首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xiaohua Liu  Peter X. Ma 《Biomaterials》2009,30(25):4094-4103
The development of three-dimensional (3D) biomimetic scaffolds which provide an optimal environment for cells adhesion, proliferation and differentiation, and guide new tissue formation has been one of the major goals in tissue engineering. In this work, a processing technique has been developed to create 3D nanofibrous gelatin (NF-gelatin) scaffolds, which mimic both the physical architecture and the chemical composition of natural collagen. Gelatin matrices with nanofibrous architecture were first created by using a thermally induced phase separation (TIPS) technique. Macroporous NF-gelatin scaffolds were fabricated by combining the TIPS technique with a porogen-leaching process. The processing parameters were systematically investigated in relation to the fiber diameter, fiber length, surface area, porosity, pore size, interpore connectivity, pore wall architecture, and mechanical properties of the NF-gelatin scaffolds. The resulting NF-gelatin scaffolds possess high surface areas (>32 m2/g), high porosities (>96%), well-connected macropores, and nanofibrous pore wall structures. The technique advantageously controls macropore shape and size by paraffin spheres, interpore connectivity by assembly conditions (time and temperature of heat treatment), pore wall morphology by phase separation and post-treatment parameters, and mechanical properties by polymer concentration and crosslinking density. Compared to commercial gelatin foam (Gelfoam®), the NF-gelatin scaffold showed much better dimensional stability in a tissue culture environment. The NF-gelatin scaffolds, therefore, are excellent scaffolds for tissue engineering.  相似文献   

2.
Novel poly(L-lactic acid) (PLLA)-chitosan hybrid scaffolds were developed in order to be used as tissue-engineering scaffolds and drug release carriers. The incorporation of chitosan into the PLLA porous structure allows for producing chitosan-based scaffold devices with interesting damping and stiffness aimed at being used in tissue engineering of bone or cartilage. The pore structure of the hybrid scaffolds was influenced by the concentration of the chitosan solution introduced into the PLLA scaffold. For lower concentrations, chitosan was mainly deposited onto the PLLA surface, whereas for higher concentration chitosan formed also microfibrilar structures within the pore walls of the PLLA foam that may act as additional soft anchorage sites for cells. Equilibrium water uptakes up to about 110% were achieved in 24 h. An anti-inflammatory drug, ketoprofen, was loaded within the chitosan component of the hybrid scaffolds by immersing the scaffolds in a drug-ethanol solution. The drug was released sharply within the initial periods ( approximately 2-4 h), but the rate decreased further, showing a sustained release. The drug release rate can be controlled by the chitosan content and cross-link densities, suggesting the effectiveness of the hybrid scaffold as a drug delivery system.  相似文献   

3.
The aim of this study was to investigate the feasibility of fabricating porous crosslinked chitosan hydrogels in an aqueous phase using dense gas CO(2) as a foaming agent. Highly porous chitosan hydrogels were formed by using glutaraldehyde and genipin as crosslinkers. The method developed here eliminates the formation of a skin layer, and does not require the use of surfactants or other toxic reagents to generate porosity. The chitosan hydrogel scaffolds had an average pore diameter of 30-40 μm. The operating pressure had a negligible effect on the pore characteristics of chitosan hydrogels. Temperature, reaction period, type of biopolymer and crosslinker had a significant impact on the pore size and characteristics of the hydrogel produced by dense gas CO(2). Scanning electron microscopy and histological analysis confirmed that the resulting porous structures allowed fibroblasts seeded on these scaffolds to proliferate into the three-dimensional (3-D) structure of these chitosan hydrogels. Live/dead staining and MTS analysis demonstrated that fibroblast cells proliferated over 7 days. The fabricated hydrogels exhibited comparable mechanical strength and swelling ratio and are potentially useful for soft tissue engineering applications such as skin and cartilage regeneration.  相似文献   

4.
Mimicking certain features (e.g. nanoscale topography and biological cues) of natural extracellular matrix (ECM) is advantageous for the successful regeneration of damaged tissue. In this study, nanofibrous gelatin/apatite (NF-gelatin/apatite) composite scaffolds have been fabricated to mimic both the physical architecture and chemical composition of natural bone ECM. A thermally induced phase separation (TIPS) technique was developed to prepare nanofibrous gelatin (NF-gelatin) matrix. The NF-gelatin matrix mimicked natural collagen fibers and had an average fiber diameter of about 150 nm. By integrating the TIPS method with porogen leaching, three-dimensional NF-gelatin scaffolds with well-defined macropores were fabricated. In comparison to Gelfoam® (a commercial gelatin foam) with similar pore size and porosity, the NF-gelatin scaffolds exhibited a much higher surface area and mechanical strength. The surface area and compressive modulus of NF-gelatin scaffolds were more than 700 times and 10 times higher than that of Gelfoam®, respectively. The NF-gelatin scaffolds also showed excellent biocompatibility and mechanical stability. To further enhance pre-osteoblast cell differentiation as well as improving mechanical strength, bone-like apatite particles (<2 μm) were incorporated onto the surface of NF-gelatin scaffolds via a simulated body fluid (SBF) incubation process. The NF-gelatin/apatite scaffolds 5 days after SBF treatment showed significantly higher mechanical strength than NF-gelatin scaffolds 5 days after SBF treatment. Furthermore, the incorporated apatite in the NF-gelatin/apatite composite scaffold enhanced the osteogenic differentiation. The expression of BSP and OCN in the osteoblast–(NF-gelatin/apatite composite) constructs was about 5 times and 2 times higher than in the osteoblast–(NF-gelatin) constructs 4 weeks after cell culture. The biomimetic NF-gelatin/apatite scaffolds are, therefore, excellent for bone tissue engineering.  相似文献   

5.
Wang X  Li W  Kumar V 《Biomaterials》2006,27(9):1924-1929
Most of the existing fabrication techniques for tissue engineering scaffolds require the use of organic solvents that may never be fully removed even after long leaching hours. The residues of these organic solvents reduce the ability of biological cells to form new tissue. This paper presents an approach toward solvent-free fabrication of tissue engineering scaffolds. Interconnected porous structures were created using solid-state foaming and ultrasound. The material used in this study was polylactic acid (PLA) and the blowing agent was CO(2). In order to determine suitable process conditions, saturation and foaming studies were first conducted. Selected foam samples were then processed using pulsed ultrasound. The microstructures before and after the ultrasound processing were compared. It was shown that the inter-pore connectivity of the solid-state foams was substantially enhanced. The combined solid-state foaming and ultrasound processing provide a way to fabricate porous polymer for potential tissue engineering applications.  相似文献   

6.
Silk fibroin/chitosan blend has been reported to be an attractive biomaterial that provides a 3D porous structure with controllable pore size and mechanical property suitable for tissue engineering applications. However, there is no systematic study for optimizing the ratio of silk fibroin (SF) and chitosan (CS) which seems to influence the scaffold property to a great extent. The present research, therefore, investigates the effect of blend ratio of SF and CS on scaffold property and establishes the optimum value of blend ratio. Among the various blends, the scaffolds with blend ratio of SF/CS (80:20) were found to be superior. The scaffold possesses pore size in the range 71–210 μm and porosity of 82.2 ± 1.3%. The compressive strength of the scaffold was measured as 190 ± 0.2 kPa. The cell supportive property of the scaffold in terms of cell attachment, cell viability, and proliferation was confirmed by cell culture study using mesenchymal stem cells derived from umbilical cord blood. Furthermore, the assessment of glycosaminoglycan secretion on the scaffolds indicates its potentiality toward cartilage tissue regeneration.  相似文献   

7.
The material properties and the microstructure of the scaffold are important parameters that determine the suitability of a material for tissue growth and controlled drug release. Because of its non-toxic, biocompatible, biodegradable, and antithrombogenic nature, chitosan has generated enormous interest for such applications. Chitosan bead-type scaffolds having various microstructures without any other material introduction were fabricated. For fabricating pure chitosan beads, a modified wet process and an extended thermally induced phase separation (TIPS) process were adapted. In the modified wet process, an acidic chitosan solution was phase-separated by changing its pH using an NaOH solution. The microstructure of the chitosan beads became looser with a decrease in the initial chitosan concentration, an increase in the acetic acid concentration, as well as with the addition of PEG to the dope solution. In contrast, the microstructure densified with an increase in the NaOH concentration in the coagulation bath. Through the modified wet process, porous chitosan beads with a relatively small pore size (0.01-13 microm) and moderate porosity (33-71%) could be prepared. In the extended TIPS process, chitosan solutions cast at different temperatures below 0 degrees C resulted in different microstructures wherein the microstructure densified with an increase in the quenching rate. The chitosan beads fabricated via extended TIPS had large pore sizes (26-120 microm) and high porosity (85-92%). All of these matrices showed good interconnected pores.  相似文献   

8.
Previous work on 2D synthetic films showed growth of human bladder stromal cells was enhanced on materials with lower moduli that mimic the elastic properties of native tissue. This study developed 3D synthetic foam scaffolds for soft tissue engineering by emulsion freeze-drying. Foams of poly(lactide-co-glycolide) (PLGA) and poly(?-caprolactone) (PCL) were extensively characterised using scanning electron microscopy, mercury porosimetry, dynamic mechanical analysis, degradation analysis, size exclusion chromatography and differential scanning calorimetry. Foams of 85–88% porosity and 35 μm pore diameter were selected for further study; the storage modulus of PCL foams was around half that of PLGA (2 MPa vs 4 MPa) and closer to the reported value for native bladder tissue. Urinary tract stromal cells showed a 4.4 and 2.4-fold higher attachment and rate of growth, respectively, on PCL scaffolds, as assessed by a modified 3-[4,5-dimethyl(thiazol-2yl)-3,5-diphery] tetrazolium bromide assay. A greater contractile force was exerted by cells seeded in PLGA than on PCL scaffolds, raising the possibility that the reduced rate of proliferation of cells on PLGA scaffolds may reflect differentiation into a contractile phenotype. This study has generated PCL foam scaffolds with properties that may be pertinent to the tissue engineering of the bladder and other soft tissues.  相似文献   

9.
The design and tunability of tissue scaffolds, such as pore size and geometry, is crucial to the success of an engineered tissue replacement. Moreover, the mechanical nature of a tissue scaffold should display properties similar to the tissue of interest; therefore, tunability of the foam mechanical properties is desirable. Polymeric foams prepared using supercritical carbon dioxide as a blowing agent has emerged in recent years as a promising technique to prepare porous scaffolds. While a number of groups have reported on the tailoring of scaffold morphologies by using gas foaming techniques, few have considered the effects of such processing conditions on the physical and mechanical anisotropy achieved. The aim of this study was to demonstrate the tunability of the structure and mechanical anisotropy of foams prepared using a variety of different gas foaming conditions. Porous poly(D,L lactic acid) foams were prepared by the systematic adjustment of processing conditions, namely pressure, temperature and venting time, resulting in an extensive range of scaffold morphologies. Characterization of sample anisotropy was achieved by mechanical evaluation of foam specimens both longitudinal and transverse to the foaming direction. The obtained mechanical properties demonstrated a strong dependence of the processing conditions on mechanical anisotropy and performance. Furthermore, results indicate that factors other than pore geometry may be necessary to define the mechanical behavior of the foam specimens. The favorable compressive moduli, coupled with large degrees of anisotropy, suggests these foams may have suitable application as scaffolds for bone tissue engineering.  相似文献   

10.
One limitation of electrospinning stems from the charge build-up that occurs during processing, preventing further fibre deposition and limiting the scaffold overall thickness and hence their end-use in tissue engineering applications targeting large tissue defect repair. To overcome this, we have developed a technique in which thermally induced phase separation (TIPS) and electrospinning are combined. Thick three-dimensional, multilayered composite scaffolds were produced by simply stacking individual polycaprolactone (PCL) microfibrous electrospun discs into a cylindrical holder that was filled with a 3% poly(lactic-co-glycolic acid) (PLGA) solution in dimethylsulfoxide (a good solvent for PLGA but a poor one for PCL). The construct was quenched in liquid nitrogen and the solvent removed by leaching out in cold water. This technique enables the fabrication of scaffolds composed principally of electrospun membranes that have no limit to their thickness. The mechanical properties of these scaffolds were assessed under both quasi-static and dynamic conditions. The multilayered composite scaffolds had similar compressive properties to 5% PCL scaffolds fabricated solely by the TIPS methodology. However, tensile tests demonstrated that the multilayered construct outperformed a scaffold made purely by TIPS, highlighting the contribution of the electrospun component of the composite scaffold to enhancing the overall mechanical property slate. Cell studies revealed cell infiltration principally from the scaffold edges under static seeding conditions. This fabrication methodology permits the rapid construction of thick, strong scaffolds from a range of biodegradable polymers often used in tissue engineering, and will be particularly useful when large dimension electrospun scaffolds are required.  相似文献   

11.
The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p < 0.05). The formulation also sintered at 37 °C following injection through a needle, demonstrating its injectable potential. The scaffolds demonstrated cytocompatibility, with increased cell numbers observed over an 8-day study period. Von Kossa and immunostaining of the hMSC-scaffolds confirmed their osteogenic potential with the ability to sinter at 37 °C in situ.  相似文献   

12.
目的制备适合于骨组织工程的高强度纳米羟基磷灰石/Ⅰ型胶原/壳聚糖复合支架材料。方法用原位合成法代替传统的直接分散法,以胶原和壳聚糖为模板原位合成羟基磷灰石,再用冷冻干燥法使材料成型,制成可用于骨组织工程的多孔支架材料。结果制备的材料孔隙率高,孔的连通性好,材料中羟基磷灰石结晶度更小,表面能大,与有机物基底结合紧密,也能为成骨细胞的粘附提供更多的活性位点。结论用紫外辐照对材料进行处理,能使其抗压性能得到提高。制备的支架材料适用于骨组织工程。  相似文献   

13.
A biodegradable scaffold for skin-tissue engineering was designed using collagen and chitosan, which are common materials for biomedical application. The scaffolds containing different amounts of chitosan were prepared by mixing the collagen and chitosan solutions followed by removal of the solvent using a freeze-drying method. The cross-linking treatment of these scaffolds was performed using the dehydrothermal treatment (DHT) method or glutaraldehyde (GA) to increase their biostability. The effect of the chitosan concentration and the cross-linking methods on the morphology of these scaffolds was studied by SEM. The water retention and the biodegradability in vitro of various collagen-chitosan scaffolds were investigated. Finally the biocompatibility of the collagen-chitosan (10 wt% chitosan) scaffold treated with different cross-linking methods was evaluated using a in vivo animal test. A mild inflammatory reaction could be detected in the early stages, and GA treatment can decrease the inflammatory reaction in a long-term implantation. After implantation for four weeks, all kinds of scaffolds, especially the GA-treated scaffolds (Col-GA) were filled with a large number of fibroblasts and were vascularized to a certain extent. These results suggest that the GA-treated scaffold has an increased biostability and excellent biocompatibility. It can be a potential candidate for skin-tissue engineering.  相似文献   

14.
Highly porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds were fabricated by a thermally-induced phase-separation (TIPS) method to deliver plasmid DNA in a controlled manner. A variety of TIPS parameters directly affecting pore structures and their interconnectivities of the scaffold, such as polymer concentration, solvent/non-solvent ratio, quenching methods and annealing time, were systematically examined to explore their effects on sustained release behaviors of plasmid DNA. Plasmid DNA was directly loaded into the inner pore region of the scaffold during the TIPS process. By optimizing the parameters, PLGA scaffolds releasing plasmid DNA over 21 days were successfully fabricated. DNA release profiles were mainly affected by the pore structures and their interconnectivities of the scaffolds. Plasmid DNA released from the scaffolds fully maintained its structural integrity and showed comparable transfection efficiency to native plasmid DNA. These biodegradable polymeric scaffolds capable of sustained DNA release can be potentially applied for various tissue engineering purposes requiring a combined gene delivery strategy.  相似文献   

15.
Abstract

The development of three dimensional (3D) scaffolds for promoting and stimulating cell growth is one of the greatest concerns in biomedical and tissue engineering. In the present study, novel biomimetic 3D scaffolds composed of polyurethane (PU) foam and graphene oxide (GO) nanosheets were designed, and their potential as 3D scaffolds for skeletal tissue regeneration was explored. The GO-coated PU foams (GO-PU foams) were characterized by scanning electron microscopy and Raman spectroscopy. It was revealed that the 3D GO-PU foams consisted of an interconnected foam-like network structure with an approximate 300 μm pore size, and the GO was uniformly distributed in the PU foams. On the other hand, the myogenic stimulatory effects of GO on skeletal myoblasts were also investigated. Moreover, the cellular behaviors of the skeletal myoblasts within the 3D GO-PU foams were evaluated by immunofluorescence analysis. Our findings showed that GO can significantly promote spontaneous myogenic differentiation without any myogenic factors, and the 3D GO-PU foams can provide a suitable 3D microenvironment for cell growth. Furthermore, the 3D GO-PU foams stimulated spontaneous myogenic differentiation via the myogenic stimulatory effects of GO. Therefore, this study suggests that the 3D GO-PU foams are beneficial to myogenesis, and can be used as biomimetic 3D scaffolds for skeletal tissue engineering.  相似文献   

16.
Cross-linking plays an important role in tissue engineering, which involves the alternative of cross-linker and the way of components interaction. We compared two proanthocyanidin (PA) cross-linked recombinant human collagen-peptide – chitosan scaffolds: immerse cross-linking (I-CLS) and premix cross-linking (P-CLS). Both of the scaffolds presented homogeneous pore structure with mean pore size of 110–115 μm. The swelling ratio was decreased to 29.6 in I-CLS, but increased to 37.1 in P-CLS while porosity of the two scaffolds was reduced about 8% comparing to 94.3% before cross-linking. The cross-linked scaffolds exhibited enhanced resistance to enzyme degradation and improved compressive modulus (I-CLS > P-CLS). The scaffolds transformed from elastic region to plastic region until the strain reached 60%, and the stress was 40.5, 133.2 and 84.1 kPa of uncross-linking scaffold, I-CLS and P-CLS individually. Thermal stability indicated molecular bonding between PA and the scaffold components, simultaneously, Fourier transform infrared spectroscopy mainly presented hydrogen bonding between the protein amide carbonyl and the phenolic hydroxyl with a particular transform due to pyrrolidine rings of proline in P-CLS. Both of the I-CLS and P-CLS could promote human umbilical vein endothelial cells attachment and proliferation. The characterization suggested in situ biodegradable application of P-CLS, while a potential long-term utilization of I-CLS in tissue engineering.  相似文献   

17.
Adekogbe I  Ghanem A 《Biomaterials》2005,26(35):7241-7250
Chitosan, the deacetylated derivative of chitin, is a promising scaffold material for skin tissue engineering applications. It is biocompatible and biodegradable, and the degradation products are resorbable. However, the rapid degradation of chitosan and its low mechanical strength are concerns that may limit its use. In this study, chitosan with 80%, 90% and 100% degree of deacetylation (DDA) was crosslinked with dimethyl 3-3, dithio bis' propionimidate (DTBP) and compared to uncrosslinked scaffolds. The scaffolds were characterized with respect to important tissue engineering properties. The tensile strength of scaffolds made from 100% DDA chitosan was significantly higher than for scaffolds made from 80% and 90% DDA chitosan. Crosslinking of scaffolds with DTBP increased the tensile strength. Crosslinking with DTBP had no significant effect on water vapour transmission rate (WVTR) or water absorption but had significant effect on the pore size and porosity of the samples. All samples showed a WVTR and pore size distribution suitable for skin tissue engineering; however, the water absorption and porosity were lower than the optimal values for skin tissue engineering. The biodegradation rate of scaffolds crosslinked with DTBP and glutaraldehyde (GTA) were reduced while no significant effect was observed in biodegradation of the samples made from 100% DDA chitosan whether crosslinked or uncrosslinked after 24 days of degradation.  相似文献   

18.
A biodegradable scaffold for skin-tissue engineering was designed using collagen and chitosan, which are common materials for biomedical application. The scaffolds containing different amounts of chitosan were prepared by mixing the collagen and chitosan solutions followed by removal of the solvent using a freeze-drying method. The cross-linking treatment of these scaffolds was performed using the dehydrothermal treatment (DHT) method or glutaraldehyde (GA) to increase their biostability. The effect of the chitosan concentration and the cross-linking methods on the morphology of these scaffolds was studied by SEM. The water retention and the biodegradability in vitro of various collagen-chitosan scaffolds were investigated. Finally the biocompatibility of the collagen-chitosan (10 wt% chitosan) scaffold treated with different cross-linking methods was evaluated using a in vivo animal test. A mild inflammatory reaction could be detected in the early stages, and GA treatment can decrease the inflammatory reaction in a long-term implantation. After implantation for four weeks, all kinds of scaffolds, especially the GA-treated scaffolds (Col-GA) were filled with a large number of fibroblasts and were vascularized to a certain extent. These results suggest that the GA-treated scaffold has an increased biostability and excellent biocompatibility. It can be a potential candidate for skin-tissue engineering.  相似文献   

19.
Three-dimensional (3D) porous chitosan scaffolds are attractive candidates for tissue engineering applications. Chitosan scaffolds of 70, 88, and 95% degree of deacetylation (% DD) with the same molecular weight were developed and their properties with buffalo embryonic stem-like (ES-like) cells were investigated in vitro. Scaffolds were fabricated by freezing and lyophilization. They showed open pore structure with interconnecting pores under scanning electron microscopy (SEM). Higher % DD chitosan scaffolds had greater mechanical strength, slower degradation rate, lower water uptake ability, but similar water retention ability, when compared to lower % DD chitosan. As a strategy to tissue engineering, buffalo ES-like cells were cultured on scaffolds for 28 days. It appeared that chitosan was cytocompatible and cells proliferated well on 88 and 95% DD scaffolds. In addition, the buffalo ES-like cells maintained their pluripotency during the culture period. Furthermore, the SEM and histological study showed that the polygonal buffalo ES-like cells proliferated well and attached to the pores. This study proved that 3D biodegradable highly deacetylated chitosan scaffolds are promising candidates for ES-like cell based tissue engineering and this chitosan scaffold and ES cell based system can be used as in vitro model for subsequent clinical applications.  相似文献   

20.
Thermally induced phase separation (TIPS) has proven to be a suitable method for the preparation of porous structures for tissue engineering applications, and particular attention has been paid to increasing the pore size without the use of possible toxic surfactants. Within this context, an alternative method to control the porosity of polymeric scaffolds via the combination with a bioglass is proposed in this work. The addition of a bioactive glass from the 3CaO·P2O5–MgO–SiO2 system enables the porous structure of high molecular weight poly(l-lactic) acid (PLLA) scaffolds prepared by TIPS to be tailored. Bioglass acts as a nucleating catalyst agent of the PLLA matrix, promoting its crystallization, and the glass solubility controls the pore size. A significant increase in the pore size is observed as the bioglass content increases and scaffolds with large pore size (~150 μm) can be prepared. In addition, the bioactive character of the scaffolds is proved by in vitro tests in synthetic plasma. The importance of this approach resides on the combination of the ability to tailor the porosity of polymeric scaffolds via the tunable solubility of bioglasses, without the use of toxic surfactants, leading to a composite structure with suitable properties for bone tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号