首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Wassef  A Berod  C Sotelo 《Neuroscience》1981,6(11):2125-2139
An antiserum prepared in the rabbit against bovine adrenal gland tyrosine hydroxylase has been used to identify by the immunoperoxidase method dopaminergic neurons in the rat substantia nigra. The purpose of this identification was (i) to assess the storing compartments and the release sites in the dopamine-containing processes of the pars reticulata; (ii) to determine if these processes receive a direct input from the neostriatum.Immunoreactive neurons were present in the three divisions of the substantia nigra (pars compacta, pars lateralis and pars reticulata), but they were much more numerous in pars compacta. The caudal half and the most rostral end of pars reticulata contained single and small clusters of reactive neurons, which were absent from the remaining regions. Processes emerging from the positive neurons, exhibiting also immunoperoxidase reactivity, spread throughout the whole pars reticulata. The ultrastructural study was limited to the region of the pars reticulata free of reactive perikarya, in order to analyze the processes that originate from neurons located in the pars compacta. Five hundred and eighty well-preserved immunoreactive processes were analyzed. Almost all of them (578) displayed cytological features allowing their identification as dendrites. Two of them corresponded to thin unmyelinated, non-synaptic segments of axons, probably in their way to their terminal fields outside the substantia nigra. The large majority of the reactive dendrites (82%) were postsynaptic to one or several axon terminals and did not establish direct appositions with other dendritic elements. Only 4.35% of the labeled dendrites were directly apposed to other reactive or unreactive dendrites. Two of the labeled dendrites (0.35%) contained synaptic-like vesicles. In one of them, the vesicles were clustered against a restricted area of the plasma-membrane, forming an active zone.In two animals, kainic acid was used to destroy neurons located within the central region of the main body of the neostriatum. Their projections were traced to the ipsilateral substantia nigra, in which dopaminergic neurons were visualized by the immunoperoxidase method. The axons originating from the injured neurons in the striatum established direct synaptic contacts with the immunoreactive dendrites in pars reticulata.These findings indicate that (i) there is no dopaminergic recurrent collateral axonal plexus in pars reticulata; (ii) the dopamine-storing compartment in the dendritic processes is not vesicular; the cisterns of the smooth endoplasmic reticulum might be such a compartment; (iii) The differentiation of presynaptic dendrites which establish typical junctional synaptic complexes does not occur in the dopaminergic dendrites present in pars reticulata; (iv) The proportion of presynaptic release sites observed in dopaminergic dendrites (1 active zone out of the 578 analyzed dendrites) is too low to account for the dendritic release revealed by biochemical analysis (Nieoullou, Chéramy &; Glowinski, 1977a). Therefore, the modality of transmitter release from dopaminergic dendrites must be different from that supposed in the vesicular theory; (v) combined anterograde degeneration and immunocytochemistry has allowed us to demonstrate a direct striatal input to the dopamine-containing dendrites present within the pars reticulata.  相似文献   

2.
Several models have suggested that information transmission in the basal ganglia (BG) involves gating mechanisms, where neuronal activity modulates the extent of gate aperture and its duration. Here, we demonstrate that BG response duration is informative about a highly abstract stimulus feature and show that the duration of "gate opening" can indeed be used for information transmission through the BG. We analyzed recordings from three BG locations: the external part of the globus pallidus (GPe), the substantia nigra pars reticulata (SNr), and dopaminergic neurons from the substantia nigra pars compacta (SNc) during performance of a probabilistic visuomotor task. Most (>85%) of the neurons showed significant rate modulation following the appearance of cues predicting future reward. Trial-to-trial mutual information analysis revealed that response duration encoded reward prospects in many (42%) of the responsive SNr neurons, as well as in the SNc (26.9%), and the GPe (29.3%). Whereas the low-frequency discharge SNc neurons responded with only an increase in firing rate, SNr and GPe neurons with high-frequency tonic discharge responded with both increases and decreases. Conversely, many duration-informative neurons in SNr (68%) and GPe (50%) responded with a decreased rather than an increased rate. The response duration was more informative than the extreme (minimal or maximal) amplitude or spike count in responsive bins of duration-informative neurons. Thus response duration is not simply correlated with the discharge rate and can provide additional information to the target structures of the BG.  相似文献   

3.
In order to determine whether the cholinergic fibres that innervate the substantia nigra make synaptic contact with dopaminergic neurons of the substantia nigra pars compacta, a double immunocytochemical study was carried out in the rat and ferret. Sections of perfusion-fixed mesencephalon were incubated first to reveal choline acetyltransferase immunoreactivity to label the cholinergic terminals and then tyrosine hydroxylase immunoreactivity to label the dopaminergic neurons. Each antigen was localized using peroxidase reactions but with different chromogens. At the light microscopic level, in confirmation of previous observations, choline acetyltransferase-immunoreactive axons and axonal boutons were found throughout the substantia nigra. The highest density of these axons was found in the pars compacta where they were often seen in close apposition to tyrosine hydroxylase-immunoreactive cell bodies and dendrites. In the ferret where the choline acetyltransferase immunostaining was particularly strong, bundles of immunoreactive fibres were seen to run through the reticulata perpendicular to the pars compacta. These bundles were associated with tyrosine hydroxylase-immunoreactive dendrites that descended into the reticulata. The choline acetyltransferase-immunoreactive fibres made "climbing fibre"-type multiple contacts with the tyrosine hydroxylase positive dendrites. At the electron microscopic level the choline acetyltransferase-immunoreactive axons were seen to give rise to vesicle-filled boutons that formed asymmetrical synaptic specializations with nigral dendrites and perikarya. The synapses were often associated with sub-junctional dense bodies. On many occasions the postsynaptic structures contained the tyrosine hydroxylase immunoreaction product, thus identifying them as dopaminergic. It is concluded that at least one of the synaptic targets of cholinergic terminals in the substantia nigra are the dendrites and perikarya of dopaminergic neurons and that in the ferret at least, the dendrites of dopaminergic neurons that descend into the pars reticulata receive multiple synaptic inputs from individual cholinergic axons.  相似文献   

4.
Dopaminergic neurons express both GABA(A) and GABA(B) receptors and GABAergic inputs play a significant role in the afferent modulation of these neurons. Electrical stimulation of GABAergic pathways originating in neostriatum, globus pallidus or substantia nigra pars reticulata produces inhibition of dopaminergic neurons in vivo. Despite a number of prior studies, the identity of the GABAergic receptor subtype(s) mediating the inhibition evoked by electrical stimulation of neostriatum, globus pallidus, or the axon collaterals of the projection neurons from substantia nigra pars reticulata in vivo remain uncertain. Single-unit extracellular recordings were obtained from substantia nigra dopaminergic neurons in urethane anesthetized rats. The effects of local pressure application of the selective GABA(A) antagonists, bicuculline and picrotoxin, and the GABA(B) antagonists, saclofen and CGP-55845A, on the inhibition of dopaminergic neurons elicited by single-pulse electrical stimulation of striatum, globus pallidus, and the thalamic axon terminals of the substantia nigra pars reticulata projection neurons were recorded in vivo. Striatal, pallidal, and thalamic induced inhibition of dopaminergic neurons was always attenuated or completely abolished by local application of the GABA(A) antagonists. In contrast, the GABA(B) antagonists, saclofen or CGP-55845A, did not block or attenuate the stimulus-induced inhibition and at times even increased the magnitude and/or duration of the evoked inhibition. Train stimulation of globus pallidus and striatum also produced an inhibition of firing in dopaminergic neurons of longer duration. However this inhibition was largely insensitive to either GABA(A) or GABA(B) antagonists although the GABA(A) antagonists consistently blocked the early portion of the inhibitory period indicating the presence of a GABA(A) component. These data demonstrate that dopaminergic neurons of the substantia nigra pars compacta are inhibited by electrical stimulation of striatum, globus pallidus, and the projection neurons of substantia nigra pars reticulata in vivo. This inhibition appears to be mediated via the GABA(A) receptor subtype, and all three GABAergic afferents studied appear to possess inhibitory presynaptic GABA(B) autoreceptors that are active under physiological conditions in vivo.  相似文献   

5.
GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (Na(V)) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, Na(V) channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming Na(V)1.1 and Na(V)1.6 subunits and regulatory Na(V)β1 and Na(v)β4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming Na(V) channels conducting the transient Na(V) current (I(NaT)), persistent Na current (I(NaP)), and resurgent Na current (I(NaR)). Nucleated patch-clamp recordings showed that I(NaT) had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. I(NaT) also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger I(NaR) and I(NaP). Blockade of I(NaP) induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that Na(V) channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities.  相似文献   

6.
Glucose sensitivity of substantia nigra pars reticulata (SNr) GABAergic neurons was investigated by extracellular recording in acute slice. Approximately two thirds of the GABAergic SNr neurons tested exhibited a significant increase in spontaneous firing rate as the extracellular glucose concentration was lowered from 10 to 4-6 mM. At lower glucose concentrations, a small proportion of these glucose-sensitive GABAergic SNr neurons exhibited multiple, robust increases in spontaneous firing rate with periods ranging in minutes. Similar changes in firing rate of SNr neurons in response to lowered glucose were detected under blockade of GABAA, NMDA, and non-NMDA receptors, indicating that mechanisms other than those mediated by the major synaptic transmissions in the SNr are involved. These findings suggest involvement of previously unknown glucose dependent alterations of GABAergic SNr neuronal activity in the central regulation of glucose homeostasis.  相似文献   

7.
Summary The corticonigral projections from area 6 in the raccoon were investigated using the autoradiographic tracing method. Injections of tritiated proline and leucine were made into either medial or lateral area 6 subdivisions. Uniformly distributed silver grains were observed overlying the ipsilateral substantia nigra pars compacta (SNc) while more restricted foci of label indicative of fiber labeling were present in the substantia nigra pars reticulata (SNr). Autoradiographic label was also present in the substantia nigra pars lateralis (SNl), the retrorubral area and the ventral tegmental area of Tsai. The existence of corticonigral projections from area 6 may serve to modulate SNc activity as a whole and provide an important substrate for the cerebral control of movement.Abbreviations cp cerebral peduncle - IP interpeduncular nucleus - PG pontine gray - R red nucleus - RR retrorubral area - SNc substantia nigra, pars compacta - SNl substantia nigra, pars lateralis - SNr substantia nigra, pars reticularis - VTA ventral tegmental area  相似文献   

8.
GABAergic afferent inputs are thought to play an important role in the control of the firing pattern of substantia nigra pars compacta (SNc) dopaminergic neurons. We report here the actions of presynaptic kainite (KA) receptors in GABAergic transmission of rat SNc dopaminergic neurons. In mechanically dissociated rat SNc dopaminergic neurons attached with native presynaptic nerve terminals, GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded by use of conventional whole cell patch recording mode. In the voltage-clamp condition, KA (3 microM) significantly increased GABAergic mIPSC frequency without affecting the current amplitude. This facilitatory effect of KA was not affected in the presence of 20 microM GYKI52466, a selective AMPA receptor antagonist, but was completely inhibited in the presence of 20 microM CNQX, an AMPA/KA receptor antagonist. Presynaptic KA receptors on GABAergic terminals were mainly permeable to Na+ but impermeable to Ca2+ because KA-induced facilitation of mIPSC frequency was completely suppressed in either Na+-free or Ca2+-free external solutions, and in the presence of 200 microM Cd2+, a general voltage-dependent Ca2+ channel blocker. In the slice preparation, KA increased GABAergic spontaneous mIPSC frequency, but significantly suppressed evoked IPSC (eIPSC) amplitude. However, this inhibitory action on eIPSCs was reversed by 10 microM CGP55845, a selective GABAB receptor antagonist, implicating the possible involvement of GABAB autoreceptors in KA-induced modulation of GABAergic transmission. Thus presynaptic KA receptors on GABAergic nerve terminals synapsing onto SNc neurons may play functional roles contributing the fine control of neuronal excitability and firing pattern of SNc.  相似文献   

9.
The morphological organization of the tegmental pedunculopontine nucleus, midbrain extrapyramidal area, substantia nigra and subthalamic nucleus and their interrelationships were studied in rat organotypic culture using immunohistochemistry and NADPH-diaphorase histochemistry. Three coronal sections, one containing the tegmental pedunculopontine nucleus/midbrain extrapyramidal area, another with the substantia nigra and the third with the subthalamic nucleus, were obtained from postnatal 1-2-day-old rats. These sections were co-cultured for 3-4 weeks using the roller-tube technique. In the tegmental pedunculopontine nucleus/midbrain extrapyramidal area, the distribution pattern of cholinergic neurons was similar to that found in the in vivo study. We could, therefore, identify the subdivisions of the tegmental pedunculopontine nucleus (i.e., pars compacta and pars dissipata) and the midbrain extrapyramidal area. As in the in vivo situation, glutamate immunoreactive neurons were also located in these areas. Approximately 10% of NADPH-diaphorase positive neurons in the tegmental pedunculopontine nucleus, were glutamate immunoreactive. In the substantia nigra, as in the in vivo, tyrosine hydroxylase immunoreactive (putative dopaminergic) neurons were identified predominantly in the substantia nigra pars compacta, and parvalbumin immunoreactive neurons (putative GABAergic) mainly in the substantia nigra pars reticulata. The subthalamic nucleus was ladened with glutamate immunoreactive neurons. NADPH-diaphorase stained axons originating from the tegmental pedunculopontine nucleus were traced into the substantia nigra and subthalamic nucleus. They were often in close apposition to tyrosine hydroxylase immunoreactive neurons in the substantia nigra. Parvalbumin immunoreactive fibers from the substantia nigra projected heavily to the midbrain extrapyramidal area, but only sparsely to the tegmental pedunculopontine nucleus and the subthalamic nucleus. These findings indicate that the tegmental pedunculopontine nucleus/midbrain extrapyramidal area, substantia nigra and subthalamic nucleus in the organotypic culture have retained a basic morphological organization and connectivity similar to those seen in the in vivo situation. Therefore, this preparation could be a useful model to conduct further studies to investigate functional circuits among the structures represented.  相似文献   

10.
To compare the expression of GABAA receptor subunits in the normal substantia nigra and in fetal mesencephalic neurons ectopically transplanted into the dopamine-depleted striatum, we have employed single and double immunocytochemical approaches using tyrosine hydroxylase (TH) and alpha 1, alpha 2, alpha 3, and beta 2/3 GABAA receptor subunit specific antibodies. In the substantia nigra, alpha 1 and beta 2/3 GABAA receptor subunits were labeled in processes in the pars compacta (SNc) and, more intensely, in both somata and processes in the pars reticulata (SNr). There was no clear TH and alpha 1 or beta 2/3 colocalization, with the exception of some TH-immunoreactive (-ir) neurons that showed a weak immunoreactivity for beta 2/3. Sections immunolabeled for alpha 2 showed a faint diffuse labeling for this subunit both in the SNr and in the SNc. Scattered somata were immunopositive for alpha 2, and some of them were also TH-ir. The labeling for alpha 3 and TH showed that TH-positive neurons expressed intense alpha 3 immunoreactivity, although some TH-negative somata in the SNr expressed weak alpha 3 immunoreactivity. In the transplants, double immunostaining procedures showed that the labeling for alpha 1 or beta 2/3 appeared particularly concentrated in patches of intensely immunoreactive neuronal processes that surrounded TH-ir cells, but these processes were not TH-ir. In the case of alpha 2, diffuse immunostaining was observed all over the graft, with some scattered positive somata. Only a few of them were also TH positive. Sections immunoreacted for alpha 3 and TH revealed that TH-ir neurons expressed intense alpha 3 immunoreactivity, and that only a few TH-negative neurons were weakly positive for alpha 3. These results show that mesencephalic tissue ectopically grafted into the striatum develops a pattern of GABAA receptor expression similar to that normally expressed in situ, and particularly that the grafted dopaminergic neurons express similar GABAA receptors, including the alpha 3 subunit. This might be due to the similarity of GABAergic afferents to these neurons in the SNc and the graft, or that at the time of transplantation this expression had already been determined.  相似文献   

11.
Antagonists selectively inhibiting activation of the nociceptin/orphanin FQ (N/OFQ) receptor reduce motor symptoms in experimental models of Parkinson's disease, and genetic deletion of the ppN/OFQ gene offers partial protection of mid-brain dopamine neurons against the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP increased ppN/OFQ mRNA expression in the substantia nigra (SN). We have evaluated the temporal relationship of dopamine cell loss to increased ppN/OFQ mRNA expression in the substantia nigra after MPTP treatment, and characterized the cellular locations in which increased ppN/OFQ mRNA expression was observed after MPTP treatment. MPTP increased by about 5-fold the number of neurons expressing ppN/OFQ mRNA in the pars reticulata of SN (SNr) by 24 h after treatment and the elevation remained significant for at least 7 days. This period coincided with the timing of the loss of dopamine neurons from the pars compacta of substantia nigra (SNc) after MPTP. The increased expression of ppN/OFQ mRNA co-localized with a neuronal marker in the SNr. MPTP treatment resulted in a small increase in the numbers of neurons expressing ppN/OFQ in the SNc in mice from one mouse colony but the increase did not reach statistical significance in mice from another colony. No changes in ppN/OFQ-mRNA expression were observed in the ventral tegmental area (VTA), the caudate-putamen, the subthalamic nucleus, or in two other brains areas. These results demonstrate that increased N/OFQ expression in the SNr is closely associated with the MPTP-induced loss of dopamine neurons in the SNc in a widely used animal model of Parkinson's disease.  相似文献   

12.
Midbrain dopaminergic neurons respond to unexpected and biologically salient events, but little is known about the sensory systems underlying this response. Here we describe, in the rat, a direct projection from a primary visual structure, the midbrain superior colliculus (SC), to the substantia nigra pars compacta (SNc) where direct synaptic contacts are made with both dopaminergic and non-dopaminergic neurons. Complementary electrophysiological data reveal that short-latency visual responses in the SNc are abolished by ipsilateral lesions of the SC and increased by local collicular stimulation. These results show that the tectonigral projection is ideally located to relay short-latency visual information to dopamine-containing regions of the ventral midbrain. We conclude that it is within this afferent sensory circuitry that the critical perceptual discriminations that identify stimuli as both unpredicted and biologically salient are made.  相似文献   

13.
目的 观察COX 2对帕金森病小鼠黑质多巴胺能神经元的影响。方法 选用C5 7BL种系环加氧酶 2 (Cyclooxygenase 2 ,COX 2 )缺陷小鼠 ,腹腔注射 1 甲基 4 苯基 1,2 ,3,6 四氢吡啶 (MPTP)制备帕金森病小鼠模型 ,用免疫组织化学方法。结果 行为学及免疫组织化学观察显示 ,野生型帕金森病小鼠的死亡率明显高于COX 2缺陷杂合子帕金森病小鼠 (P <0 0 1) ;野生型帕金森病小鼠黑质致密部酪氨酸羟化酶 (Ty rosineHydroxylase ,TH)免疫反应阳性神经元数目较杂合子帕金森病小鼠明显减少 (P <0 0 1)。结论 COX 2很可能与帕金森病时黑质多巴胺能神经元的损伤有关  相似文献   

14.
Dopaminergic neurons in vivo fire spontaneously in three distinct patterns or modes. It has previously been shown that the firing pattern of substantia nigra dopaminergic neurons can be differentially modulated by local application of GABA(A) and GABA(B) receptor antagonists. The GABA(A) antagonists, bicuculline or picrotoxin, greatly increase burst firing in dopaminergic neurons whereas GABA(B) antagonists cause a modest shift away from burst firing towards pacemaker-like firing. The three principal GABAergic inputs to nigral dopaminergic neurons arise from striatum, globus pallidus and from the axon collaterals of nigral pars reticulata projection neurons, each of which appear to act in vivo primarily on GABA(A) receptors (see preceding paper). In this study we attempted to determine on which afferent pathway(s) GABA(A) antagonists were acting to cause burst firing. Substantia nigra dopaminergic neurons were studied by single unit extracellular recordings in urethane anesthetized rats during pharmacologically induced inhibition and excitation of globus pallidus. Muscimol-induced inhibition of pallidal neurons produced an increase in the regularity of firing of nigral dopaminergic neurons together with a slight decrease in firing rate. Bicuculline-induced excitation of globus pallidus neurons produced a marked increase in burst firing together with a modest increase in firing rate. These changes in firing rate were in the opposite direction to what would be expected for a monosynaptic GABAergic pallidonigral input. Examination of the response of pars reticulata GABAergic neurons to similar manipulations of globus pallidus revealed that the firing rates of these neurons were much more sensitive to changes in globus pallidus neuron firing rate than dopaminergic neurons and that they responded in the opposite direction. Pallidal inhibition produced a dramatic increase in the firing rate of pars reticulata GABAergic neurons while pallidal excitation suppressed the spontaneous activity of pars reticulata GABAergic neurons. These data suggest that globus pallidus exerts significant control over the firing rate and pattern of substantia nigra dopaminergic neurons through a disynaptic pathway involving nigral pars reticulata GABAergic neurons and that at least one important way in which local application of bicuculline induces burst firing of dopaminergic neurons is by disinhibition of this tonic inhibitory input.  相似文献   

15.
The subthalamic nucleus (STN) is one of the principal sources of excitatory glutamatergic input to dopaminergic neurons of the substantia nigra, yet stimulation of the STN produces both excitatory and inhibitory effects on nigral dopaminergic neurons recorded extracellularly in vivo. The present experiments were designed to determine the sources of the excitatory and inhibitory effects. Synaptic potentials were recorded intracellularly from substantia nigra pars compacta dopaminergic neurons in parasagittal slices in response to stimulation of the STN. Synaptic potentials were analyzed for onset latency, amplitude, duration, and reversal potential in the presence and absence of GABA and glutamate receptor antagonists. STN-evoked depolarizing synaptic responses in dopaminergic neurons reversed at approximately -31 mV, intermediate between the expected reversal potential for an excitatory and an inhibitory postsynaptic potential (EPSP and IPSP). Blockade of GABA(A) receptors with bicuculline caused a positive shift in the reversal potential to near 0 mV, suggesting that STN stimulation evoked a near simultaneous EPSP and IPSP. Both synaptic responses were blocked by application of the glutamate receptor antagonist, 6-cyano-7-nitroquinoxalene-2,3-dione. The confounding influence of inhibitory fibers of passage from globus pallidus and/or striatum by STN stimulation was eliminated by unilaterally transecting striatonigral and pallidonigral fibers 3 days before recording. The reversal potential of STN-evoked synaptic responses in dopaminergic neurons in slices from transected animals was approximately -30 mV. Bath application of bicuculline shifted the reversal potential to approximately 5 mV as it did in intact animals, suggesting that the source of the IPSP was within substantia nigra. These data indicate that electrical stimulation of the STN elicits a mixed EPSP-IPSP in nigral dopaminergic neurons due to the coactivation of an excitatory monosynaptic and an inhibitory polysynaptic connection between the STN and the dopaminergic neurons of substantia nigra pars compacta. The EPSP arises from a direct monosynaptic excitatory glutamatergic input from the STN. The IPSP arises polysynaptically, most likely through STN-evoked excitation of GABAergic neurons in substantia nigra pars reticulata, which produces feed-forward GABA(A)-mediated inhibition of dopaminergic neurons through inhibitory intranigral axon collaterals.  相似文献   

16.
The neurotoxic properties of the proposed retrograde neurotoxin volkensin were investigated. Unilateral intrastriatal injections of volkensin (n = 8) caused a 60-79% decrease in substantia nigra pars compacta (SNc) cell number on the ipsilateral side as compared to the contralateral side. This decrease was associated with a 35-56% decrease in [3H]sulpiride binding to dopamine D2 receptors in the SNc. In the substantia nigra pars reticulata (SNr) there was a 17-24% decrease in [3H]SCH 23390 binding to dopamine D1 receptors on the ipsilateral as compared to the contralateral side. The cell loss and decrease in D2 binding is attributed to the retrograde neurotoxic properties of volkensin. The decrease in D1 binding is believed to reflect loss of presynaptic receptors from terminals of striato-nigral neurons, and thus the anterograde neurotoxicity of volkensin.  相似文献   

17.
Summary Single cell activity was recorded in the pars compacta (SNc) and pars reticulata (SNr) of the substantia nigra (SN) in 4 unanesthetizedMacaca fascicularis to determine the motor role of the nucleus. Animals were trained to perform a simple task that involved moving a lever by elbow flexion-extensions, in the horizontal plane using the hand contralateral to the recording site. Two monkeys learnt to execute the task on both sides. Electromyograms (EMG) of limb muscles were recorded simultaneously with SN neurons. Discharge rate modulation related to specific movement phases was present in 35% of the neurons. A significant positive correlation of the discharge rate with movement velocity and amplitude was found in SNc and SNr neurons. Some SNr cells discharged in anticipation of the EMG, suggesting a participation of the nucleus in the preparation of movement. The activity of SNr neurons was also related to movement of the left and right upper limb. In conclusion, the SN seems to play an important role in the control of specific motor mechanisms, probably modulating movement velocity, amplitude and direction, with little participation of somatosensory feedback. The involvement of the SNr in the coordination of bilateral arm activity is discussed.  相似文献   

18.
The neurotransmitter dopamine plays important roles in motor control, learning, and motivation in mammals and probably other animals as well. The strong dopaminergic projection to striatal regions and more moderate dopaminergic projections to other regions of the telencephalon predominantly arise from midbrain dopaminergic neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA). Homologous dopaminergic cell groups in songbirds project anatomically in a manner that may allow dopamine to influence song learning or song production. The electrophysiological properties of SNc and VTA neurons have not previously been studied in birds. Here we used whole cell recordings in brain slices in combination with tyrosine-hydroxylase immunolabeling as a marker of dopaminergic neurons to determine electrophysiological and pharmacological properties of dopaminergic and nondopaminergic neurons in the zebra finch SNc and VTA. Our results show that zebra finch dopaminergic neurons possess physiological properties very similar to those of mammalian dopaminergic neurons, including broad action potentials, calcium- and apamin-sensitive membrane-potential oscillations underlying pacemaker firing, powerful spike-frequency adaptation, and autoinhibition via D2 dopamine receptors. Moreover, the zebra finch SNc and VTA also contain nondopaminergic neurons with similarities (fast-firing, inhibition by the mu-opioid receptor agonist [d-Ala(2), N-Me-Phe(4), Gly-ol(5)]-enkephalin (DAMGO)) and differences (strong h-current that contributes to spontaneous firing) compared with GABAergic neurons in the mammalian SNc and VTA. Our results provide insight into the intrinsic membrane properties that regulate the activity of dopaminergic neurons in songbirds and add to strong evidence for anatomical, physiological, and functional similarities between the dopaminergic systems of mammals and birds.  相似文献   

19.
Wittmann M  Hubert GW  Smith Y  Conn PJ 《Neuroscience》2001,105(4):881-889
The substantia nigra pars reticulata is a primary output nucleus of the basal ganglia motor circuit and is controlled by a fine balance between excitatory and inhibitory inputs. The major excitatory input to GABAergic neurons in the substantia nigra arises from glutamatergic neurons in the subthalamic nucleus, whereas inhibitory inputs arise mainly from the striatum and the globus pallidus. Anatomical studies revealed that metabotropic glutamate receptors (mGluRs) are highly expressed throughout the basal ganglia. Interestingly, mRNA for group I mGluRs are abundant in neurons of the subthalamic nucleus and the substantia nigra pars reticulata. Thus, it is possible that group I mGluRs play a role in the modulation of glutamatergic synaptic transmission at excitatory subthalamonigral synapses. To test this hypothesis, we investigated the effects of group I mGluR activation on excitatory synaptic transmission in putative GABAergic neurons in the substantia nigra pars reticulata using the whole cell patch clamp recording approach in slices of rat midbrain. We report that activation of group I mGluRs by the selective agonist (R,S)-3,5-dihydroxyphenylglycine (100 microM) decreases synaptic transmission at excitatory synapses in the substantia nigra pars reticulata. This effect is selectively mediated by presynaptic activation of the group I mGluR subtype, mGluR1. Consistent with these data, electron microscopic immunocytochemical studies demonstrate the localization of mGluR1a at presynaptic sites in the rat substantia nigra pars reticulata.From this finding that group I mGluRs modulate the major excitatory inputs to GABAergic neurons in the substantia nigra pars reticulata we suggest that these receptors may play an important role in basal ganglia functions. Studying this effect, therefore, provides new insights into the modulatory role of glutamate in basal ganglia output nuclei in physiological and pathophysiological conditions.  相似文献   

20.
The effect of subthalamic nucleus (STh) lesion on apomorphine-induced rotational behaviour and unit activity of substantia nigra pars reticulata (SNr) neurons was studied in normal, sham-control and unilateral 6-OHDA-lesioned rats [SN pars compacta (SNc)-lesioned]. In the latter, contraversive rotational behaviour was greatly reduced by an additional ipsilateral STh lesion. A moderate ipsiversive rotation was observed in rats with a single STh lesion. Concurrently, SN unit extracellular recordings were performed in age-matched normal rats, sham-controls for both lesions, STh-lesioned rats, SNc-lesioned rats, and SNc-lesioned rats with an ipsilateral STh lesion (SNc+STh-lesioned). Pars reticulata neurons had a higher mean firing rate in SNc-lesioned rats than in control rats. Furthermore, 68% of SNr neurons in SNc-lesioned rats had a tonic discharge pattern (against 92.3% in control rats) and 32% a mixed or bursting pattern. After STh lesion, a clear decrease in SNr firing rate was observed in SNc-lesioned rats. Moreover, STh lesion improved interspike interval regularity and decreased the occurrence of bursting patterns. In rats with a single STh lesion, the firing rate was no different from that of the sham-controls but the discharge pattern was more regular. These data show that STh lesion decreased apomorphine-induced rotational behaviour in dopamine-depleted animals. This effect could be related to the suppression of the exitatory effect of STh efferents on the SNr neurons. STh lesion both counterbalanced the increased activity of SNr neurons and regularized their discharge pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号