首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastric carcinoma is one of the most common and mortal types of malignancy worldwide. To date, the mechanisms controlling its aggressiveness are not yet fully understood. Notch signal pathway can function as either an oncogene or a tumor suppressor in tumorigenesis. Four members (Notch1–4) of Notch receptors were found in mammals and each exhibits distinct roles in tumor progression. Previous study showed that the activated Notch1 receptor promoted gastric cancer progression through cyclooxygenase‐2 (COX‐2). This study addressed whether Notch2 signal pathway is also involved in gastric cancer progression. Constitutive expression of Notch2 intracellular domain (N2IC), the activated form of Notch2 receptor, promoted both cell proliferation and xenografted tumor growth of human stomach adenocarcinoma SC‐M1 cells. The colony formation, migration, invasion, and wound‐healing abilities of SC‐M1 cells were enhanced by N2IC expression, whereas these abilities were suppressed by Notch2 knockdown. Similarly, Notch2 knockdown inhibited cancer progressions of AGS and AZ521 gastric cancer cells. Expression of N2IC also caused epithelial–mesenchymal transition in SC‐M1 cells. Furthermore, N2IC bound to COX‐2 promoter and induced COX‐2 expression through a CBF1‐dependent manner in SC‐M1 cells. The ability of N2IC to enhance tumor progression in SC‐M1 cells was suppressed by knockdown of COX‐2 or treatment with NS‐398, a COX‐2 inhibitor. Moreover, the suppression of tumor progression by Notch2 knockdown in SC‐M1 cells was reversed by exogenous COX‐2 or its major enzymatic product PGE2. Taken together, this study is the first to demonstrate that the Notch2‐COX‐2 signaling axis plays an important role in controlling gastric cancer progression. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
3.
4.
5.
In the present study, we demonstrate that prolonged treatment by trastuzumab induced resistance of NCI-N87 gastric cancer cells to trastuzumab. The resistant cells possessed typical characteristics of epithelial to mesenchymal transition (EMT)/cancer stem cells and acquired more invasive and metastatic potentials both in vitro and in vivo. Long term treatment with trastuzumab dramatically inhibited the phosphorylation of Akt, but triggered the activation of STAT3. The level of IL-6 was remarkably increased, implicating that the release of IL-6 that drives the STAT3 activation initiates the survival signaling transition. Furthermore, the Notch activities were significantly enhanced in the resistant cells, companied by upregulation of the Notch ligand Jagged-1 and the Notch responsive genes Hey1 and Hey2. Inhibiting the endogenous Notch pathway reduced the IL-6 expression and restored the sensitivities of the resistant cells to trastuzumab. Blocking of the STAT3 signaling abrogated IL-6-induced Jagged-1 expression, effectively inhibited the growth of the trastuzumab resistant cells, and enhanced the anti-tumor activities of trastuzumab in the resistant cells. These findings implicate that the IL-6/STAT3/Jagged-1/Notch axis may be a useful target and that combination of the Notch or STAT3 inhibitors with trastuzumab may prevent or delay clinical resistance and improve the efficacy of trastuzumab in gastric cancer.  相似文献   

6.
7.
8.
9.
10.
Yeh TS  Hsieh RH  Shen SC  Wang SH  Tseng MJ  Shih CM  Lin JJ 《Cancer research》2004,64(22):8334-8340
The Notch signal pathway plays important roles in proliferation, apoptosis, and differentiation. Abnormalities in Notch signaling are linked to many human diseases. After ligand binding, Notch signaling is activated through the cleavage of Notch receptors to release and translocate the Notch intracellular domain into the nucleus. The Notch1 receptor intracellular domain (N1IC), the activated form of the Notch1 receptor, can modulate downstream target genes via C promoter-binding factor 1-dependent and -independent pathways. To further dissect the Notch1 signaling pathway, we screened the N1IC-associated proteins using a yeast two-hybrid system and identified nuclear beta(II)-tubulin as a candidate for the N1IC-associated proteins. It was suggested that the presence of beta(II)-tubulin in nuclei might be correlated with the cancerous state of cells. However, the function of beta(II)-tubulin locating in the nucleus still is unknown. Herein, we show that the complex of alpha- and beta(II)-tubulin is associated with N1IC in cancer cells by a coimmunoprecipitation analysis. The ankyrin domain of the Notch1 receptor alone was sufficient to associate with beta(II)-tubulin. Furthermore, alpha- and beta(II)-tubulin were localized in the nucleus and formed a complex with N1IC. Treatment with Taxol increased the amounts of nuclear alpha- and beta(II)-tubulin in K562 and HeLa cells and promoted the C promoter-binding factor 1-dependent transactivation activity of N1IC. We also show that nuclear beta(II)-tubulin was bound on the C promoter-binding factor 1 response elements via the association with N1IC. These results suggest that nuclear beta(II)-tubulin can modulate Notch signaling through interaction with N1IC in cancer cells.  相似文献   

11.
Tumor-associated macrophages (TAMs), key immune cells in the tumor microenvironment, are shown to be closely correlated with the progression of non-small cell lung cancer (NSCLC). Cancer stem cells (CSCs) can contribute to NSCLC progression as well. We aimed to clarify whether TAMs promote the progression of NSCLC by mainly affecting the activities of CSCs. We found that TAM-like cells promoted CSC-like properties in NSCLC cells in vitro, which was mediated by TAM-derived IL-10. TAM-derived IL-10 promoted CSC-like properties of NSCLC cells through JAK1/STAT1/NF-κB/Notch1 signaling. Blockade of IL-10/JAK1 signaling inhibited TAM-mediated NSCLC tumor growth in vivo, and the TAM-mediated expression of CSC-related and mesenchymal-related genes in NSCLC. Lastly, expression levels of these signaling molecules were significantly correlated with survival of NSCLC patients. Therefore, IL-10/JAK1 signaling might be a potential therapeutic target for NSCLC treatment.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
We investigated the mechanisms of action and antitumor effects of OPB-31121, a novel STAT3 inhibitor, in gastric cancer cells. OPB-31121 downregulated JAK2 and gp130 expression and inhibited JAK2 phosphorylation which leads to inhibition of STAT3 phosphorylation. OPB-31121 inhibited constitutively activated and IL-6-induced JAK/STAT signaling pathway. OPB-31121 decreased cell proliferation in both gastric cancer cells and in a xenograft model, induced the apoptosis of gastric cancer cells, inhibited the expression of antiapoptotic proteins, and showed synergism with 5-fluorouracil and cisplatin. Taken together, our study suggests that STAT3 inhibition with OPB-31121 can be tested in patients with gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号