首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Responses of mouse preoptic and anterior hypothalamic neurons to variations of temperature are key elements in regulating the setpoint of homeotherms. The goal of the present work was to assess the relevance of culture preparations for investigating the cellular mechanisms underlying thermosensitivity in hypothalamic cells. Our working hypothesis was that some of the main properties of preoptic/anterior hypothalamic neurons in culture are similar to those reported by other authors in slice preparations. Indeed, cultured preoptic/anterior hypothalamic neurons share many of the physiological and morphological properties of neurons in hypothalamic slices. They display heterogenous dendritic arbors and somatic shapes. Most of them are GABAergic and their activity is synaptically driven by the activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors. Active membrane properties include a depolarizing "sag" in response to hyperpolarization, and a low threshold spike, which is present in a majority of cells and is generated by T-type Ca2+ channels. In a fraction of the cells, the low threshold spike repeats rhythmically, either spontaneously, or in response to depolarization. The background synaptic noise in cultured neurons is characterized by the presence of numerous postsynaptic potentials which can be easily distinguished from the baseline, thus providing an opportunity for assessing their possible roles in thermosensitivity. An unexpected finding was that GABA-A receptors can generate both hyper- and depolarizing postsynaptic potentials in the same neuron. About 20% of the spontaneously firing preoptic/anterior hypothalamic neurons are warm-sensitive. Warming (32-41 degrees C) depolarizes some cells, a phenomenon which is Na+-dependent and tetrodotoxin-insensitive. The increased firing rate of warm-sensitive cells in response to warming can be prepotential and/or synaptically driven. Overall, our data suggest that a warm-sensitive phenotype is already developed in cultured cells. Therefore, and despite obvious differences in their networks, cultured and slice preparations of hypothalamic neurons can complement each other for further studies of warm-sensitivity at the cellular and molecular level.  相似文献   

3.
The glomerular layer of the olfactory bulb (OB) contains synaptic connections between olfactory sensory neurons and OB neurons as well as connections among OB neurons. A subpopulation of external tufted cells and periglomerular cells (juxtaglomerular neurons) expresses dopamine, and recent reports suggest that dopamine can inhibit olfactory sensory neuron activation of OB neurons. In this study, whole cell electrophysiological and primary culture techniques were employed to characterize the neuromodulatory properties of dopamine on glutamatergic transmission between rat OB mitral/tufted (M/T) cells and interneurons. Immunocytochemical analysis confirmed the expression of tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, in a subpopulation of cultured neurons. D2 receptor immunoreactivity was also observed in cultured M/T cells. Dopamine reduced spontaneous excitatory synaptic events recorded in interneurons. Although the D1 receptor agonist SKF38393 and the D2 receptor agonist bromocriptine mesylate mimicked this effect, evoked excitatory postsynaptic potentials (EPSPs) recorded from monosynaptically coupled neuron pairs were attenuated by dopamine and bromocriptine but not by SKF38393. Neither glutamate-evoked currents nor the membrane resistance of the postsynaptic interneuron were affected by dopamine. However, evoked calcium channel currents in the presynaptic M/T cell were diminished during the application of either dopamine or bromocriptine, but not SKF38393. Dopamine suppressed calcium channel currents even after nifedipine blockade of L-type channels, suggesting that inhibition of the dihydropyridine-resistant high-voltage activated calcium channels implicated in transmitter release may mediate dopamine's effects on spontaneous and evoked synaptic transmission. Together, these data suggest that dopamine inhibits excitatory neurotransmission between M/T cells and interneurons via a presynaptic mechanism.  相似文献   

4.
Dissociated hypothalamic neurons from embryonic rat brain exhibit a level of spontaneous synaptic activity after 21 days in culture. When GABA-mediated responses are blocked by picrotoxin or bicuculline (20 microM), the neurons burst rhythmically. Rhythmic burst activity is generated in most cells by postsynaptic excitatory currents (EPSCs) through non-specific cationic channels rather than by intrinsic pacemaker currents. We present evidence that EPSCs are mediated by an excitatory amino acid and a quisqualate receptor type.  相似文献   

5.
6.
7.
We charted postnatal changes in the intrinsic electrophysiological properties and synaptic responses of rat intrinsic cardiac ganglion (ICG) neurons. We developed a whole-mount ganglion preparation of the excised right atrial ganglion plexus. Using intracellular recordings and nerve stimulation we tested the hypothesis that substantial transformations in the intrinsic electrical characteristics and synaptic transmission accompany postnatal development. Membrane potential (E(m)) did not change but time constant (tau) and cell capacitance increased with postnatal development. Accordingly, input resistance (R(in)) decreased but specific membrane resistance (R(m)) increased postnatally. Comparison of the somatic active membrane properties revealed significant changes in electrical phenotype. All neonatal neurons had somatic action potentials (APs) with small overshoots and small afterhyperpolarizations (AHPs). Adult neurons had somatic APs with large overshoots and large AHP amplitudes. The range of AHP duration was larger in adults than in neonates. The AP characteristics of juvenile neurons resembled those of adults, with the exception of AHP duration, which fell midway between neonate and adult values. Phasic, multiply adapting, and tonic evoked discharge activities were recorded from ICG neurons. Most neurons displayed phasic discharge at each developmental stage. All neurons received excitatory synaptic inputs from the vagus or interganglionic nerve trunk(s), the strength of which did not change significantly with postnatal age. The changes in the electrophysiological properties of the postganglionic neuron suggest that increased complexity of parasympathetic regulation of cardiac function accompanies postnatal development.  相似文献   

8.
The electrophysiological properties of individual neurons within organotypic explants of neonatal rat cortex were examined via intracellular recordings. The explants were grown for two weeks in a serum-free medium. The electrophysiological properties of the neurons within these explants were similar to those reported for both adult cortex in vivo and short-term in vitro slice preparations. The results of the present study show that cortical explants grown under serum-free conditions can serve as a useful model for long-term developmental studies associated with the physiological basis of neural network formation.  相似文献   

9.
Since enkephalin- and substance P-like immunoreactive materials have been identified in preganglionic terminals of the avian ciliary ganglion, we tested the effects of enkephalin and substance P directly on chick ciliary ganglion neurons in dissociated cell culture. Under these conditions the neurons form cholinergic synapses with each other that are spontaneously active. Both peptides modulate properties of membrane components associated with synaptic transmission between the neurons. Enkephalin causes a 60% reduction in the mean amplitude of the excitatory synaptic potentials, and the effect appears to be presynaptic in origin: enkephalin does not alter acetylcholine sensitivity on the neurons, but does inhibit Ca2+ influx as reflected by a 38% shortening of the Ca2+ component of the action potential. Both the reduction in synaptic potential amplitude and the shortening of the Ca2+ action potential produced by enkephalin are blocked by naloxone. Substance P, on the other hand, has no effect on Ca2+ action potentials but does reduce the time course of acetylcholine responses in the neurons by a mechanism consistent with enhanced receptor desensitization. Decay of the acetylcholine voltage response in the absence of substance P is described by a single exponential process with a time constant of 4-5 s. Coapplication of acetylcholine and substance P results in a second exponential decay process with a time constant of about 1 s that appears after a 200-400 ms lag period. Preincubation with substance P alone does not decrease the peak voltage response or shorten the lag, suggesting that either agonist or activated receptor is necessary for the substance P effect. These findings suggest modulatory roles for the peptides in ganglionic transmission.  相似文献   

10.
The spatial organization of receptor channels has a major influence on the speed and possible plasticity of synaptic signal transmission. We have studied glutamatergic synapses on neurons in organotypic cultures of rat spinal cord. In order to avoid the problems related to the analysis of currents of unknown origin within a neuron, we chose to examine the functional properties of single identified synapses. Iontophoretic mapping of the cell surface revealed hot spots of high glutamate sensitivity coincident with presynaptic boutons stained with the dye FM 1–43. Local application of KCl to these sites caused bursts of synaptic release. Hot spots typically consisted of 330 receptors with an average single-channel conductance of 8.3 pS. Evoked synaptic currents involved only about 40–50 receptors and nevertheless showed characteristics of saturation. This suggests that glutamate receptor clusters at sites of presynaptic terminals are organized into well separated subclusters opposite release sites.This award-winning article is published as received and has not been subjected to the normal peer review process  相似文献   

11.
Neurophysiological and histochemical experiments on rats were performed to study the effects of the central nucleus of the amygdala on the activity of cells in various areas of the hypothalamus. Electrical stimulation of the medial part of the nucleus evoked marked excitatory reactions in neurons in the medial part of the paraventricular nucleus of the hypothalamus and the rostral part of the lateral hypothalamic area. Intravenous administration of NG-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg) led to increases in evoked neuron responses. A series of histochemical studies following activation of the central nucleus demonstrated increases in the quantity and optical densities of NADP diaphorase (NADP-d)-positive neurons in the parvocellular zone of the paraventricular nucleus of the hypothalamus and the medial part of the lateral hypothalamic area. The activity of nitroergic cells in the ventrolateral part of the lateral hypothalamic area was suppressed in these conditions. These mechanisms may underlie the amygdalofugal modulation of the autonomic functions of the hypothalamus. __________ Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 92, No. 8, pp. 957–966, August, 2006.  相似文献   

12.
L-dopa-immunoreactive neurons in the rat hypothalamic tuberal region   总被引:1,自引:0,他引:1  
The presence of L-DOPA-immunoreactivity is reported for the first time in the rat hypothalamic tuberal region. L-DOPA-immunoreactive neurons were demonstrated to be present in the ventrolateral part of the arcuate nucleus and periarcuate region just dorsal to the ventral surface of the brain (VLAR/PA). Weakly L-DOPA-immunostained neurons were found in the dorsomedial part of the arcuate nucleus and its neighboring periventricular nucleus (DMAR/PV). In contrast, dopamine (DA)-immunoreactive neurons were detected only in the DMAR/PV. These findings suggest that L-DOPA exists not only as a precursor of DA in neurons of the DMAR/PV, but also as an end-product in cells of the VLAR/PA.  相似文献   

13.
The whole-cell voltage clamp technique was used to record potassium currents in mouse fetal hypothalamic neurons developing in culture medium from days 1 to 17. The neurons were derived from fetuses of IOPS/OF1 mice on the 14th day of gestation. The mature neurons (greater than six days in culture) showed both a transient potassium current and a non-inactivating delayed rectifier potassium current. These were identified pharmacologically by using the potassium channel blockers tetraethyl ammonium chloride and 4-aminopyridine, and on the basis of their kinetics and voltage sensitivities. The delayed rectifier potassium current had a threshold of-20 mV, a slow time-course of activation, and was sustained during the voltage pulse. The 4-aminopyridine-sensitive current was transient, and was activated from a holding potential more negative (-80 mV) than that required for evoking the delayed rectifier potassium current (-40 mV). The delayed rectifier potassium current was detectable from day 1 onwards, while the transient potassium current showed a distinct developmental trend. The time-constant of inactivation became faster with age in culture. The half steady-state inactivation potential showed a shift towards less negative membrane potentials with age, and the relationship was best described by a logarithmic regression equation. The developmental trend of the transient potassium current may relate functionally to the progressive morphological changes, and the appearance of synaptic connections during ontogenesis.  相似文献   

14.
15.
Summary The responses of 700 single neurons in the hypothalamus to electrical stimulation of the preoptic area, limbic structures, and midbrain were studied to determine the location of neurons with multiple inputs and to identify by antidromic activation the projection areas of those neurons.Converging excitatory inputs, observed in 134 responsive hypothalamic neurons, were principally derived from the preoptic, limbic, and midbrain areas. Inputs from separate nuclei of the amygdala were noted in the response of individual hypothalamic neurons. Two classes of short latency transsynaptic responses to amygdala stimulation were defined, indicating either separate pathways from the amygdala to the medial hypothalamus or two types of fibers conducting at different velocities. Stimulation of single or multiple sites in the preoptic and limbic areas, as well as in the arcuate nucleus and medial forebrain bundle produced inhibition of hypothalamic neuronal activity.Most antidromically identified medial hypothalamic neurons projected to the preoptic area, median eminence (tuberoinfundibular neurons), or midbrain. Evidence is presented for collateral projections of tuberoinfundibular neurons to the preoptic area and reticular formation. Medial hypothalamic neurons received inputs from the preoptic area, lateral septal nucleus, amygdala, ventral hippocampus (subiculum), and fornix. These findings illustrate a pattern of reciprocal connections between the medial hypothalamus and limbic and midbrain structures.It was concluded that the hypothalamus contains a type of neuron that is equipped to perform complex integrations and to coordinate directly the behavior of neurons in a diversity of anatomical regions.Abbreviations ABL basolateral nucleus of the amygdala - ACO cotical nucleus of the amygdala - AHA anterior area of the hypothalamus - ARH arcuate nucleus of the hypothalamus - DMH dorsomedial nucleus of the hypothalamus - FX fornix - HPC ventral hippocampus (subiculum) - LS lateral septal nucleus - ME median eminence - MH medial hypothalamus - MFB medial forebrain bundle - MP posterior mamillary nucleus - PH posterior nucleus of the hypothalamus - PMD dorsal premamillary nucleus - PMV ventral premamillary nucleus - POA preoptic area - PVG periventricular gray - PVH paraventricular nucleus of the hypothalamus - RF reticular formation of the mesencephalon - RT reticular nucleus of the thalamus - SUM supramamillary nucleus - VMH ventromedial nucleus of the hypothalamus Performed with financial support from the National Institutes of Health (Grants NS 09688 and RR 00165)  相似文献   

16.
Laminin, as a coating or in solution, allows a rapid attachment of fetal hypothalamic cells in serum-free medium, and strikingly enhances the neurite network development. As compared to cultures grown on a fetal calf serum coating, cells remain in clusters and astrocytes become fibrous. Laminin was visualized by immunocytochemistry in non-neuronal cells. The number of laminin-positive cells was lower in cultures grown in serum-free medium than in those grown in serum-supplemented medium. In both culture conditions, their number decreases with time in vitro.  相似文献   

17.
The effects of brief anoxic episodes on rat CA3 hippocampal neurons were studied with intracellular and extracellular techniques in the in vitro slice preparation. After repeated (3–7 times), brief (2–6 min duration each) applications of artificial cerebrospinal fluid (ACSF) saturated with 95% N2 and 5% CO2, electrical stimulation of various inputs to CA3 neurons, evoked an excitatory postsynaptic potential (EPSP) followed by an all-or-none burst. This response which persisted for several hours after the last anoxic episode, is reminiscent of the bursts induced by various convulsive agents. Post anoxic bursts are generated by a polysynaptic network which converge on the apical distal segment of CA3 neurons. It is concluded that a repetitive impairement of metabolism produces long lasting changes in the synaptic properties of CA3 neurons.  相似文献   

18.
Summary Features of action potentials and synaptic potentials as obtained by intracellular recordings from the sympathetic ganglion cells in the superior cervical ganglion of both the rat and the guinea-pig are described. Time-constant, imput resistance and capacitance of the ganglion cell membrane were also measured. Rheobasic currents and chronaxies are evaluated from strength-latency recordings.Single stimulating shocks applied to pre-ganglionic fibres produce repeated activation in the sympathetic ganglion cells and neuron response appear to be dispersed over a considerable length of time. Simultaneous recordings of extracellular post-ganglionic discharge and intracellular response from single ganglion units showed that pre-ganglionic fibres with different conduction velocities converge on the neurons. This convergence can fully justify the temporal dispersion of the ganglion cell responses.  相似文献   

19.
Glycine-gated chloride current in acutely isolated rat hypothalamic neurons   总被引:11,自引:0,他引:11  
1. Electrical and pharmacologic properties of glycine-induced currents were investigated in single hypothalamic neurons acutely isolated from young and adult rats by the use of a "concentration-clamp" technique, which allows both internal perfusion and rapid application of an external solution under single-electrode voltage-clamp. 2. The glycine-induced current reversed at the Cl- equilibrium potential (ECl), and a 10-fold decrease of extracellular Cl- with a large impermeable anion resulted in a 53 mV shift of the glycine reversal potential (EGly). 3. Glycine-induced Cl- currents (ICl) increased sigmoidally in a concentration-dependent manner with a Kd of 9 X 10(-5) M at a Hill coefficient of 1.8. Current inactivation occurred completely at all concentrations within 10 s. EGly remained unchanged during continuous application of glycine, suggesting that the inactivation process is because of desensitization. 4. The glycine-induced conductance exhibited a striking voltage dependency at membrane potentials more negative than -50 mV and reached a steady state value when hyperpolarized beyond -110 mV. 5. Both the activation and inactivation phases of glycine-induced ICl are described by double exponential (fast and slow components) functions with the concentrations used. All four time constants decreased with increasing glycine concentration. 6. The slow time constant of the current decay induced by glycine increased with depolarization and decreased with hyperpolarization, indicating that the rate of desensitization is considerably voltage dependent. The fast decay showed little voltage dependency. 7. Recovery of the glycine response after complete desensitization consisted of two components. 8. The blockade of the glycine response by strychnine and picrotoxin was noncompetitive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号