0.05) progesterone production by 15% and 600 ng/ml GDF-9 completely blocked (P < 0.01) the IGF-I-induced increase in progesterone production. In comparison, 300 and 600 ng/ml GDF-9 decreased (P < 0.05) estradiol production by 27% and 71% respectively, whereas 150 ng/ml GDF-9 was without effect (P > 0.10). Treatment with 600 ng/ml GDF-9 increased (P < 0.05) numbers (by 28%) of granulosa cells from small follicles. In the same cells treated with FSH but not IGF-I, co-treatment with 600 ng/ml GDF-9 decreased (P < 0.05) progesterone production (by 28%), increased (P < 0.05) cell numbers (by 60%), and had no effect (P > 0.10) on estradiol production. In FSH plus IGF-I-treated granulosa cells obtained from large follicles, GDF-9 caused a dose-dependent decrease (P<0.05) in IGF-I-induced progesterone (by 13-48%) and estradiol (by 20-51%) production. In contrast, GDF-9 increased basal and IGF-I-induced granulosa cell numbers by over 2-fold. Furthermore, treatment with BMP-4 also inhibited (P < 0.05) steroidogenesis by 27-42% but had no effect on cell numbers. To elucidate downstream signaling pathways, granulosa cells from small follicles were transfected with similar to mothers against decapentaplegics (Smad) binding element (CAGA)- or BMP response element (BRE)-promoter reporter constructs. Treatment with GDF-9 (but not BMP-4) activated the Smad3-induced CAGA promoter activity, whereas BMP-4 (but not GDF-9) activated the Smad1/5/8-induced BRE promoter activity. We have concluded that bovine granulosa cells are targets of both GDF-9 and BMP-4, and that oocyte-derived GDF-9 may simultaneously promote granulosa cell proliferation and prevent premature differentiation of the granulosa cells during growth of follicles, whereas theca-derived BMP-4 may also prevent premature follicular differentiation.  相似文献   

15.
The effects of forskolin on the acquisition of differentiated functions in cultured ovarian granulosa cells were compared with the actions of FSH and prostaglandin E2 (PGE2). In 48-h granulosa cell cultures from immature diethylstilbestrol-treated rats, 100 microM forskolin caused a 45-fold increase in cAMP accumulation and stimulated progesterone production from undetectable levels (less than 0.2 ng/ml) to 80 ng/ml. The forskolin-induced increase in cAMP was similar to the maximum response to FSH, and progesterone production was about 50% of that elicited by FSH. PGE2 also enhanced cAMP and progesterone production in a concentration-dependent manner, with a maximum 8-fold increase in cAMP accumulation and an increase in progesterone to 5.6 ng/ml when the PGE2 concentration was 10 micrograms/ml. The time course of forskolin-stimulated cAMP production was notable for its rapid rise to the maximum level during the first 24 h of culture, followed by a plateau for up to 72 h. This contrasted with FSH-stimulated cAMP production, which increased progressively for up to 72 h when measured at 24-h intervals. LH receptor levels were low in untreated cells and after exposure to the various stimuli for 24 h, but increased 9- to 11-fold after culture with FSH or forskolin for 48-72 h. PGE2-induced LH receptor formation was about 20% of that seen after FSH stimulation. Forskolin enhanced cAMP and progesterone production in response to FSH and choleragen, but impaired the effects of these ligands on LH receptor formation. Exposure of the cultured cells to a potent GnRH agonist inhibited forskolin-induced progesterone and LH receptor synthesis, but did not influence forskolin-stimulated cAMP production. These results demonstrate the ability of forskolin to serve as a nonhormonal stimulator of granulosa cell differentiation and indicate the importance of cAMP in this process, as well as the ability of GnRH agonists to exert inhibitory effects on post-cAMP steps in cellular maturation.  相似文献   

16.
Control of immunoactive inhibin production by human granulosa cells   总被引:2,自引:0,他引:2  
OBJECTIVE: The aim was to determine the relation between stage of antral follicular development and granulosa cell production of immunoactive inhibin. DESIGN: Primary granulosa cell cultures in serum-free Medium 199 were incubated at 37 degrees C for 96 hours with a change of medium at 48 hours. Inhibin and steroid levels in culture medium were determined by radioimmunoassay. The inhibin assay was based on the N-terminal 1-26 amino acid sequence of the alpha-chain of porcine 32 kDa inhibin using pl alpha 1-26-GLY27-TYR28 as the immunogen, tracer and standard. PATIENTS: Granulosa cells were obtained from the ovaries of women with regular menstrual cycles undergoing hysterectomy with unilateral or bilateral oophorectomy to treat non-malignant gynaecological disease. RESULTS: Basal production of immunoactive inhibin by granulosa cells from presumptive preovulatory follicles (greater than 15 mm diameter) was 5-13 times higher than that by granulosa cells from immature (less than 10 mm diameter) or intermediately mature (10-15 mm diameter) follicles. Basal production of progesterone and oestradiol followed a qualitatively similar pattern, establishing a positive relation between functional granulosa cell maturity and inhibin production. Treatment of granulosa cell cultures from immature follicles with follicle-stimulating hormone (FSH), but not luteinizing hormone (LH), increased inhibin production, time and dose dependently. FSH, but not LH, also brought about similar increases in steroid hormone synthesis by granulosa cells from immature follicles. The stimulatory effect of FSH on granulosa cell inhibin production was augmented at least twofold by the presence of testosterone or 5 alpha-dihydrotestosterone (1.0 mumol/l) but was unaffected by oestradiol. Granulosa cells from intermediately mature follicles undertook variable degrees of both FSH and LH-responsive inhibin production which generally corresponded with gonadotrophin-responsive steroid production. Granulosa cells from presumptive preovulatory follicles showed inconsistent inhibin responses to FSH. However, LH caused marked (at least twofold) increases in inhibin production, paralleling LH-responsive steroid production. CONCLUSION: These results show that for human beings, granulosa cell capacity to produce immunoactive inhibin in vitro increases with follicular maturity. FSH, but not LH, stimulates inhibin production by immature granulosa cells and this response to FSH is subject to modulation by androgen. During preovulatory follicular development, production of inhibin, like steroids, becomes increasingly responsive to LH. Such a development-related pattern of granulosa cell inhibin production helps explain how, post-ovulation, the corpus luteum is able to secrete inhibin as well as steroids. It is also compatible with the concept that locally produced inhibin could participate in the paracrine control of follicular development during the human menstrual cycle.  相似文献   

17.
The effects of recombinant rat interferon-gamma (rRaIFN-gamma) and rat IFN (RaIFN, a mixture of IFN-gamma and -alpha) on basal and FSH-induced ovarian granulosa cell function were studied. Granulosa cells were harvested from diethylstilboestrol-treated immature rats and cultured (2 x 10(5) viable cells/well per 0.5 ml) in serum-free medium with or without treatment for 48 h. In the presence of FSH (20 ng/ml), rRaIFN-gamma (10-1000 U/ml) significantly inhibited FSH-stimulated aromatase activity (76.4 +/- 2.3% maximum inhibition compared with FSH treatment alone), inhibin (40.4 +/- 3.7%), progesterone (47.7 +/- 8.6%) and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OHP) (51.8 +/- 1.7%) production in a dose-dependent manner. Furthermore, rRaIFN-gamma inhibited FSH- and forskolin (FSK; 30 mumol/l)-induced extracellular cAMP accumulation (46.0 +/- 6.6% and 29.1 +/- 7.3% respectively). The inhibitory effect of rRaIFN-gamma on FSK-induced cAMP was accompanied by decreased FSK-induced aromatase activity, inhibin, progesterone and 20 alpha-OHP production. rRaIFN-gamma had no detectable effect on aromatase activity, progesterone production and 20 alpha-OHP production in the absence of FSH, but significantly stimulated basal inhibin production by 1.5-fold. rRaIFN-gamma alone also caused a small but significant increase in basal levels of cAMP. The time-course studies showed that FSH-induced aromatase activity and inhibin production were consistently suppressed by rRaIFN-gamma, FSH-induced progesterone and 20 alpha-OHP were inhibited at 1 and 2 days and then stimulated on days 3, 4 and 5 relative to FSH alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The time- and dose-dependent effects of bovine activin A and bovine follicle stimulating hormone (FSH) suppressing protein (FSP) or follistatin on basal and FSH-induced steroidogenesis and inhibin production were studied in granulosa cells from immature, diethylstilbestrol (DES)-treated rats. In the presence of rat FSH (20 ng/ml) which stimulates aromatase activity and the production of progesterone and inhibin, activin (0.3-100 ng/ml) augmented all three parameters, whereas FSP (0.3-100 ng/ml) enhanced progesterone production and attenuated the other two parameters. In the absence of FSH, the basal parameters were unaffected by treatment with either activin or FSP alone, except for a statistically significant increase in basal inhibin in the presence of activin alone (P less than 0.05, at doses of 30 and 100 ng/ml). Neither activin nor FSP influenced the timing of the maxima of FSH-induced activities over 5 days. These findings suggest that activin and FSP, both present in follicular fluid, may play an important role in the local regulation of granulosa cell differentiation.  相似文献   

19.
Pituitary gonadotropins mediate part of their effects on ovarian function via local hormones and growth factors produced by granulosa cells. Activins and inhibins are among these factors, and they have often opposite effects on various components of the reproductive system. The purpose of this study was to investigate the regulation of ovarian activin A secretion using cultured human ovarian granulosa-luteal cells as a model. The granulosa-luteal cells, obtained from women taking part in an in vitro fertilization program, were cultured and treated with FSH, LH, 8-bromo cAMP (8-BrcAMP, a protein kinase A activator) and 12-O-tetradecanoyl phorbol-13-acetate (TPA, a protein kinase C activator). Conditioned cell culture media were analyzed for activin A, inhibin A and progesterone concentrations with specific enzyme immunoassays. FSH and LH (1-100 IU/l) increased activin A secretion with 24 h of treatment (to 132% and 253% of control respectively; P<0.05 for both), but their effects were inhibitory in 48-h treatments (26% and 16% decreases respectively; P<0.05 for both). In the same experiments, FSH and LH increased inhibin A and progesterone secretion after both 24 and 48 h of treatment. 8-BrcAMP (0.1-100 muM) increased activin A in 24- and 48-h experiments (to 206% and 148% of control respectively; P<0.01 for both). Inhibin A and progesterone secretion were stimulated by 8-BrcAMP time- and dose-dependently. TPA increased activin A secretion dose-dependently (0.1-100 ng/ml) in both 24- and 48-h experiments. At 100 ng/ml concentration, it increased activin A up to 61-fold and inhibin A up to 16-fold of control in 24-h experiments. We conclude that gonadotropins regulate immunoreactive activin A secretion biphasically in cultured human granulosa-luteal cells: initial stimulation is followed by inhibition. In contrast, gonadotropins increase inhibin A and progesterone secretion continuously. Consequently, continuing gonadotropin stimulation leads to a decreasing activin:inhibin ratio, which may have a significant role in the local fine-tuning of ovarian steroidogenesis.  相似文献   

20.
Effects of oxytocin on steroidogenesis by bovine theca and granulosa cells   总被引:1,自引:0,他引:1  
Oxytocin (OT) is secreted during the final stages of bovine follicular development. To test OT's potential role as a regulator of follicular steroidogenesis, theca and granulosa cells were isolated from bovine preovulatory follicles 48 h after initiation of luteolysis with prostaglandin F2 alpha, and cultured with graded doses of OT (0, 0.5, 5, 50, and 500 mIU/ml). Granulosa cells were cultured with testosterone (0.5 microM) in either defined medium or medium containing 10% fetal bovine serum in the presence or absence of FSH (300 ng/ml); medium was collected and replaced daily for 5 days. In defined medium, oxytocin alone significantly increased progesterone production by granulosa cells (P less than 0.001) in a dose-dependent manner; over 5 days, doses of 0.5, 5, 50, and 500 mIU/ml OT caused 1.7-, 2.0-, 2.2-, and 2.6-fold increases. FSH enhanced progesterone 5-fold, but no dose of OT increased progesterone in the presence of FSH. OT also elevated progesterone in serum-containing medium (P less than 0.005), but the magnitude of its effects was lower (1.07-, 1.1-, 1.2-, and 1.4-fold increases with 0.5, 5, 50, and 500 mIU/ml OT). OT had little effect on estradiol secretion by granulosa cells cultured with or without FSH. To test the specificity of OT's effects on progesterone production by granulosa cells, granulosa cells were treated with graded doses of an OT antagonist (0, 1, 10, 100, and 1000 ng/ml) in the presence or absence of OT (5 and 50 mIU/ml). Progesterone production by granulosa cells in the presence of the antagonist alone was similar to production in control cultures. The stimulatory effects of 5 and 50 mIU OT were completely abolished in the presence of 100 or 1000 ng antagonist, respectively (P less than 0.01). Preparations of theca interna were cultured in defined medium with graded doses of OT (0, 0.5, 5, 50, and 500 mIU/ml) in the presence or absence of LH (300 ng/ml), with collection and replacement of medium at 3, 6, 12, 24, 48, and 72 h. LH alone increased both progesterone (12-fold) and androstenedione (4-fold) production over controls. However, no dose of OT significantly affected either progesterone or androstenedione production. These results show that OT stimulates progesterone production by granulosa cells, and thus, suggest that OT regulates steroidogenesis in bovine granulosa cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号