共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
López-Gil X Artigas F Adell A 《The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP)》2009,12(4):487-499
Several studies have demonstrated that systemically administered N-methyl-d-aspartate (NMDA) receptor antagonists increase serotonin (5-HT) and glutamate release in the medial prefrontal cortex (mPFC). Previously we showed that the perfusion of clozapine in the mPFC prevented the MK-801-induced increase in extracellular glutamate and 5-HT whereas haloperidol blocked only the effect of MK-801 on glutamate. To study the contribution of different monoaminergic receptors (for which clozapine and haloperidol exhibit distinct affinities) to these effects, here we used in-vivo microdialysis to examine the role of local blockade of dopamine D2, 5-HT2A and alpha1-adrenergic receptors as well as agonism at dopamine D1 and 5-HT1A receptors in the mPFC on the increased efflux of glutamate and 5-HT elicited by MK-801. The results show that M100907 (5-HT2A antagonist), BAY x 3702 (5-HT1A agonist) and prazosin (alpha1-adrenergic antagonist) blocked the MK-801-induced increase of 5-HT and glutamate in the mPFC. However, raclopride, eticlopride (dopamine D2 antagonists) and SKF-38393 (dopamine D1 agonist) were able to prevent the increased efflux of glutamate (but not that of 5-HT) elicited by MK-801. We propose that D2 receptor antagonists and D1 agonists would act predominantly on a subpopulation of GABAergic interneurons of the mPFC, thus leading to an enhanced cortical inhibition that would prevent an excessive glutamatergic transmission. On the other hand, atypical antipsychotic drugs might further act upon 5-HT2A, 5-HT1A and alpha1-adrenoceptors present in pyramidal cells (including those projecting to the dorsal raphe nucleus), which would directly inhibit an excessive excitability of these cells. 相似文献
3.
Satoshi Yamamura Keiko Ohoyama Tatsuya Hamaguchi Kanae Kashimoto Masanori Nakagawa Shinichi Kanehara Dai Suzuki Takuya Matsumoto Eishi Motomura Takashi Shiroyama Motohiro Okada 《Psychopharmacology》2009,206(2):243-258
Introduction
The atypical antipsychotic drug, quetiapine (QTP), is effective in schizophrenia and mood disorders, but induces seizures compared to typical antipsychotics.Methods
To explore the mechanisms of action of QTP, we determined its effects on extracellular levels of norepinephrine, dopamine, serotonin, gamma-aminobutyric acid (GABA), and glutamate in the medial prefrontal cortex (mPFC) using microdialysis, and neuronal firing in the ventral tegmental area (VTA), locus coeruleus (LC), dorsal raphe nucleus (DRN), and mediodorsal thalamic nucleus (MTN) by telemetry in freely moving rats.Results
QTP (10 and 30 mg/kg, i.p.) activated neuronal firing in the VTA, LC, and MTN without affecting that in the DRN. QTP increased extracellular levels of norepinephrine, dopamine, and glutamate without affecting serotonin or GABA levels in the mPFC. The stimulatory effects of QTP on norepinephrine and dopamine were mediated by positive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamatergic and negative GABA-mediated NMDA/glutamatergic regulation.Discussion
The dopaminergic terminal projecting from the VTA received inhibitory GABA-mediated NMDA/glutamatergic regulation, but not stimulatory AMPA/glutamatergic regulation. However, both dopaminergic and noradrenergic terminals from the LC received stimulatory AMPA/glutamatergic regulation from the MTN, but not inhibitory GABA-mediated NMDA/glutamatergic regulation. These findings correlating neuronal activities in nuclei with neurotransmitter release suggested that the effects of QTP on neurotransmission in the mPFC depend on activated neuronal projections located outside the mPFC. Furthermore, positive interaction between LC and MTN afferents are potentially important in the pharmacological mechanisms of neurotransmitter regulation by QTP and hint at mechanisms underlying the atypical profile of this drug for treatment of schizophrenia and as a mood stabilizer and proconvulsive agent. 相似文献4.
5.
6.
Methylmercury (MeHg) is one of the ubiquitous environmental toxicants, which can induce oxidative stress and an indirect excitotoxicity caused by altered glutamate (Glu) metabolism. However, little is known of the interaction between oxidative stress and Glu metabolism play in MeHg poisoning rats. We have investigated the neuroprotective role of MK-801, a non-competitive N-methyl-d-aspartate receptors (NMDAR) antagonist, against MeHg-induced neurotoxicity. Fifty rats were randomly divided into five groups of 10 animals in each group: control group, MK-801 control group, MeHg-treated group (4 and 12 μmol/kg) and MK-801 pre-treated group. Administration of MeHg at a dose of 12 μmol/kg for four weeks significantly increased in ROS and total Hg levels and that caused lipid, protein and DNA peroxidative damage in cerebral cortex. In addition, MeHg also reduced nonenzymic (reduced glutathione, GSH) and enzymic (glutathione peroxidase, GPx and superoxide dismutase, SOD) antioxidants and enhanced neurocyte apoptosis rate in cerebral cortex. MeHg-induced ROS production appears to inhibit the activity of the glutamine synthetase (GS), leading to Glu metabolism dysfunction. Pretreatment with MK-801 at a dose of 0.3 μmol/kg prevented the alterations of the activities of PAG and GS and oxidative stress. In addition, pretreatment with MK-801 significantly alleviated the neurocyte apoptosis rate and histopathological damage. In conclusion, the results suggested ROS formation resulting from MeHg- and Glu-induced oxidative stress contributed to neuronal injury. MK-801 possesses the ability to attenuate MeHg-induced neurotoxicity in the cerebral cortex through mechanisms involving its NMDA receptor binding properties and antioxidation. 相似文献
7.
Spontaneous synaptic inhibition plays an important role in regulating the excitability of cortical networks. Here we have investigated the role of GABA(B) autoreceptors in regulating spontaneous GABA release in the entorhinal cortex (EC), a region associated with temporal lobe epilepsies. We have previously shown that the level of spontaneous inhibition in superficial layers of the EC is much greater than that seen in deeper layers. In the present study, using intracellular and whole cell patch clamp recordings in rat EC slices, we have demonstrated that evoked GABA responses are controlled by feedback inhibition via GABA(B) autoreceptors. Furthermore, recordings of spontaneous, activity-independent inhibitory postsynaptic currents in layer II and layer V neurones showed that the GABA(B) receptor agonist, baclofen, reduced the frequency of GABA-mediated currents indicating the presence of presynaptic GABA(B) receptors in both layers. Application of the antagonist, CGP55845, blocked the effects of baclofen and also increased the frequency of GABA-mediated events above baseline, but the latter effect was restricted to layer V. This demonstrates that GABA(B) autoreceptors are tonically activated by synaptically released GABA in layer V, and this may partly explain the lower level of spontaneous GABA release in the deep layer. 相似文献
8.
Repeated phencyclidine (PCP) administration induces cognitive disruptions resembling those seen in schizophrenia. Alterations in glutamate transmission and γ-aminobutyric acid (GABA) function in the prefrontal cortex (PFC) have been implicated in these PCP-induced deficits, as well as in cognitive symptoms of schizophrenia. PCP-induced cognitive deficits are reversed by chronic treatment with the atypical antipsychotic clozapine in rats. We investigated the effects of a single injection vs. repeated administration of PCP on glutamate levels in the PFC using in vivo microdialysis. Furthermore, we examined how these PCP regimens affect GABA neuronal markers in the PFC. Finally, we investigated the effects of clozapine on disruptions in glutamate levels and GABA neuronal markers induced by repeated PCP administration. Acute PCP administration (2 mg/kg) increased extracellular PFC glutamate; this increase appeared blunted, but was not eliminated, after repeated PCP pretreatment. PCP administration also strongly decreased levels of parvalbumin and glutamic acid decarboxylase-67 (two markers of GABA function) in the PFC, an effect that was maintained after a 10 day drug-free washout period and unaltered by the resumption of repeated PCP injections. All of the observed PCP effects were attenuated by chronic treatment with clozapine, an atypical antipsychotic that has partial effectiveness on cognitive impairment in schizophrenia. These findings suggest that abnormal cortical glutamate transmission, possibly driven by pathological changes in GABA function in parvalbumin-positive fast-spiking interneurons, may underlie some of the cognitive deficits in schizophrenia. A better understanding of glutamate and GABA dysregulation in schizophrenia may uncover new treatment targets for schizophrenia-related cognitive dysfunction. 相似文献
9.
Elizabeth A Pehek Christine Nocjar Bryan L Roth Tara A Byrd Omar S Mabrouk 《Neuropsychopharmacology》2006,31(2):265-277
The mechanism(s) by which serotonin modulates dopamine release in the medial prefrontal cortex is not known, although studies suggest an involvement of 5-HT2 family receptors. We employed in vivo microdialysis and putatively selective 5-HT2A antagonists (M100907, MDL 11,939, SR46349B) to determine if 5-HT2A receptors are responsible for both drug- and stress-induced DA release in the medial prefrontal cortex. MDL 11,939 and SR46349B receptor-binding studies indicated, for the first time, that only MDL 11,939 had greater selectivity for the 5-HT2A vs the 5-HT2C receptor subtypes similar to M100907, and that both showed low or no affinity for non-5-HT2 receptors. Reverse dialysis with 5-HT2A antagonists had little or no effect on basal dopamine efflux. However, intracortical administration of MDL 11,939 or M100907 attenuated dopamine release induced by systemic administration of the 5-HT2 agonist DOI. Dual-probe microdialysis demonstrated that systemic DOI also increased glutamate concentrations in the ventral tegmental area (VTA). This was blocked by intracortical M100907. Cortical perfusion with M100907, or the atypical antipsychotic drug risperidone, but not the 5-HT2B/C ligand SB 206553, also decreased dopamine release induced physiologically by stress. These results indicate that stimulation of cortical 5-HT2A receptors increases the release of dopamine from the mesocortical system. They suggest that this effect may be mediated by increases in glutamate release from corticotegmental projections to the VTA. Additionally, they indicate that cortical 5-HT2A receptors modulate evoked dopamine release, such as that observed physiologically following mild stress. These findings may have implications for the pharmacological treatment of disorders resulting from or exacerbated by stress. 相似文献
10.
Benoit Labonte Francis Rodriguez Bambico Gabriella Gobbi 《Naunyn-Schmiedeberg's archives of pharmacology》2009,380(5):383-397
New atypical antipsychotics show a greater affinity to serotonergic rather than to dopamine receptors, suggesting that serotonin (5-HT) has a major role in the pathophysiology and treatment of schizophrenia. The goal of this study was to characterise the response of pyramidal neurons in the medial prefrontal cortex (mPFC) to 5-HT and NMDA before and after administration of the NMDA receptor antagonist, MK-801 (dizocilpine), a well-validated pharmacological model of psychosis. mPFC pyramidal (glutamatergic) neurons were recorded in urethane-anaesthetised rats. The responses to NMDA and 5-HT were assessed using in vivo electrophysiology and microiontophoresis. The 5-HT2A/2C antagonist ritanserin and the 5-HT1A antagonist WAY100635 were used to block 5-HT responses. MK-801 decreased the NMDA-induced excitatory responses and increased NMDA-evoked burst activity among mPFC pyramidal neurons. Three subpopulations of pyramidal cells were identified according to their responses to 5-HT: excitation (33%), inhibition (40%) and non-response (27%). The inhibitory responses were blocked by WAY100635 in 100% of cases, but not by ritanserin; the excitatory responses were blocked by ritanserin in 75% of cases, but not by WAY100635. The administration of MK-801 potentiated the firing rate of excitatory responses but did not modify the inhibitory responses induced by microiontophoretic application of 5-HT. These results suggest that MK-801 modifies 5-HT synapses in the mPFC by potentiating the excitatory 5-HT2A/2C responses and attenuating NMDA excitations. These data indicate that 5-HT excitatory transmission is selectively impaired at the mPFC level in this pharmacological model of schizophrenia. 相似文献
11.
S Yamamura K Ohoyama T Hamaguchi M Nakagawa D Suzuki T Matsumoto E Motomura H Tanii T Shiroyama M Okada 《British journal of pharmacology》2009,157(4):656-665
Background and purpose:
The atypical antipsychotic drug, zotepine, is effective in treatment of schizophrenia and acute mania, but the incidence of seizures during treatment is higher than with other antipsychotics. In addition, the mechanisms underlying the clinical actions of zotepine remain uncharacterized.Experimental approach:
The effects of intraperitoneal administration of zotepine and haloperidol on the extracellular levels of noradrenaline, dopamine, 5-HT, GABA, and glutamate in the medial prefrontal cortex (mPFC) were compared. Neuronal activities induced by each drug in the ventral tegmental area (VTA), locus coeruleus (LC), dorsal raphe nucleus (DRN) and mediodorsal thalamic nucleus (MTN) were also analysed.Key results:
Haloperidol did not affect extracellular neurotransmitter levels in the mPFC. In contrast, zotepine activated neuronal activities in all nuclei and increased the extracellular levels of noradrenaline, dopamine, GABA, and glutamate in the mPFC, but not 5-HT levels. The zotepine-stimulated neuronal activity in the VTA, LC, DRN and MTN enhanced the release of dopamine, noradrenaline, 5-HT, glutamate and GABA in the mPFC, although the enhanced GABAergic transmission possibly inhibited noradrenaline, dopamine and 5-HT release. The other afferent to mPFC, which releases dopamine and noradrenaline, was partially insensitive to GABAergic inhibition, but possibly received stimulatory AMPA/glutamatergic regulation from the MTN.Conclusions and implications:
Our results indicated that the positive interaction between prefrontal catecholaminergic transmission and AMPA/glutamatergic transmission from MTN might explain the regulatory effects of zotepine on neurotransmitter release. A mechanism is suggested to account for the pharmacological profile of this atypical antipsychotic and for its pro-convulsive action.British Journal of Pharmacology (2009) 157, 656–665; doi:10.1111/j.1476-5381.2009.00175.x; published online 9 April 2009 相似文献12.
Rationale
Histamine H3 receptors (H3R) are presynaptic heteroreceptors that negatively modulate the release of histamine and other neurotransmitters such as acetylcholine. Blocking H3 receptors with antagonists/inverse agonists has been shown to be procognitive and this effect has often been associated with increases in acetylcholine transmission. H3 receptors are abundantly expressed in the prefrontal cortex, an area associated with cognitive performance. While the procognitive effects of H3 receptor antagonists/inverse agonists may depend on alterations to acetylcholine or histamine release, other transmitters involved in cognitive processing such as glutamate and gamma-aminobutyric acid (GABA) may also be involved. 相似文献13.
14.
In vivo microdialysis in conscious rats was used to evaluate the effect of local application, through a microdialysis probe, of desipramine (DMI), imipramine and citalopram (CIT), on veratridine-evoked glutamate and aspartate release in rat prefrontal cortex (PFCx). All antidepressant drugs (ADs), given at a concentration of 0.1 mM, significantly inhibited glutamate release, while aspartate release was affected only by DMI and CIT. In contrast, local administration of ADs markedly potentiated veratridine-evoked dopamine and noradrenaline release. Perfusion of clonidine, quinpirole and 1-[3-(trifluoro-methyl)phenyl]-piperazine (TFMPP) at 0.1 mM concentration also diminished, evoked release of glutamate and aspartate. The regulation of amino acid release in rat PFCx may be achieved by direct effect of ADs on Na+ channels or indirectly, by involvement of D2/D3, alpha 2 or 5-HT1B heteroceptors activated by the increased level of monoamines in response to the blockade of respective transporters. 相似文献
15.
Shiotani M Nakano K Yamauchi E Oda Y Hosokawa S Aoki T 《The Journal of toxicological sciences》2011,36(1):131-133
Proteomic analysis was carried out for neuronal vacuolation in rat retrosplenial cortex (RSC) induced by MK-801, a N-methyl-D-aspartate (NMDA) receptor antagonist. Female rats were given a single subcutaneous (sc) injection of either MK-801 (9 mg/kg in saline) or saline. Comparison of changes in proteins in the RSC region between MK-801- and saline-treated groups revealed that MK-801 induced changes in six proteins involved in vesicular transport (vesicle-fusing ATPase) and glycolysis (fructose-bisphosphate aldolase C, triosephosphate isomerase, and glyceraldehyde-3-phosphate dehydrogenase). 相似文献
16.
We have reported that l-glutamate (l-glu) microinjections into ventral portion of medial prefrontal cortex (vMPFC) caused tachycardia and blood pressure increase in unanesthetized rats. In the present study, we report the subtype of vMPFC glutamatergic receptor mediating the response as well as the possible involvement of nitric oxide (NO) in these cardiovascular responses. Microinjection of 200 nL of l-glu (81 nmol) into the vMPFC of unanesthetized rats caused long-lasting pressor and tachycardic responses which were abolished by pretreatment with 4 nmol of the specific NMDA receptor antagonist AP7. The response was not affected by 4 nmol of the non-NMDA receptor antagonist NBQX. Local pretreatment with 80 nmol of the unspecific nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME) or 0.08 nmol of the specific neuronal NOS (nNOS) inhibitor Nω-Propyl-l-arginine (N-Propyl) blocked l-glu effects. Microinjection of the NO donor sodium nitroprusside (SNP: 3, 9, 27 or 81 nmol) in the vMPFC caused dose-related long-lasting pressor and tachycardic responses in unanesthetized rats, which were similar to those caused by l-glu. These results suggest that cardiovascular responses evoked by local injection of l-glu into the vMPFC of unanesthetized rats are caused by activation of a local NMDA receptor-NO pathway. 相似文献
17.
18.
Previously, we have shown that presynaptic GABA(B) receptors regulating the release of various transmitters from CNS terminals can be differentially blocked by GABA(B) antagonists suggesting the existence of pharmacologically distinct GABA(B) receptor subtypes. We here examined the ability of CGP 36742 [(3-aminopropyl)n-butylphosphinic acid], a selective GABA(B) antagonist endowed with cognition enhancing activity, to block release-regulating GABA(B) receptors. In particular, CGP 36742 was tested against the inhibition of the depolarization-evoked release of GABA, glutamate, cholecystokinin and somatostatin produced by (-)baclofen in rat and human neocortex axon terminals. CGP 36742 potently antagonized (IC50 = 0.14 microM) the inhibition by (-)baclofen of somatostatin release from superfused rat neocortex synaptosomes. In contrast, the effects of (-)baclofen on GABA, glutamate and cholecystokinin release were insensitive to CGP 36742, at concentrations of up to 100 microM. In human neocortex synaptosomes CGP 36742 exhibited a pattern of selectivity identical to that in rat synaptosomes, although the antagonist was at least 10-fold less potent in human than in rat brain. CGP 36742 is the first compound displaying great selectivity for the GABA(B) presynaptic receptors regulating somatostatin release. Considering the proposed implication of the neuropeptide in cognitive processes, disinhibition of somatostatin release merits consideration as one of the mechanisms possibly involved in the behavioral activity of CGP 36742. 相似文献
19.
J A Harder A A Aboobaker T C Hodgetts R M Ridley 《British journal of pharmacology》1998,125(5):1013-1018
- This study investigated the effects of dizocilpine (MK-801) on learning ability in a non-human primate. Acquisition and reversal learning of visual discrimination tasks and acquisition of visuo-spatial discrimination tasks were assessed in marmosets using the Wisconsin General Test Apparatus. Dizocilpine impaired acquisition of visuo-spatial (conditional) tasks requiring spatial responses to coloured objects, and perceptually difficult visual discrimination tasks in which stimulus objects are painted black. Dizocilpine did not, however, impair either acquisition or reversal of a simple visual discrimination task using easily discriminated, coloured objects.
- Motor effects of dizocilpine treatment, which have been seen in other primates, were examined by observation of the marmosets in their home cages, using both an automated locomotor activity monitor and `blind'', subjective counting of the number of abnormal movements in a given time period. Locomotor activity, assessed using the automated monitor, was not significantly affected at any of the doses tested. Incoordination, assessed by human observation of abnormal movements, was significantly increased only at a dose of 30 μg kg−1 i.m., which was twice the highest dose used to assess the effects of dizocilpine on cognition.
- We have, therefore, found an effect of dizocilpine on acquisition and reversal of some types of cognitive task, at a dose which does not cause significant motor effects. This demonstration of a cognitive deficit associated with glutamatergic blockade in a primate may be useful in understanding the contribution of glutamatergic dysfunction to cognitive decline in neurodegenerative disease, especially Alzheimer''s disease.
20.
Xavier López-Gil Zoila Babot Mercè Amargós-Bosch Cristina Su?ol Francesc Artigas Albert Adell 《Neuropsychopharmacology》2007,32(10):2087-2097
The administration of noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine and ketamine has been shown to increase the extracellular concentration of glutamate and serotonin (5-HT) in the medial prefrontal cortex (mPFC). In the present work, we used in vivo microdialysis to examine the effects of the more potent noncompetitive NMDA receptor antagonist, MK-801, on the efflux of glutamate and 5-HT in the mPFC, and whether the MK-801-induced changes in the cortical efflux of both transmitters could be blocked by clozapine and haloperidol given systemically or intra-mPFC. The systemic, but not the local administration of MK-801, induced an increased efflux of 5-HT and glutamate, which suggests that the NMDA receptors responsible for these effects are located outside the mPFC, possibly in GABAergic neurons that tonically inhibit glutamatergic inputs to the mPFC. The MK-801-induced increases of extracellular glutamate and 5-HT were dependent on nerve impulse and the activation of mPFC AMPA/kainate receptors as they were blocked by tetrodotoxin and NBQX, respectively. Clozapine and haloperidol blocked the MK-801-induced increase in glutamate, whereas only clozapine was able to block the increased efflux of 5-HT. The local effects of clozapine and haloperidol paralleled those observed after systemic administration, which emphasizes the relevance of the mPFC as a site of action of these antipsychotic drugs in offsetting the neurochemical effects of MK-801. The ability of clozapine to block excessive cortical 5-HT efflux elicited by MK-801 might be related to the superior efficacy of this drug in treating negative/cognitive symptoms of schizophrenia. 相似文献