首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurotrophins are proteins that regulate neuronal survival, axonal growth, synaptic plasticity and neurotransmission. They are members of the neurotrophic factors family and include factors such as the nerve growth factor (NGF), the brain derived neurotrophic factor (BDNF), the neurotrophin-3 (NT-3), and the neurotrophin-4/5 (NT-4/5). These molecules bind to two types of receptors: i) tyrosine kinase receptors (TrkA, TrkB, TrkC) and ii) a common neurotrophin receptor (p75NTR). The two receptor types can either suppress or enhance each other's actions. Neurotrophins have a multifunctional role both in the central and peripheral nervous system. They have been suggested as axonal guidance molecules during the growth and regeneration of nerves. It has also been proven that they stimulate axonal growth by mediating the polymerization and accumulation of F-actin in growth cones and axon shafts. Neurotrophins, as other neurotrophic factors, have been shown that they reduce neuronal injury by exposure to excitotoxins, glucose deprivation, or ischemia. Furthermore, the nerve regeneration promoting effect of these growth factors is well documented for many different models of central or peripheral nervous system injury. Several studies have shown that exogenous administration of these factors has protective properties for injured neurons and stimulates axonal regeneration. Based on these properties, these molecules may be used as therapeutic agents for treating degenerative diseases and traumatic injuries of both the central and peripheral nervous system.  相似文献   

2.
Nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 are members of a family of proteins (the neurotrophins) that promote the differentiation, growth, and survival of peripheral and central nervous system neurons. Recently, the trk family of proto-oncogenes has been found to encode signal-transducing receptors for these growth factors. This discovery has important implications for our understanding of the normal function of these factors in the developing and adult nervous system. In this review, we highlight recent advances in neurotrophin research and discuss their relevance to neurologic disease.  相似文献   

3.
During development, neurotrophic factors are known to play important roles in regulating the survival of neurons in the autonomic nervous system (ANS) and the formation of their synaptic connectivity with their peripheral targets in the cardiovascular, digestive, and other organ systems. Emerging findings suggest that neurotrophic factors may also affect the functionality of the ANS during adult life and may, in part, mediate the effects of environmental factors such as exercise and dietary energy intake on ANS neurons and target cells. In this article, we describe the evidence that ANS neurons express receptors for multiple neurotrophic factors, and data suggesting that activation of those receptors can modify plasticity in the ANS. Neurotrophic factors that may regulate ANS function include brain-derived neurotrophic factor, nerve growth factor, insulin-like growth factors, and ciliary neurotrophic factor. The possibility that perturbed neurotrophic factor signaling is involved in the pathogenesis of ANS dysfunction in some neurological disorders is considered, together with implications for neurotrophic factor-based therapeutic interventions.  相似文献   

4.
Until recently nerve growth factor (NGF) was the only widely characterized neurotrophic factor which had been shown both in vitro and in vivo to be essential for the survival of selected populations of neurons during development and to be important for maintenance of the differentiated phenotype of mature neurons. The recent cloning of new members of the NGF family, namely brain-derived neurotrophic factor neurotrophin-3 (NT-3), NT-4 and NT-5, has greatly expanded our knowledge of the structural properties and neurotrophic activities of these proteins. Elucidation of their developmental and topographical expression and associated receptors in both the central nervous system and peripheral nervous system is proceeding at a brisk pace, leading to proposals for a potential pharmacological use of these proteins. This possibility will ultimately rely upon a more complete understanding of the roles of these trophic factors in human nervous system physiology and pathology.  相似文献   

5.
Neurotrophins play a major role in the regulation of neuronal growth such as neurite sprouting or regeneration in response to nerve injuries. The role of nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor in maintaining the survival of peripheral neurons remains poorly understood. In regenerative medicine, different modalities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. This study was to investigate the influence of nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor on the growth of neurites using two in vitro models of dorsal root ganglia explants and dorsal root ganglia-derived primary cell dissociated cultures. Quantitative data showed that the total neurite length and tortuosity were differently influenced by trophic factors. Nerve growth factor and, indirectly, brain-derived neurotrophic factor stimulate the tortuous growth of sensory fibers and the formation of cell clusters. Neurotrophin-3, however, enhances neurite growth in terms of length and linearity allowing for a more organized and directed axonal elongation towards a peripheral target compared to the other growth factors. These findings could be of considerable importance for any clinical application of neurotrophic factors in peripheral nerve regeneration. Ethical approval was obtained from the Regione Piemonte Animal Ethics Committee ASLTO1(file # 864/2016-PR) on September 14, 2016.  相似文献   

6.
The intrinsic ability of peripheral nerves to regenerate after injury is extremely limited,especially in case of severe injury.This often leads to poor motor function and permanent disability.Existing approaches for the treatment of injured nerves do not provide appropriate conditions to support survival and growth of nerve cells.This drawback can be compensated by the use of gene therapy and cell therapy-based drugs that locally provide an increase in the key regulators of nerve growth,including neurotrophic factors and extracellular matrix proteins.Each growth factor plays its own specific angiotrophic or neurotrophic role.Currently,growth factors are widely studied as accelerators of nerve regeneration.Particularly noteworthy is synergy between various growth factors,that is essential for both angiogenesis and neurogenesis.Fibroblast growth factor 2 and vascular endothelial growth factor are widely known for their proangiogenic effects.At the same time,fibroblast growth factor 2 and vascular endothelial growth factor stimulate neural cell growth and play an important role in neurodegenerative diseases of the peripheral nervous system.Taken together,their neurotrophic and angiogenic properties have positive effect on the regeneration process.In this review we provide an in-depth overview of the role of fibroblast growth factor 2 and vascular endothelial growth factor in the regeneration of peripheral nerves,thus demonstrating their neurotherapeutic efficacy in improving neuron survival in the peripheral nervous system.  相似文献   

7.
In contrast to sympathetic and sensory neurons in the peripheral nervous system, the neurotrophic requirements for neurons in the central nervous system (CNS) have not been clearly identified. The inactivation of specific neurotrophic factors and their receptors by gene targeting has shown that there are no major changes in neuron numbers in the CNS. This suggests an overlap between the action of different neurotrophic factors in the brain during development. Here we have studied the survival of hippocampal neurons prepared from embryonic rats, using different culture conditions. Whereas the hippocampal neurons survive well in culture when plated at high density, they die at lower cell densities in the absence of appropriate neurotrophic factors. Under the latter conditions, both insulin-like growth factor-1 (IGF-1) and the neurotrophins—brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4)—rescued a large proportion of cultured neurons. In addition, hippocampal neurons from BDNF knockout mice exhibited enhanced cell death compared with cells from wild-type animals. BDNF and IGF-1 both increased the survival of the hippocampal neurons lacking BDNF, showing complementary action for these factors in supporting survival. Blocking antibodies against NT-3 and IGF-1 decreased hippocampal neuron survival at low cell densities, showing autocrine or paracrine action of the factors. At higher cell densities, however, the antibodies had no effect, demonstrating that there is a sufficient amount of endogenous factors supporting survival under these conditions. The present results show that hippocampal neurons depend for survival on local neurotrophic factors such as IGF-1, BDNF and NT-3, which act in an autocrine/paracrine manner. The multifactorial support of hippocampal neurons ensures a maximal degree of neuron survival even in the absence of an individual factor.  相似文献   

8.
Several neurotrophic factors influence the development, maintenance and survival of dopaminergic neurons in the mammalian central nervous system (CNS), including neurotrophin-3 (NT-3), brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), basic fibroblast growth factor (bFGF) and glial derived neurotrophic factor (GDNF). This review focuses on the role of these neurotrophic factors in psychostimulant-induced behavioral sensitization, a form of dopamine-mediated neuronal plasticity that models aspects of paranoid schizophrenia as well as drug craving among psychostimulant addicts. Whereas NT-3, CNTF and bFGF appear to play a positive role in psychostimulant-induced behavioral sensitization, GDNF inhibits this form of behavioral plasticity. The role of BDNF in behavioral sensitization, however, remains elusive. While it has been shown that neurotrophic factors can influence the behavioral, structural and biochemical phenomena related to psychostimulant-induced neuronal plasticity, it is unclear which neurotrophic factors are important physiologically and which have purely pharmacological effects. In either case, examining the role of neurotrophic factors in behavioral sensitization may enhance our understanding of the mechanisms underlying the development of paranoid psychosis and drug craving and lead to the development of novel pharmacological treatments for these disorders.  相似文献   

9.
Studies of the peripheral nervous system have led to the concept of target-derived neurotrophic support. Neurotrophic factors such as nerve growth factor are now known to act as retrograde trophic factors – retrophins – that are produced in the target cells and released to presynaptic neurons. However, using brain-derived neurotrophic factor (BDNF) tagged with green-fluorescent protein to monitor the subcellular dynamics of BDNF in neurites, Tsumoto and colleagues have provided persuasive visual evidence that BDNF can be released at the synapses of brain neurons in an activity-dependent manner to act on postsynaptic neurons. Accordingly, BDNF serves as an anterophin to regulate postsynaptic development and plasticity in the central nervous system.  相似文献   

10.
Neurotrophic factors are traditionally recognized for their roles in differentiation, growth, and survival of specific neurons in the central and peripheral nervous system. Some neurotrophic factors are essential for the development and migration of the enteric nervous system along the fetal and post‐natal gut. Over the last two decades, several non‐developmental functions of neurotrophic factors have been characterized. In the adult gastrointestinal tract, neurotrophic factors regulate gut sensation, motility, epithelial barrier function, and protect enteric neurons and glial cells from damaging insults in the microenvironment of the gut. In this issue of Neurogastroenterology and Motility, Fu et al demonstrate that brain‐derived neurotrophic factor plays a role in the pathogenesis of distention‐induced abdominal pain in bowel obstruction. In light of this interesting finding, this mini‐review highlights some of the recent advances in understanding of the physiological and pathophysiological roles of neurotrophic factors in the adult gut.  相似文献   

11.
Integrins are cell surface receptors known to be important for regeneration in the peripheral nervous system. We have investigated the expression of integrin messenger RNAs in red nucleus neurons of adult rats after axotomy and administration of neurotrophic factors. Using radioactive in situ hybridization, messenger RNA for integrin subunits beta1, alpha3, alpha7 and alphaV could be detected. No change of any alpha subunit could be detected after axotomy. In contrast, a small upregulation of beta1 was detected after lesion. Administration of neurotrophin-3 induced a robust further increase in beta1 messenger RNA levels, whereas brain-derived neurotrophic factor did not. By analogy to the peripheral nervous system, we propose that integrins may be important for a regenerative response in central nervous system neurons.  相似文献   

12.
Nerve growth factor (NGF), a target-derived factor for survival and maintenance of peripheral and central neurons, has been implicated in inflammatory processes. Mast cells are the principal effector cells in IgE-dependent hypersensitivity reactions, and also play a role in diseases characterised by inflammation, including those of the nervous system like multiple sclerosis. Mast cells are capable of synthesising and responding to NGF, although the occurrence of other members of the NGF family of neurotrophins and their protein forms have not been described. Immunoblot analysis with highly selective neurotrophin antibodies has now been used to show that rat peritoneal mast cells express a higher molecular weight form (73 kDa) of NGF, but not the monomeric (13 kDa) NGF polypeptide. Mast cells also expressed 73 kDa forms of neurotrophin-4 and neurotrophin-3; brain-derived neurotrophic factor was not detected. Medium conditioned by degranulating peritoneal mast cells contained similar high molecular weight forms of NGF and neurotrophin-4 on Western blots, but no neurotrophin-3. Mast cell-derived neurotrophin immunoreactivities were inhibited by the respective peptide antigen, further demonstrating the specificity of the mast cell-derived neurotrophic protein. Mast cell-released proteins supported the survival of cultured chicken embryonic neural crest- and placode-derived sensory neurons; neurotrophic activities were inhibited by neutralising antibodies for NGF and neurotrophin-4, respectively. High molecular isoforms of neurotrophins have been reported to occur in experimental colitis and in the inflamed gut of patients with Crohn's disease and ulcerative colitis, tissue sites rich in mast cells. The data suggest an important role for neurotrophins in the pathophysiology of inflammatory disease.  相似文献   

13.
Neural stem cells (NSCs) offer the potential to replace lost tissue after nervous system injury. This study investigated whether grafts of NSCs (mouse clone C17.2) could also specifically support host axonal regeneration after spinal cord injury and sought to identify mechanisms underlying such growth. In vitro, prior to grafting, C17.2 NSCs were found for the first time to naturally constitutively secrete significant quantities of several neurotrophic factors by specific ELISA, including nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. When grafted to cystic dorsal column lesions in the cervical spinal cord of adult rats, C17.2 NSCs supported extensive growth of host axons of known sensitivity to these growth factors when examined 2 weeks later. Quantitative real-time RT-PCR confirmed that grafted stem cells expressed neurotrophic factor genes in vivo. In addition, NSCs were genetically modified to produce neurotrophin-3, which significantly expanded NSC effects on host axons. Notably, overexpression of one growth factor had a reciprocal effect on expression of another factor. Thus, stem cells can promote host neural repair in part by secreting growth factors, and their regeneration-promoting activities can be modified by gene delivery.  相似文献   

14.
Neurotrophic factors comprise essential secreted proteins that have several functions in neural and non-neural tissues, mediating the development, survival and maintenance of peripheral and central nervous system. Therefore, neurotrophic factor issue has been extensively investigated into the context of neurodegenerative diseases. Alzheimer's disease and Parkinson's disease show changes in the regulation of specific neurotrophic factors and their receptors, which appear to be critical for neuronal degeneration. Indeed, neurotrophic factors prevent cell death in degenerative processes and can enhance the growth and function of affected neurons in these disorders. Based on recent reports, this review discusses the main findings related to the neurotrophic factor support – mainly brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor – in the survival, proliferation and maturation of affected neurons in Alzheimer's disease and Parkinson's disease as well as their putative application as new therapeutic approach for these diseases management.  相似文献   

15.
16.
The neurotrophin-4 and glial cell line-derived neurotrophic factor levels were measured in cerebrospinal fluid from 61 patients with bacterial meningitis, viral meningitis, or encephalitis, and other diseases by means of two-site enzyme-linked immunoassay. Elevated cerebrospinal fluid levels of neurotrophin-4 were demonstrated in four of the 11 patients with bacterial meningitis, and seven of the 23 patients with viral meningitis or encephalitis. None of the other patients demonstrated elevation of the neurotrophin-4 level in cerebrospinal fluid. The neurotrophin-4 levels in cerebrospinal fluid were correlated with the numbers of total and mononuclear cells in patients with viral meningitis/encephalitis. In patients with bacterial meningitis, three of the four patients with elevated neurotrophin-4 levels exhibited persistent abnormalities on computed tomography, and one revealed transient subdural effusion. On the other hand, none of the seven patients without neurotrophin-4 elevation had persistent computed tomography abnormalities, and five patients demonstrated transient computed tomography abnormalities. The glial cell line-derived neurotrophic factor levels were below the detection limit, or only slightly higher than the detection limit, in the patients with or without central nervous system infections. Although the precise roles of neurotrophin-4 and glial cell line-derived neurotrophic factor in central nervous system infections remain to be determined, neurotrophin-4 might play a neuroprotective or immunomodulatory role in central nervous system infections.  相似文献   

17.
A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.  相似文献   

18.
19.
Human amniotic epithelial cells (HAEC) may have pluripotent function because they are formed from the epiblast cells at the 8th day of fertilization. Previously, we reported that HAEC have the capacity to synthesize and release acetylcholine and catecholamine associated with the binding sites of catecholamine receptors. We show the neurotrophic function of a conditioned medium from HAEC using cultured cortical neurons of E18 rats. Extensive analyses with various techniques demonstrated that HAEC and immortalized HAEC synthesize and release brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF). Other neurotrophic factors were not detected in a cultured medium of HAEC by enzyme immunoassay. Various neurotrophic factors or growth factors did not show neurotrophic effects on E18 rat neuron except for EGF. Because EGF was not detected in the conditioned medium of HAEC, these data indicate an unidentified neurotrophic factor presently that is synthesized and released from HAEC. The amniotic membrane may have a significant role in supplying neurotrophic factors to the amniotic fluid as well as neurotransmitters, suggesting an important function to the early stages of neural development in the embryo.  相似文献   

20.
Neurotrophins are a family of functionally and structurally related proteins which play a key role in the survival, development, and function of neurons in both the central and peripheral nervous systems. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) are the family members of neurotrophins. Neurotrophins play a crucial role in influencing the development of the brain and learning and memory processes. Studies demonstrate that they also play crucial role in influencing reproductive and immune systems. Neurotrophins have been shown to influence various processes in the mother, placenta, and fetus during pregnancy. Development and maturation of feto-placental unit and the fetal growth trajectories are influenced by neurotrophins.In addition to neurotrophins, neuropeptides like neuropeptide Y also play a crucial role during various processes of pregnancy and during fetal brain development. Neurotrophins have also been shown to have a cross talk with various angiogenic factors and influence placental development. Alterations in the levels of neurotrophins and neuropeptides lead to placental pathologies resulting in various pregnancy complications like preeclampsia, intrauterine growth restriction and preterm births. Studies in animals have reported low levels of maternal micronutrients like folic acid, vitamin B12 and omega-3 fatty acids influence brain neurotrophins resulting in impaired cognitive functioning in the offspring. Maternal nutrition is also known to affect the expression of neuropeptides. It is essential to understand the role of various neurotrophins across various stages of pregnancy and its relationship with neurodevelopmental outcomes in children. This will lead to early prediction of poor neurodevelopmental outcomes. The present review describes evidence describing the role of neurotrophins in determining pregnancy outcome and altered neurodevelopment in the offspring. The possible mechanism through which maternal nutrition influences neurotrophins and neuropeptides to regulate offspring brain development and function is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号