首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guo L  Lu X  Kang SM  Chen C  Compans RW  Yao Q 《Virology》2003,313(2):502-513
To enhance mucosal immune responses using simian/human immunodeficiency virus-like particles (SHIV VLPs), we have produced novel phenotypically mixed chimeric influenza HA/SHIV VLPs and used them to immunize C57BL/6J mice intranasally. Antibody and cytotoxic T-cell (CTL) responses as well as cytokine production in both systemic and mucosal sites were compared after immunization with SHIV VLPs or chimeric HA/SHIV VLPs. By using enzyme-linked immunosorbent assay (ELISA), the levels of serum IgG and mucosal IgA to the HIV envelope protein (Env) were found to be highest in the group immunized with chimeric HA/SHIV VLPs. Furthermore, the highest titer of serum neutralizing antibody against HIV Env was found with the group immunized with chimeric HA/SHIV VLPs. Analysis of the IgG1/IgG2a ratio indicated that a T(H)1-oriented immune response resulted from these VLP immunizations. HA/SHIV VLP-immunized mice also showed significantly higher CTL responses than those observed in SHIV VLP-immunized mice. Moreover, a MHC class I restricted T-cell activation ELISPOT assay showed a mixed type of T(H)1/T(H)2 cytokines in the HA/SHIV VLP-immunized mice, indicating that the chimeric VLPs can enhance both humoral and cellular immune responses to the HIV Env protein at multiple mucosal and systemic sites. The results indicate that incorporation of influenza HA into heterotypic VLPs may be highly effective for targeting vaccines to mucosal surfaces.  相似文献   

2.
To enhance mucosal immune responses using simian-human immunodeficiency virus-like particles (SHIV VLPs) as a mucosal HIV vaccine, we have produced phenotypically mixed, chimeric influenza HA/SHIV 89.6 VLPs and used them to immunize C57B/6J mice intranasally. Systemic and mucosal antibody responses, as well as cytotoxic T cell (CTL) responses, were compared in groups immunized with SHIV 89.6 VLPs or HA/SHIV 89.6 VLPs. Intranasal immunizations were given using VLPs either with or without the addition of the mucosal adjuvant cholera toxin. Total serum IgG, IgG1 and IgG2a, and IgA in saliva, vaginal lavage, lung wash, and fecal extracts were evaluated by enzyme-linked immunosorbent assay (ELISA). The level of serum IgG production to HIV Env was highest in the group immunized with chimeric HA/SHIV 89.6 VLPs. Similarly, mucosal IgA production was also enhanced in the mucosal HA/SHIV 89.6 VLP-immunized group. Analysis of the IgG1/IgG2a ratio indicated that a Th1-oriented immune response resulted from these VLP immunizations. High levels of serum IgG and mucosal IgA against influenza virus were also detected in mice immunized with HA/SHIV VLPs. HA/SHIV 89.6 VLP-immunized mice also showed significantly higher CTL responses than those observed in SHIV 89.6 VLP-immunized mice. Furthermore, a Major Histocompatibility Complex (MHC)-class-I-restricted T cell activation ELISPOT assay showed elevated interferon-gamma, interleukin-2, and interleukin-12 production in HA/SHIV 89.6 VLP-immunized mice, indicating that phenotypically mixed HA/SHIV 89.6 VLPs can enhance both humoral and cellular immune responses at multiple mucosal sites. Therefore, chimeric HA-containing VLPs represent a potential approach for mucosal immunization for prevention of HIV infection.  相似文献   

3.
The alarming rise of morbidity and mortality caused by influenza pandemics and epidemics has drawn attention worldwide since the last few decades. This life‐threatening problem necessitates the development of a safe and effective vaccine to protect against incoming pandemics. The currently available flu vaccines rely on inactivated viral particles, M2e‐based vaccine, live attenuated influenza vaccine (LAIV) and virus like particle (VLP). While inactivated vaccines can only induce systemic humoral responses, LAIV and VLP vaccines stimulate both humoral and cellular immune responses. Yet, these vaccines have limited protection against newly emerging viral strains. These strains, however, can be targeted by universal vaccines consisting of conserved viral proteins such as M2e and capable of inducing cross‐reactive immune response. The lack of viral genome in VLP and M2e‐based vaccines addresses safety concern associated with existing attenuated vaccines. With the emergence of new recombinant viral strains each year, additional effort towards developing improved universal vaccine is warranted. Besides various types of vaccines, microRNA and exosome‐based vaccines have been emerged as new types of influenza vaccines which are associated with new and effective properties. Hence, development of a new generation of vaccines could contribute to better treatment of influenza.  相似文献   

4.
Norovirus (NoV) genogroup I (GI) and GII are responsible for most human infections with NoV. Because of the high genetic variability of NoV, natural infection does not induce sufficient protective immunity to different genotypes or to variants of the same genotype and there is little or no cross-protection against different genogroups. NoV-derived virus-like particles (VLPs) are promising vaccine candidates that induce high levels of NoV-specific humoral and cellular immune responses. It is believed that a bivalent NoV vaccine consisting of a representative VLP from GI and GII is a minimum requirement for an effective vaccine. Here, we compared the abilities of monovalent immunizations with NoV GI.1-2001, GI.3-2002, GII.4-1999, and GII.4-2010 New Orleans VLPs to induce NoV type-specific and cross-reactive immune responses and protective blocking antibody responses in BALB/c mice. All of the VLPs induced comparable levels of type-specific serum IgG antibodies, as well as blocking antibodies to the VLPs used for immunization. However, the abilities of different VLP genotypes to induce cross-reactive IgG and cross-blocking antibodies varied remarkably. Our results confirm previous findings of a lack of cross-protective immune responses between GI and GII NoVs. These data support the rationale for including NoV GI.3 and GII.4-1999 VLPs in the bivalent vaccine formulation, which could be sufficient to induce protective immune responses across NoV genotypes in the two common genogroups in humans.  相似文献   

5.
Vaccines to efficiently block or limit sexual transmission of both HIV and human papilloma virus (HPV) are urgently needed. Chimeric virus-like-particle (VLP) vaccines consisting of both multimerized HPV L1 proteins and fragments of SIV gag p27, HIV-1 tat, and HIV-1 rev proteins (HPV-SHIV VLPs) were constructed and administered to macaques both systemically and mucosally. An additional group of macaques first received a priming vaccination with DNA vaccines expressing the same SIV and HIV-1 antigens prior to chimeric HPV-SHIV VLP boosting vaccinations. Although HPV L1 antibodies were induced in all immunized macaques, weak antibody or T cell responses to the chimeric SHIV antigens were detected only in animals receiving the DNA prime/HPV-SHIV VLP boost vaccine regimen. Significant but partial protection from a virulent mucosal SHIV challenge was also detected only in the prime/boosted macaques and not in animals receiving the HPV-SHIV VLP vaccines alone, with three of five prime/boosted animals retaining some CD4+ T cells following challenge. Thus, although some immunogenicity and partial protection was observed in non-human primates receiving both DNA and chimeric HPV-SHIV VLP vaccines, significant improvements in vaccine design are required before we can confidently proceed with this approach to clinical trials.  相似文献   

6.
The development of a successful vaccine against HIV is likely to require the induction of strong and long-lasting humoral immune responses at the mucosal portal of virus entry. Hence, the design of a vaccine strategy able to induce mucosal antibodies and in particular specific IgA, may be crucial to providing immune protection. Nasal immunisation is known to induce specific IgG and IgA responses in the cervicovaginal mucosa; however, there is an urgent need for the development of safe, effective and accessible mucosal adjuvants for nasal application in humans. To reduce the potential for adverse events associated with some nasal adjuvants, we have assessed whether the B-cell-activating cytokines APRIL, BAFF and TSLP enhance humoral immune responses to HIV-1 gp140. Following intranasal immunisation, TSLP but not APRIL or BAFF induced strong humoral responses both in serum and mucosa. The adjuvant effect of TSLP on humoral responses was similar to that of cholera toxin (CT). The use of TSLP as an adjuvant skewed both the cellular and humoral immune responses towards Th2 cells. This is the first time that TSLP has been demonstrated to have a positive effect as a mucosal adjuvant, and specifically to promote mucosal and systemic responses to HIV gp140.  相似文献   

7.
The tropism of adenoviruses (Ad) for mucosal epithelium makes them ideal vectors for the development of recombinant Ad-HIV vaccines. Currently, several Ad-HIV vaccine candidates are being tested in clinical and preclinical trials. Here, we review the progress on the safety, immunogenicity and efficacy of replication-competent and replication-defective Ad-HIV and Ad-SIV vaccines in animal models, including non-human primates. Replication-defective Ad-SIV gag vaccines have elicited cellular responses that control intravenous infection with an HIV/SIV chimeric immunodeficiency virus (SHIV), while replication-competent Ad-SIV env/rev/gag/nef vaccines have stimulated cellular and humoral responses and protected rhesus monkeys from a mucosal challenge with pathogenic SIV. The composition and advantages of these and other Ad vaccines are described, with particular emphasis on strategies to increase the immunogenicity of the replication-defective vaccines and the safety and efficacy of the replication-competent approach. The overall efficacy of Ad-based vaccines in non-human primates should encourage further evaluation of additional replication-competent and replication-defective Ad-HIV candidates in human trials.  相似文献   

8.
Many pathogens use mucosal surfaces to enter and propagate within the host, making particularly desirable vaccines that target immune responses specifically to mucosal compartments. The majority of mucosal vaccine design strategies to date have been empirical in nature. However, an emerging body of basic immunological knowledge is providing new insights into the regulation of tissue‐specific lymphocyte trafficking and differentiation. These insights afford the opportunity for the rational design of vaccines that focus immune responses at mucosal surfaces. Mucosal cellular immunity may prove critical for protection in the context of HIV infection, and thus there has been considerable interest in developing vaccines that target HIV‐specific cellular immune responses to the gastrointestinal and vaginal mucosa. However, the optimal strategies for eliciting mucosal cellular immune responses through vaccination remain to be determined. Here, we review both recent vaccine studies and emerging paradigms from the basic immunological literature that are relevant to the elicitation of potent and protective mucosal cellular immune memory. Increasing the synergy between these avenues of research may afford new opportunities for mucosal vaccine design.  相似文献   

9.
The rapid spread of human immunodeficiency virus (HIV) worldwide makes it a high priority to develop an effective vaccine. Since live attenuated or inactivated HIV is not likely to be approved as a vaccine due to safety concerns, HIV virus like particles (VLPs) offer an attractive alternative because they are safe due to the lack of a viral genome. Although HIV VLPs have been shown to induce humoral and cellular immune responses, it is important to understand the mechanisms by which they induce such responses and to improve their immunogenicity. We generated HIV VLPs, and VLPs containing Flt3 ligand (FL), a dendritic cell growth factor, to target VLPs to dendritic cells, and investigated the roles of these VLPs in the initiation of adaptive immune responses in vitro and in vivo. We found that HIV-1 VLPs induced maturation of dendritic cells and monocyte/macrophage populations in vitro and in vivo, with enhanced expression of maturation markers and cytokines. Dendritic cells pulsed with VLPs induced activation of splenocytes resulting in increased production of cytokines. VLPs containing FL were found to increase dendritic cells and monocyte/macrophage populations in the spleen when administered to mice. Administration of VLPs induced acute activation of multiple types of cells including T and B cells as indicated by enhanced expression of the early activation marker CD69 and down-regulation of the homing receptor CD62L. VLPs containing FL were an effective form of antigen in activating immune cells via dendritic cells, and immunization with HIV VLPs containing FL resulted in enhanced T helper type 2-like immune responses.  相似文献   

10.
We developed an AIDS vaccine for Western and West-Central Africa founded on HIV-1 subtype CRF02_AG. Rhesus macaques were primed with Gag-Pol-Env-expressing plasmid DNA and boosted with a recombinant modified vaccinia virus Ankara (rMVA), expressing matched proteins. Two DNA vaccine constructs (IC1-90 and IC48) that differed by point mutations in gag and pol were compared. IC1-90 produces primarily immature (core comprises unprocessed Pr55Gag) HIV-like particles (VLPs) and IC48 produces mature VLP with processed Pr55Gag, immature VLP, and intracellular protein aggregates. Both vaccines raised significant cellular responses for Gag, Pol, and Env. Approximate twofold higher ELISPOT responses to Gag and Env epitopes were observed for IC48 animals than for IC1-90 animals at the peak post-MVA effector (P = 0.028) and late memory (P = 0.051) phases, respectively. Greater breadth for IC48-primed animals was observed than for IC1-90-primed animals at peak response (P = 0.03). Our results indicated that the vaccines elicited high frequency T cell responses and primed anti-Env antibody. They also suggest that expression of different forms of VLP has a significant effect on elicited cellular and humoral immunity.  相似文献   

11.
Human immunodeficiency virus type-1 (HIV-1) Pr55Gag virus-like particles (VLP) represent an interesting HIV vaccine component since they stimulate strong humoral and cellular immune responses. We demonstrated that VLP expressed by recombinant baculoviruses activate human PBMC to release pro-inflammatory (lL-6, TNF-α), anti-inflammatory (IL-10) and Th1-polarizing (IFN-γ) cytokines as well as GM-CSF and MIP-1α in a dose-and time-dependent manner. Herein, residual baculoviruses within the VLP preparations showed no or minor effects. Monocytes could be identified as a main target for VLP to induce cytokine production. Furthermore, VLP-induced monocyte activation was shown by upregulation of molecules involved in antigen presentation (MHC II, CD80, CD86) and cell adhesion (CD54). Exposure of VLP to serum inactivates its capacity to stimulate cytokine production. In summary, these investigations establish VLP as strong activators of PBMC and monocytes therein, potently enhancing their functionality and potency to promote an efficient immune response. This capacity makes VLP an interesting component of combination vaccines.  相似文献   

12.
13.
The central role of dendritic cell (DC) in mounting an immune response to a novel antigen is now well established. We sought to demonstrate the use of a particular vaccine strategy based on directing HIV-1 Gag proteins to DCs in conjunction with an activation signal. CD40L was expressed on the surface of virus-like particles (VLPs) to target HIV-1 Gag antigens to the CD40 receptor on DCs, whereas CD40L-CD40 interaction would also result in cellular activation. Multiple CD40L VLP constructs were made and evaluated in vitro and in vivo. Indeed, one VLP that expressed CD40L to the highest level showed greatest capacity to activate DCs in vitro. Correspondingly, this CD40L-VLP also proved to be most immunogenic in mice in raising both humoral and cellular responses to HIV-1 Gag. Confirmatory studies were performed to demonstrate the increased immunogenicity of CD40L-VLP is no longer observed when tested in CD40-/- mice. Our findings lend support to the belief that vaccine strategies that both target and activate DCs could yield a superior immune response.  相似文献   

14.
Current advances and challenges in HIV-1 vaccines   总被引:1,自引:0,他引:1  
Recent advances in science, which have aided HIV-1 vaccine development, include an improved understanding of HIV-1 envelope structure and function, expansion of the pipeline with innovative vaccine strategies, promising multi-gene and multi-clade vaccines that elicit cellular immunity, conduct of clinical trials in a global network, and development of validated techniques that enable simultaneous measurement of multiple T cell vaccineinduced immune responses in humans. A common feature of several preventive vaccine strategies now in early clinical trials is their ability in nonhuman primates to attenuate clinical disease rather than completely prevent HIV-1 infection. One vaccine concept has been tested in largescale clinical trials, two are currently in efficacy trials, and one more is poised to enter efficacy trial in the next few years. Simultaneously, expanded efforts continue to identify new designs that induce mucosal immunity as well as broadly neutralizing antibodies.  相似文献   

15.
The role of the humoral immune response in prevention against HIV-1 infection is still incompletely understood. However, neutralizing antibodies to certain epitopes on HIV-1 envelope glycoproteins inhibit HIV-1 infection in vitro and in vivo. Passive administration of these antibodies by themselvesor in combination completely protected hu-PBL-SCID mice or macaques from intravenous, vaginal, as well as maternal-fetal mucosal transmission. All these studies provide direct experimental evidence that neutralizing antibodies are potentenough to prevent HIV infection, and strongly suggest that neutralizing-antibody-based vaccines could provide effective protection against HIV-1, despite the potent action of CTLs. Some neutralizing epitopes have been defined in vitro and in vivo. Unfortunately, none of the neutralizing-antibody-based candidate vaccines has been demonstrated to induce enough protective activity. Weak antigenicity and immunogenicity of neutralizing epitopes on native or recombinant proteins and other factors made it difficult to induce neutralizing-epitope-specific antibody responses in vivo enough to prevent against primary isolates. Recent studies indicated that HIV-1 variations resulted in escape from neutralization or the CTL responses, which may be the principal challenge for HIV-1 prevention. Epitope vaccine as a new strategy activating both arms of the immune system, namely, using the “principal neutralizing epitopes” and the CTL epitopes in combination, should provide new hope for developing an effective vaccine to halt the HIV-1 epidemic.  相似文献   

16.
17.
Papillomavirus-like particles (VLPs) are potent inducers of humoral and cellular immune responses, making them attractive candidates for noninfectious viral subunit vaccines. To further our understanding of how VLPs activate the immune system, we have investigated their interaction with human myeloid antigen-presenting cells. We found that VLPs bound, with increasing density, to the cell surface of human monocytes, macrophages, and monocyte-derived dendritic cells (DCs). Interestingly, there was a negative correlation between binding intensity and CD83 expression in DCs, suggesting that the main receptor for binding of VLPs may be downregulated during maturation. Exposure to VLPs resulted in acute phenotypic activation of monocytes and DCs. Furthermore, VLPs rapidly induced production of inflammatory cytokines in monocytes, macrophages, and DCs, as assessed by intracellular cytokine staining. For each cell type, the patterns of interleukin-1beta, interleukin-12, tumor necrosis factor-alpha, and interleukin-6 production were distinct from the pattern induced by lipopolysaccharide (LPS), a bacterial activator of myeloid antigen-presenting cells. Our results indicate that VLPs target multiple cells of the immune system, which helps to account for VLPs being so effective in priming humoral and cellular immune responses even in the absence of adjuvant.  相似文献   

18.
According to the latest UNAIDS figures for 1999 there were an estimated 30.6 million people living with HIV-1, with 16,000 new HIV infections per day. The only global strategy of combating new HIV infections is to make a vaccine that is affordable to developing countries, where greater than 90% of new infections occur, and that has enough efficacy to interrupt high rates of transmission. This review critically examines: 1) important immune parameters that should be considered which will allow an understanding of preventative vaccine design and 2) the mechanisms underlying immune destruction during HIV-1 infection that will facilitate design of therapeutic vaccines. A realistic goal of a preventative vaccine is to elicit protective immune responses in vaccinees that would prevent HIV-1 from replicating extensively in the host. Components of protective immunity are thought to include neutralizing antibodies (NAB) and cytotoxic T lymphocytes (CTL). Rethinking vaccine strategies has to take into account that HIV-1 vaccines must elicit primary cellular and humoral immunity via dendritic cell and Langerhan cell priming. It is only under these conditions that boosting immunity with subsequent vaccinations will allow high enough CTL effector cells and NAB titres to impede or to prevent HIV-1 replication. Success of therapeutic vaccine strategies, has to take into consideration the pathology of persistent immune stimulation by chronic HIV-1 infection. To re-stimulate immunity and re-direct immune responses, chronic immune stimulation by HIV-1 has to be alleviated by reducing high levels of viral antigen presentation by suppressing virus with antiretroviral agents. Such treatment courses may only have to be transient, long enough for immunity to respond to an immunogenic stimulus. Short-course drug therapy may then be an affordable option for many countries already carrying a high burden of HIV-1/AIDS.  相似文献   

19.
20.
Human bocavirus (HBoV), a recently identified pathogen with a worldwide distribution is closely related to paediatric acute respiratory infection and gastroenteritis. The present study was performed to evaluate the immunogenicity of HBoV1 and HBoV2 virus‐like particles (VLPs) as vaccine candidates in mice. Both HBoV1 and HBoV2 VLPs were expressed in the bacmid virus–SF9 cell system. Mice were inoculated three times at 3‐week intervals with HBoV VLPs at one dose intramuscular (i.m.) or intradermal (i.d.) with or without the addition of the alum adjuvant. ELISA was used to detected antibody, and ELISPOT was used to test cellular immune responses. HBoV‐specific IgG antibodies were induced and alum adjuvant improved the antibody titres and avidity, while the inoculation pathway had no influence. T helper type 1/ type 2 immune responses were balanced induced by HBoV1 VLPs but not HBoV2 VLPs. Serum IgG antibody cross‐reactivity rates of the two subtypes were similar, but cross‐reactions of HBoV1 immunization groups were higher. The single i.m. group had more interferon‐γ‐secreting splenocytes. These data indicate that HBoV VP2 VLPs have good immunogenicity with induction of strong humoral and cellular immune responses, and they may be potential candidate vaccines for HBoV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号