首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuronal nicotinic acetylcholine receptor (nAChR) alpha4 and beta2 subunits expressed in heterologous expression systems assemble into high- and low-affinity receptors (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003), which reflects the assembly of two distinct subunit stoichiometries of alpha4beta2 receptor (Nelson et al., 2003). The high-affinity receptor ([alpha4]2[beta2]3) is about 100-fold more sensitive to ACh than the low-affinity receptor ([alpha4]3[beta2]2) (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003). Recent evidence implicated 14-3-3 proteins as modulators of the relative abundance of nAChR subunits in the endoplasmic reticulum (ER), where ligand-gated ion channels assemble. The 14-3-3 proteins influence ER-to-plasma membrane trafficking of multimeric cell-surface proteins (O'Kelly et al., 2002). 14-3-3 proteins bind components of these multimeric proteins, and this interaction overrides dibasic COP1 retention signal to permit forward transport of the protein (O'Kelly et al., 2002). In the case of alpha4beta2 nAChRs, 14-3-3 binds the alpha4 subunit, and this association is dependent on phosphorylation of a serine residue within a protein kinase A(PKA) consensus sequence in the large cytoplasmic domain of the alpha4 subunit, which is also a binding motif recognized by 14-3-3 (Jeancloss et al., 2001; O'Kelly et al., 2002). The interplay among PKA, alpha4 subunits, and 14-3-3 proteins increases cell-surface expression of alpha4beta2 nAChRs by increasing steady-state levels of the alpha4 subunit available for assembly with beta2 subunits (Jeancloss et al., 2001). Because it is not known how 14-3-3-dependent changes in the steady-state levels of the alpha4 subunit might affect the functional type of alpha4beta2 receptors, we have investigated the effects of mutations of the 14-3-3 binding motif in the alpha4 subunit on alpha4beta2 nAChR function.  相似文献   

2.
The alpha4beta2 nicotinic acetylcholine receptor (nAChR) is the most abundant nAChR subtype in the brain, where it forms the high-affinity binding site for nicotine. The alpha4beta2 nAChR belongs to a gene family of ligand-gated ion channels that also includes muscle nAChRs, GABAA receptors, and glycine receptors and that assembles into pentameric structures. alpha4 and beta2 nAChR subunits expressed heterologously in Xenopus laevis oocytes assemble into a mixture of high- and low-affinity functional receptors, giving rise to biphasic ACh concentration-response curves (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001). High- and low-affinity alpha4beta2 nAChRs differ significantly in their functional and pharmacological properties (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003) and result from the assembly of alpha4 and beta2 subunits into two distinct stoichiometric arrangements: (alpha4)2(beta2)3(high-affinity subtype) and (alpha4)3(beta2)2 (low-affinity subtype) (Nelson et al., 2003). In this study we have examined the functional and pharmacological properties of high- and low-affinity alpha4beta2 receptors using two-electrode voltage clamp procedures on Xenopus oocytes transfected with high (1:10) or low (10:1) ratios of alpha4/beta2 cDNAs, which yield high (1:10)- or low (10:1)- affinity receptors with monophasic ACh concentration- response curves. Furthermore, to determine the stoichiometry of high- and low-affinity receptors expressed heterologously by Xenopus oocytes, we have determined the stoichiometry of high- and low-affinity alpha4beta2 receptors by mutating a highly conserved hydrophobic residue in the middle (position 9') of the pore-lining domain, which increases agonist potency in a manner that allows predictions on subunit composition (Cooper et al., 1991; Revah et al., 1991; Labarca et al., 1995; Boorman et al., 2000).  相似文献   

3.
Wild-type and α5 null mutant mice were used to identify nicotinic cholinergic receptors (nAChRs) that mediate α-conotoxin MII (α-CtxMII)-resistant dopamine (DA) release from striatal synaptosomes. Concentration–effect curves for ACh-stimulated release (20 s) were monophasic when wild-type synaptosomes were assayed but biphasic with synaptosomes from the α5 null mutant. Deleting the α5 gene also resulted in decreased maximal ACh-stimulated α-CtxMII-resistant DA release. When a shorter perfusion time (5 s) was used, biphasic curves were detected in both wild-type and α5 null mutants, indicative of high- and low-sensitivity (HS and LS) activity. In addition, DHβE-sensitive (HS) and DHβE-resistant (LS) components were found in both genotypes. These results indicate that α-CtxMII-resistant DA release is mediated by α4α5β2, (α4)2(β2)3 (HS), and (α4)3(β2)2 (LS) nAChRs.  相似文献   

4.
Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. Though highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1-4% of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI for the human α4β2 receptor is 18 μM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)(2) (β2)(3) receptors significantly more strongly inhibited than the (α4)(3) (β2)(2) receptors.  相似文献   

5.
Ethanol consumption produces a wide range of effects on the central nervous system, most of them related to changes in neural receptors. In vitro studies have demonstrated that ethanol increases neural nicotinic acetylcholine receptor (nnAChR) affinity for ACh (Narahashi et al., 1991) and have also reported differences in sensitivity of nnAChRs for ethanol, depending on the subunit composition of the receptor (Cardoso et al., 1999). There is evidence that ethanol induces changes in density of nnAChRs in cellular cultures (Gorbounova et al., 1998). However, there are no clear results concerning the effects of chronic ethanol on nicotinic receptors and on behavior in rats nonselected by their preference to ethanol. A number of studies demonstrate that nnAChRs participate in a variety of functions, including memory and learning processes, neurodegeneration, and neuroprotection (Picciotto et al., 2000). In the present work, we found significant alterations in the Fixed-Interval Behavioral Test, as well as in density and affinity parameters of hippocampal main subtypes of nnAChRs: alpha7 homopentamers and alpha4beta2 heteropentamers of ethanol-drinking rats nonselected by their preference to ethanol.  相似文献   

6.
In the sympathetic superior cervical ganglion (SCG), nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission. We previously demonstrated that in SCG neurons of mdx mice, an animal model for Duchenne muscular dystrophy, lack of dystrophin causes a decrease, compared to the wild-type, in post-synaptic nAChRs containing the α3 subunit associated with β2 and/or β4 (α3β2/β4-nAChRs), but not in those containing the α7 subunit. Here we show, by whole cell patch-clamp recordings from cultured SCG neurons, that both nicotine and acetylcholine-evoked currents through α3β2/β4-nAChRs are significantly reduced in mdx mice compared to the wild-type, while those through α7-nAChR are unaffected. This reduction associates with that of protein levels of α3, β2 and β4 subunits. Therefore, we suggest that, in mdx mouse SCG neurons, lack of dystrophin, by specifically affecting membrane stabilization of α3β2/β4-nAChRs, could determine an increase in receptor internalization and degradation, with consequent reduction in the fast intraganglionic cholinergic transmission.  相似文献   

7.
Postnatal changes of nicotinic acetylcholine receptor (nAChR) α2, α3, α4, α7 and β2 subunits mRNAs were investigated in rat brain using ribonuclease protection assay. Multiple developmental patterns were observed: (1) transient expression during the first few postnatal weeks; α2 in the hippocampus and brain stem, α3 in the striatum, cerebellum and cortex, α4 in the hippocampus, striatum and cerebellum, α7 in the cerebellum and β2 in the striatum. (2) Constant expression across development; α2 and α3 in the thalamus, α4 in the cortex, thalamus and brain stem, α7 in the thalamus and brain stem and β2 in all brain regions except striatum. (3) Non-detection across development; α2 in the cortex, striatum and cerebellum. (4) Increase with age; α7 in the cortex and hippocampus. (5) Bell-shaped development; α7 in the striatum. Postnatal changes of nAChR isoforms in different brain regions of rat were investigated by receptor binding assays. The developmental patterns of [3H]epibatidine and (−)-[3H]nicotine binding sites were similar to each other in each brain region, but different from that of [3H]α-bungarotoxin binding sites. No obvious correlation was observed between the developmental patterns of [3H]α-bungarotoxin, [3H]epibatidine and (−)-[3H]nicotine binding sites and corresponding subunits mRNAs. These results indicate that multiple mechanisms are involved in changes of gene expression of nAChRs subunits in the brain of developing rats.  相似文献   

8.

Introduction

The glycosaminoglycan heparin has been shown to bind to platelet integrin αIIbβ3 and induce platelet activation and aggregation, although the relationship between binding and activation is unclear. We analyzed the interaction of heparin and αIIbβ3 in detail, to obtain a better understanding of the mechanism by which heparin acts on platelets.

Methods

We assessed conformational changes in αIIbβ3 by flow cytometry of platelets exposed to unfractionated heparin. In human platelets and K562 cells engineered to express αIIbβ3, we assayed the effect of heparin on key steps in integrin signaling: phosphorylation of the β3 chain cytoplasmic tail, and activation of src kinase. We measured the heparin binding affinity of purified αIIbβ3, and of recombinant fragments of αIIb and β3, by surface plasmon resonance.

Results and conclusions

Heparin binding results in conformational changes in αIIbβ3, similar to those observed upon ligand binding. Heparin binding alone is not sufficient to induce tyrosine phosphorylation of the integrin β3 cytoplasmic domain, but the presence of heparin increased both β3 phosphorylation and src kinase activation in response to ligand binding. Specific recombinant fragments derived from αIIb bound heparin, while recombinant β3 did not bind. This pattern of heparin binding, compared to the crystal structure of αIIbβ3, suggests that heparin-binding sites are located in clusters of basic amino acids in the headpiece and/or leg domains of αIIb. Binding of heparin to these clusters may stabilize the transition of αIIbβ3 to an open conformation with enhanced affinity for ligand, facilitating outside-in signaling and platelet activation.  相似文献   

9.
Following focal cerebral ischemia, blood vessels in the ischemic border, or penumbra, launch an angiogenic response. In light of the critical role for fibronectin in angiogenesis, and the observation that fibronectin and its integrin receptors are strongly upregulated on angiogenic vessels in the hypoxic CNS, the aim of this study was to establish whether angiogenic vessels in the ischemic CNS also show this response. Focal cerebral ischemia was established in C57/Bl6 mice by middle cerebral artery occlusion (MCA:O), and brain tissue analyzed 7 days following re-perfusion, a time at which angiogenesis is ongoing. Within the ischemic core, immunofluorescent (IF) studies demonstrated vascular expression of MECA-32, a marker of leaky cerebral vessels, and vascular breakdown, defined by loss of staining for the endothelial marker, CD31, and the vascular adhesion molecules, laminin, dystroglycan and α6 integrin. Within the ischemic penumbra, dual-IF with CD31 and Ki67 revealed the presence of proliferating endothelial cells, indicating ongoing angiogenesis. Significantly, vessels in the ischemic penumbra showed strong upregulation of fibronectin and the fibronectin receptors, α5β1 and αvβ3 integrins. Taken together with our recent finding that the α5β1 integrin plays an important role in promoting cerebral angiogenesis in response to hypoxia, these results suggest that stimulation of the fibronectin-α5β1 integrin signaling pathway may provide a novel approach to amplifying the intrinsic angiogenic response to cerebral ischemia.  相似文献   

10.
Investigating the interaction between nicotinic and opioid receptors is of great interest for both basic mechanistic and clinical reasons. Morphine and nicotine, two common drugs of abuse, share several behavioral and rewarding properties. However, little is known about the subtypes of nicotinic acetylcholine receptors (nAChR) in the reinstatement of morphine-induced conditioned place preference (CPP). In this study, we found that a non-specific nAChR agonist, nicotine (0.5mg/kg), had no effects on the reinstatement of morphine-induced CPP. However, we found that pretreatment with specific α(4)β(2) and α(7) nAChR subtype antagonists, dihydroxy-β-erithroidine (DHβE, 5mg/kg) and methyllycaconitine (MLA, 4 mg/kg), 20 min prior to administration of morphine, inhibited the reinstatement of morphine-induced CPP by drug priming in mice. Furthermore, depression of the reinstatement of morphine-induced CPP by a single DHβE or MLA treatment lasted at least three days later when the reinstatement was induced by morphine priming. The data suggest that specific nAChR subtypes, i.e., α(4)β(2) and α(7), may contribute to the reinstatement of morphine-induced CPP by drug priming in mice.  相似文献   

11.
12.
Nicotinic acetylcholine receptors (nAChRs) are pentameric transmembrane proteins that belong to the cys-loop ligand-gated ion channel family. These receptors are widely expressed in the brain and implicated in the pathophysiology of many neurological conditions, including Alzheimer’s disease (AD), where typical symptoms include the loss of cognitive function and dementia. The presence of extracellular neuritic plaques composed of β amyloid (Aβ1–42) peptide is a characteristic feature of AD. Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) for α4β2 nAChRs since it increases peak ACh responses without inducing a response on its own. Previously, the effect of dFBr on the α2β2 nAChR subtype was not known. The action of dFBr was tested on α2β2 receptors expressed in Xenopus oocytes. It was found that dFBr is also a PAM for the α2β2 receptor. Next we tested whether dFBr had any effect on the previously known block of both the α4β2 and α2β2 receptors by Aβ1–42. We found that the functional blockade of ACh-induced currents in oocytes expressing α4β2 and α2β2 receptors by Aβ1–42 was prevented by dFBr. We conclude that dFBr is a positive allosteric modulator for both α4β2 and α2β2 subtypes of nAChRs and that it also relieves the blockade of these receptors by Aβ1–42. This study demonstrates that PAMs for the non-α7 nAChRs have the potential to develop into clinically applicable drugs for AD and other disorders.  相似文献   

13.

Background

Integrin αIIbβ3 mediates platelet adhesion, aggregation and fibrin clot retraction. These processes require activation of αIIbβ3 and post-ligation signaling. Disulfide bond exchanges are involved in αIIbβ3 and αvβ3 activation.

Methods

In order to investigate the role of integrin activation and disulfide bond exchange during αIIbβ3- and αvβ3-mediated clot retraction, we co-expressed in baby hamster kidney cells wild-type (WT) human αIIb and WT or mutated human β3 that contain single or double cysteine substitutions disrupting C523-C544 or C560-C583 bonds. Flow cytometry was used to measure surface expression and activation state of the integrins. Time-course of fibrin clot retraction was examined.

Results

Cells expressed WT or mutated human αIIbβ3 as well as chimeric hamster/human αvβ3. The αIIbβ3 mutants were constitutively active and the thiol blocker dithiobisnitrobenzoic acid (DTNB) did not affect their activation state. WT cells retracted the clot and addition of αvβ3 inhibitors decreased the retraction rate. The active mutants and WT cells activated by anti-LIBS6 antibody retracted the clot faster than untreated WT cells, particularly in the presence of αvβ3 inhibitor. DTNB substantially inhibited clot retraction by WT or double C523S/C544S mutant expressing cells, but minimally affected single C523S, C544S or C560S mutants. Anti-LIBS6-enhanced clot retraction was significantly inhibited by DTNB when added prior to anti-LIBS6.

Conclusions

Both αIIbβ3 and αvβ3 contribute to clot retraction without prior activation of the integrins. Activation of αIIbβ3, but not of αvβ3 enhances clot retraction. Both αIIbβ3 activation and post-ligation signaling during clot retraction require disulfide bond exchange.  相似文献   

14.

Background

The alpha2-adrenergic receptor (α2-AR) mediates physiological responses to endogenous catecholamine, and genetic variants of α2-AR may predispose to clinical vascular diseases. We evaluated whether common genetic variants of each three subtype of alpha2-adrenergic receptor (ADRA2A, ADRA2B, and ADRA2C) were associated with ischemic stroke.

Methods

A total of 616 patients with ischemic stroke and 512 controls were genotyped for the ADRA2A 1780G>A, ADRA2B 301–303 I/D, and ADRA2C 322–325 I/D polymorphisms. Logistic regression analyses, adjusting for multiple comparisons, were used to determine the association between the minor allele of each of three ADRA2 genes and the risk of ischemic stroke and pathophysiological subtypes.

Results

The ADRA2B 301–303 D allele was more prevalent in the stroke group, compared to controls (DD vs. II, OR: 1.78, 95% CI: 1.18–2.69; recessive, OR: 1.55, 95% CI: 1.06–2.26). A subgroup analysis revealed that this association was found only in the small vessel diseases (SVD) type (DD vs. II, OR: 1.92, 95% CI: 1.11–3.33). The ADRA2A and ADRA2C polymorphisms did not contribute to an increased risk of ischemic stroke or any pathophysiological subtype.

Conclusions

The ADRA2B 301–303 D allele confers an increased risk of overall ischemic stroke and SVD subtype.  相似文献   

15.
16.
Neurotoxicity induced by glutamate and other excitatory amino acids has been implicated in various neurodegenerative disorders including hypoxic ischemic events, trauma, and Alzheimer’s and Parkinson’s diseases. We examined the roles of nicotinic acetylcholine receptors (nAChRs) in survival of CNS neurons during excitotoxic events. Nicotine as well as other nicotinic receptor agonists protected cortical neurons against glutamate neurotoxicity via α4 and α7 nAChRs at least partly by inhibiting the process of apoptosis in near-pure neuronal cultures obtained from the cerebral cortex of fetal rats. Donepezil, galanatamine and tacrine, therapeutic acetylcholinesterase (AChE) inhibitors currently being used for treatment of Alzheimer’s disease also protected neuronal cells from glutamate neurotoxicity. Protective effects of nicotine and the AChE inhibitors were antagonized by nAChR antagonists. Moreover, nicotine and those AChE inhibitors induced up-regulation of nAChRs. Inhibitors for a non-receptor-type tyrosine kinase, Fyn, and janus-activated kinase 2, suppressed the neuroprotective effect of donepezil and galantamine. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor also suppressed the neuroprotective effect of the AChE inhibitors. The phosphorylation of Akt, an effector of PI3K, and the expression level of Bcl-2, an anti-apoptotic protein, increased with donepezil and galantamine treatments. These results suggest that nicotine as well as AChE inhibitors, donepezil and galantamine, prevent glutamate neurotoxicity through α4 and α7 nAChRs and the PI3K-Akt pathway.  相似文献   

17.
Nicotinic acetylcholine receptors (nAChRs) have been studied in detail with regard to their interaction with therapeutic and drug addiction-related compounds. Using a structure-activity approach, we have examined the relationship among the molecular features of a set of eight para-R-substituted N,N-[(dimethylamino)ethyl] benzoate hydrochlorides, structurally related to procaine and their affinity for the α(3)β(4) nAChR heterologously expressed in KXα3β4R2 cells. Affinity values (log[1/IC50]) of these compounds for the α(3)β(4) nAChR were determined by their competition with [(3)H]TCP binding. Log(1/IC50) values were analyzed considering different hydrophobic and electronic parameters and those related to molar refractivity. These have been experimentally determined or were taken from published literature. In accordance with literature observations, the generated cross-validated quantitative structure-activity relationship (QSAR) equations indicated a significant contribution of hydrophobic term to binding affinity of procaine analogs to the receptor and predicted affinity values for several local anesthetics (LAs) sets taken from the literature. The predicted values by using the QSAR model correlated well with the published values both for neuronal and for electroplaque nAChRs. Our work also reveals the general structure features of LAs that are important for interaction with nAChRs as well as the structural modifications that could be made to enhance binding affinity.  相似文献   

18.
A novel family of RGD-containing molecules (Tablysin-15) has been molecularly characterised from the salivary gland of the haematophagous horsefly Tabanus yao. Tablysin-15 does not share primary sequence homology to any disintegrin discovered so far, and displays an RGD motif in the N-terminus of the molecule. It is also distinct from disintegrins from Viperidae since its mature form is not released from a metalloproteinase precursor. Tablysin-15 exhibits high affinity binding for platelet αIIbβ3 and endothelial cell αVβ3 integrins, but not for α5β1 or α2β1. Accordingly, it blocks endothelial cell adhesion to vitronectin (IC50 ~1 nM) and marginally to fibronectin (IC50 ~1 μM), but not to collagen. It also inhibits fibroblast growth factor (FGF)-induced endothelial cell proliferation, and attenuates tube formation in vitro. In platelets, Tablysin-15 inhibits aggregation induced by collagen, ADP and convulxin, and prevents static platelet adhesion to immobilised fibrinogen. In addition, solid-phase assays and flow cytometry demonstrates that αIIbβ3 binds to Tablysin-15. Moreover, immobilised Tablysin-15 supports platelet adhesion by a mechanism which was blocked by anti-integrin αIIbβ3 monoclonal antibody (e.g. abciximab) or by EDTA. Furthermore, Tablysin-15 dose-dependently attenuates thrombus formation to collagen under flow. Consistent with these findings, Tablysin-15 displays antithrombotic properties in vivo suggesting that it is a useful tool to block αIIbβ3, or as a prototype to develop antithrombotics. The RGD motif in the unique sequence of Tablysin-15 represents a novel template for studying the structure-function relationship of the disintegrin family of inhibitors.  相似文献   

19.
Introduction Transforming growth factor- (TGF-) is an important cytokine with modulatory actions in the nervous system. The development of hydrocephalus in mouse models resulting from the overexpression of TGF-1 has previously been described, but the mechanism by which this occurs remains obscure.Methods In order to evaluate the role of TGF- in hydrocephalus, we used SYBR Green I-based real-time quantitative RT-PCR method and Western blot analysis to analyze the TGF-2 and TGF-3 mRNA and protein expressions in the cerebral cortex of the H-Tx rat, a model of congenital hydrocephalus.Results The hydrocephalic H-Tx rat expressed significantly higher TGF-3 levels than their normal siblings (p<0.01) at 7 and 14 days of age. This difference became insignificant when analyzed at 21 days of age. On the other hand, such a difference has not been observed in the TGF-2 levels in the hydrocephalic H-Tx rat.Conclusions These results suggest that TGF-2 and TGF-3 expression may be modulated differently in the hydrocephalus, and TGF-3 may contribute to the development of hydrocephalus in this rat model.  相似文献   

20.
Cognitive impairment is common in patients with chronic kidney disease. Brain nicotinic acetylcholine receptors modulate cognitive functions, such as learning and memory. Pharmacological cholinergic enhancement is useful in patients with cognitive dysfunction. The major nicotinic acetylcholine receptor subtypes in the brain are heteromeric α4β2 and homomeric α7 receptors. To study the involvement of neuronal acetylcholine receptors in cognitive impairment in uremic rats, bilateral nephrectomy was performed. 24 weeks after nephrectomy, memory was assessed using the one trial step-down inhibitory avoidance test. Neuronal nicotinic acetylcholine receptors in the brain were studied by radioligand binding, immunoprecipitation, Western blot and sucrose gradient experiments. We demonstrated that rats with severe renal failure show disorders of short term memory. Long term memory was not altered in these rats. The number of functional α4β2 heteromeric neuronal nicotinic receptors was decreased in the brains of rats with severe renal failure. There was a significant correlation between the degree of renal impairment and the number of heteromeric nicotinic acetylcholine receptors in the brain. The down-regulation of functional α4β2 receptors in the brains of rats with severe renal failure was not due to a reduction of α4 or β2 subunit proteins. The number of α7 homomeric neuronal nicotinic acetylcholine receptors was not altered. These findings may have important clinical significance for the management of cognitive impairment in patients with chronic kidney disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号