共查询到20条相似文献,搜索用时 0 毫秒
1.
骨组织工程领域除了对支架材料本身的构成和性能加以研究之外,其研究范围还包括:对支架材料的孔径、孔隙率及三维相通性的研究;种子细胞的筛选、生物活性因子的参与以及生物复合材料的构建等相关因素的研究,这些因素对支架材料的生物相容性以及体内的骨传导性和骨诱导性都至关重要。从这些方面人手,有可能使骨组织工程支架材料的发展取得长足的进步。 相似文献
2.
Niladri Nath Panda Sriramakamal Jonnalagadda 《Journal of biomaterials science. Polymer edition》2013,24(18):2031-2044
This study examines the tissue engineering potential of type I collagen cross-linked in the presence of hydroxyapatite (HAp). Scaffolds were prepared by controlled freezing followed by lyophilization of composite mixtures of collagen and HAp in acetic acid, followed by cross-linking with 0.3% glutaraldehyde. Scaffolds of three ratios were prepared, corresponding to collagen/HAp ratios of 1:2, 1:4, and 1:6. The scaffolds were evaluated for their microstructure, chemical and physical properties, swelling behavior, mechanical strength, biodegradability hemocompatability, cytocompatibility, and histopathology following subcutaneous implantation in Sprague Dawley rats. The collagen/HAp matrices showed a smaller pore size of 10–40?μm compared to 50–100?μm for pure collagen scaffolds. Pure collagen showed a mechanical strength of 0.25?MPa, and the value almost doubled for cross-linked composites with collagen/HAp ratio 1:6. The improvement in mechanical strength corresponded to a decrease in swelling and enzymatic degradation (measured by resistance to collagenases). FTIR spectra results in conjunction with scanning electron micrographs showed that cross-linking in the presence of HAp did not significantly alter the structure of collagen. MTT assay and calcein AM staining revealed prominent and healthy growth of mesenchymal stem cells in both the pure collagen as well as collagen:HAp composites of ratio 1:2. In vivo implantation in Sprague Dawley rats showed an initial acute inflammatory response during days 3 and 7, followed by a chronic, macrophage-mediated inflammatory response on days 14 and 28. Overall, a cross-linked collagen/HAp composite scaffold of ratio 1:2 was identified as having potential for further development in tissue engineering. 相似文献
3.
胶原水凝胶因其具有优良的生物相容性、生物力学性能,在软骨与骨组织工程、生物填充材料、创伤修复、药物缓释和细胞培养等医学领域获得广泛的关注和应用。本文重点介绍了胶原水凝胶在软骨与骨组织工程方面的研究进展,详细阐述了胶原水凝胶的性能、交联方法和类型,并对胶原水凝胶在软骨与骨组织工程中的研究现状进行了讨论,对其应用前景进行了展望。 相似文献
4.
A. S. Sumayya 《Journal of biomaterials science. Polymer edition》2018,29(3):257-276
There is an intense interest in developing innovative biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Present study demonstrated the in vivo biocompatibility and toxicity of a macromolecules cross-linked biocomposite scaffold composed of hydroxyapatite, alginate, chitosan and fucoidan abbreviated as HACF. The in vivo biocompatibility and toxicity of HACF scaffold were tested by comparing them with those of a biocompatible surgical metal implant (SMI) in a subcutaneous rat model. Following the implantation, animals were sacrificed and the scaffolds were resected at 1st, 4th, and 8th weeks; the surrounding tissue along with the implant was removed to evaluate its biocompatibility. The effects of implanted biomaterial scaffolds on vital organ systems such as liver, kidney, etc., have been studied by hematology and serum biochemistry. The activities of pro-inflammatory marker enzymes such as COX, 5-LOX, 15-LOX, and NOS were normal in rats implanted with HACF scaffold. Hematological parameters, antioxidant and lipid peroxidation status were also found to be normal in implanted rats same as that of control and SMI. The modulatory effect of implanted scaffold over inflammatory and stress signaling cascades were confirmed by the normalized mRNA expressions of NF-κB, TNF-α and IL-6. The histopathological analysis of liver, kidney and tissue support our results. Taken together, these results demonstrated that HACF biocomposite scaffold signifies its suitability for further research as a scaffold material for cartilage tissue engineering applications. 相似文献
5.
背景:水凝胶由于其独特的柔韧性和生物相容性,而使得其在组织工程中发挥重要作用.而专利是最为重要的技术信息载体,因此,利用专利信息计量学对其中所含的信息进行统计、萃取和比较,对于研究具有重要参考价值.目的:利用专利信息识别和发现水凝胶在组织工程中的技术分布、研发重点、发展趋势,以及国别竞争态势.方法:利用德温特专利数据库... 相似文献
6.
《Biomaterials》2015
Glycopolypeptides are an emerging class of bioinspired polymers that mimic naturally occurring glycopeptides or glycoproteins, and therefore are expected to exhibit great potential for biomedical applications. In this study, a glycopolypeptide was synthesized by conjugation of poly(γ-propargyl-l-glutamate) (PPLG) with azido-modified mannose and 3-(4-hydroxyphenyl) propanamide (HPPA), via click chemistry. Injectable hydrogels based on the glycopolypeptide were developed through enzymatic crosslinking reaction in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The physicochemical properties of the hydrogels, such as gelation time, storage modulus, swelling and degradation time, could be controlled by varying the concentrations of HRP and H2O2. The glycopolypetide copolymer as well as the extracts of the glycopolypetide hydrogels displayed good cytocompatibility in vitro. After subcutaneous injection into rats, the glycopolypeptide hydrogels were rapidly formed in situ, and exhibited acceptable biocompatibility accompanying the degradation of the hydrogels in vivo. The rabbit chondrocytes inside the glycopolypeptide hydrogels showed spherical morphology with high viability during the incubation period of 3 weeks in vitro, and exhibited a higher proliferation rate than within the hydrogel counterparts of PPLG grafted with 2-(2-(2-methoxyethoxy)ethoxy)ethane (MEO3) and HPPA. Biochemical analysis demonstrated that the production of glycosaminoglycans (GAG) and type II collagen were significantly enhanced after incubation for 2 and 3 weeks in vitro. Moreover, the chondrocyte-containing glycopolypeptide hydrogels in subcutaneous model of nude mice maintained chondrocyte phenotype and produced the cartilaginous specific matrix. These results indicated that the biomimetic glycopolypeptide-based hydrogels hold potential as three-dimensional scaffolds for cartilage tissue engineering. 相似文献
7.
背景:组织工程方法中选择合适的支架是关键性的步骤。
目的:回顾分析牙髓牙本质组织工程中支架材料的应用研究。
方法:由第一作者检索1993至2012年 PubMed数据及万方数据库有关牙髓牙本质组织工程中支架材料应用研究等方面的文献。
结果与结论:在牙髓牙本质组织工程中有包括天然生物、人工合成材料和复合材料在内的大量生物材料可供选择,每一种材料都有各自的生物学特点。其中胶原、聚酯、羟基磷灰石等是研究较多的支架材料。自组装多肽水凝胶是由氨基酸制成的新型支架材料,满足理想牙髓牙本质组织工程支架材料的大部分要求,是一种前景广阔的牙髓牙本质组织工程支架材料。 相似文献
8.
I.M. Garnica-Palafox C. Velasquillo Z.Y. García-Carvajal J. García-López C. Ortega-Sánchez 《Journal of biomaterials science. Polymer edition》2014,25(1):32-50
The development and characterization of a hybrid hydrogel based on chitosan (CS) and poly(vinyl alcohol) (PVA) chemically cross-linked with epichlorohydrin (ECH) is presented. The mechanical response of these hydrogels was evaluated by uniaxial tensile tests; in addition, their structural properties such as average molecular weight between cross-link points (Mcrl), mesh size (DN), and volume fraction (vs) were determined. This was done using the equivalent polymer network theory in combination with the obtained results from tensile and swelling tests. The films showed Young’s modulus values of 11?±?2?MPa and 9?±?1?MPa for none irradiated and ultraviolet (UV) irradiated hydrogels, respectively. The cell viability was assessed using Calcein AM and Ethidium homodimer-1 assay and environmental scanning electron microscopy. The 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan thiazolyl blue formazan (MTT Formazan assay) results did not show cytotoxic effects; this was in good agreement with nuclear magnetic resonance and fourier transform infrared spectroscopies; their results did not show traces of ECH. This indicated that after the crosslinking process, there was no free ECH; furthermore, any possibility of ECH release in the construct during cell culture was discarded. The CS-PVA-ECH hybrid hydrogel allowed cell growth and extracellular matrix formation and showed adequate mechanical, structural, and biological properties for potential use in tissue engineering applications. 相似文献
9.
Eileen Pedraza Ann-Christina Brady Christopher A. Fraker 《Journal of biomaterials science. Polymer edition》2013,24(9):1041-1056
Macroporous, biostable scaffolds with controlled porous architecture were prepared from poly(dimethylsiloxane) (PDMS) using sodium chloride particles and a solvent casting and particulate leaching technique. The effect of particulate size range and overall porosity on the resulting structure was evaluated. Results found 90% v/v scaffolds and particulate ranges above 100?μm to have the most optimal open framework and porosity. Resulting hydrophobic PDMS scaffolds were coated with fibronectin and evaluated as a platform for adherent cell culture using human mesenchymal stem cells. Biocompatibility of PDMS scaffolds was also evaluated in a rodent model, where implants were found to be highly biocompatible and biostable, with positive extracellular matrix deposition throughout the scaffold. These results demonstrate the suitability of macroporous PDMS scaffolds for tissue engineering applications where strong integration with the host is desired. 相似文献
10.
Hoi Ki Cheung Tim Tian Y. Han Dale M. Marecak John F. Watkins Brian G. Amsden Lauren E. Flynn 《Biomaterials》2014
An injectable tissue-engineered adipose substitute that could be used to deliver adipose-derived stem cells (ASCs), filling irregular defects and stimulating natural soft tissue regeneration, would have significant value in plastic and reconstructive surgery. With this focus, the primary aim of the current study was to characterize the response of human ASCs encapsulated within three-dimensional bioscaffolds incorporating decellularized adipose tissue (DAT) as a bioactive matrix within photo-cross-linkable methacrylated glycol chitosan (MGC) or methacrylated chondroitin sulphate (MCS) delivery vehicles. Stable MGC- and MCS-based composite scaffolds were fabricated containing up to 5 wt% cryomilled DAT through initiation with long-wavelength ultraviolet light. The encapsulation strategy allows for tuning of the 3-D microenvironment and provides an effective method of cell delivery with high seeding efficiency and uniformity, which could be adapted as a minimally-invasive in situ approach. Through in vitro cell culture studies, human ASCs were assessed over 14 days in terms of viability, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, adipogenic gene expression and intracellular lipid accumulation. In all of the composites, the DAT functioned as a cell-supportive matrix that enhanced ASC viability, retention and adipogenesis within the gels. The choice of hydrogel also influenced the cell response, with significantly higher viability and adipogenic differentiation observed in the MCS composites containing 5 wt% DAT. In vivo analysis in a subcutaneous Wistar rat model at 1, 4 and 12 weeks showed superior implant integration and adipogenesis in the MCS-based composites, with allogenic ASCs promoting cell infiltration, angiogenesis and ultimately, fat formation. 相似文献
11.
背景:聚乙烯醇是具有良好生物相容性和生物降解特性的聚合物,因其水溶性、成膜性、乳化性、胶黏性,而且无味无毒,被广泛用于临床领域。目的:综述聚乙烯醇及其复合材料在骨、软骨、皮肤、血管等组织工程支架中的应用。方法:由第一作者检索2000年1月至2011年12月中国知网数据库、1980年1月至2012年12月Pubmed数据库及 Elsevier数据库中,有关聚乙烯醇及其复合材料在骨、软骨、皮肤、血管等组织工程支架中应用的文章,中文关键词为 “聚乙烯醇,复合材料,组织工程支架”,英文关键词为 “Poly (vinyl alcohol),composite material, tissue engineering scaffold”。结果与结论:虽然聚乙烯醇及其复合材料还存在强度不够高、植入后有并发症等缺点,但这类材料具有良好的生物相容性和生物可降解特性,在组织工程中的应用从实验室到临床前研究都有很大的进展。对于其修复的长期效果还需要进一步深入研究。通过对材料表面进行修饰,改善细胞与支架材料的相互作用;通过模拟细胞生长微环境,制备仿生材料,提高材料的亲水性、对细胞的黏附性,促进细胞的分化增殖;构建具有可控三维多孔结构的支架,并赋予其控制释放细胞生长因子等功能,更好地仿生天然细胞外基质的结构和功能;制备出降解速度与机械强度能够完全适应组织再生需要的支架,研制复合、仿生材料是今后支架材料研究的主要方向。 相似文献
12.
Satish Kumar Rakesh Kumar Majhi Sridhar Sanyasi Chandan Goswami 《Connective tissue research》2018,59(6):111-121
ABSTRACTPurpose: With increased life expectancy, disorders in lifestyle and other clinical conditions, and the changes in the connective tissues such as in bone, impose diverse biomedical problems. Cells belong to osteogenic lineages are extremely specific for their surface requirements. Therefore, suitable surfaces are the critical bottle neck for successful bone tissue engineering. This study involves assessment of polysaccharide-based hydrogel which effectively allows growth, differentiation and mineralisation of osteogenic cells even in the absence of osteogenic inducing factors. Materials and methods: Tamarind Kernel Polysaccharide was grafted with acrylic acid at different mole ratio. The critical parameter, surface morphology for bio application was assessed by SEM. MTT assay has been performed with hydrogels on Saos-2 cells. The biocompatibility and adhesion of different cell lines (F-11, Saos-2, Raw 264.7 and MSCs) on hydrogel surface was performed by Phalloidin and DAPI staining. Further the differentiation, mineralization and expression of different osteogenic markers, ALP assay, Alizarin Red staining and q-PCR was performed. Results: The hydrogels show highly porous and interconnected pores. MTT assay demonstrates the hydrogel have no cytotoxicity towards Saos-2 cells and are suitable for proliferation of different lineage of cell lines. ALP, Alizarin red staining and q-PCR assay shows that the hydrogel surface enhances the differentiation, mineralization and expression of different osteogenic genes in Saos-2 cells in the absence of any osteogenic inducing factors. Conclusion Synthesized hydrogel surface triggers signalling events towards osteogenesis even in the absence of added growth factors. We proposed that this material can be used for effective bone tissue engineering in vitro at low cost. 相似文献
13.
组织工程心脏瓣膜及干细胞应用前景 总被引:4,自引:0,他引:4
组织工程心脏瓣膜是一种具有活力、能够自我修复和增生的人工瓣膜。理想的组织工程心脏瓣膜由于具有优良的血流动力学特征,低或甚至无免疫反应,不需要长期抗凝治疗以及耐用性好等特性,能够很好地克服目前临床上使用的机械瓣和生物瓣的缺点。综述了近年来国外组织工程心脏瓣膜在生物材料、培养环境和种子细胞等方面的新进展,并展望了干细胞作为种子细胞的应用前景。 相似文献
14.
Varshini Vishwanath Krishna Pramanik 《Journal of biomaterials science. Polymer edition》2016,27(7):657-674
Silk fibroin/chitosan blend has been reported to be an attractive biomaterial that provides a 3D porous structure with controllable pore size and mechanical property suitable for tissue engineering applications. However, there is no systematic study for optimizing the ratio of silk fibroin (SF) and chitosan (CS) which seems to influence the scaffold property to a great extent. The present research, therefore, investigates the effect of blend ratio of SF and CS on scaffold property and establishes the optimum value of blend ratio. Among the various blends, the scaffolds with blend ratio of SF/CS (80:20) were found to be superior. The scaffold possesses pore size in the range 71–210 μm and porosity of 82.2 ± 1.3%. The compressive strength of the scaffold was measured as 190 ± 0.2 kPa. The cell supportive property of the scaffold in terms of cell attachment, cell viability, and proliferation was confirmed by cell culture study using mesenchymal stem cells derived from umbilical cord blood. Furthermore, the assessment of glycosaminoglycan secretion on the scaffolds indicates its potentiality toward cartilage tissue regeneration. 相似文献
15.
《Journal of biomaterials science. Polymer edition》2013,24(7):667-680
Novel lactide-based poly(ethylene glycol) (PEG) polymer networks (GL9-PEGs) were prepared by UV copolymerization of a glycerol-lactide triacrylate (GL9-Ac) with PEG monoacrylate (PEG-Ac) to use as scaffolds in tissue engineering, and the surface properties and biocompatibility of these networks were investigated as a function of PEG molecular weight and content. Analysis by ATR-FTIR and ESCA reveled that PEG was incorporated well within the GL9-PEG polymer networks and was enriched at the surfaces. From the results of SEM, AFM, and contact angle analyses, GL9-PEG networks showed relatively rough and irregular surfaces compared to GL9 network, but the mobile PEG chains coupled at their termini were readily exposed toward the aqueous environment when contacting water such that the surfaces became smoother and more hydrophilic. This reorientation and increase in hydrophilicity were more extensive with increasing PEG molecular weight and content. As compared to GL9 network lacking PEG, protein adsorption as well as platelet and S. epidermidis adhesion to GL9-PEG networks were significantly reduced as the molecular weight and content of PEG was increased, indicating that GL9-PEG networks are more biocompatible than the GL9 network due to PEG's passivity. Based on the physical and biological characterization reported, the GL9-PEG materials would appear to be interesting candidates as matrices for tissue engineering. 相似文献
16.
Sarumathi Gobinathan Siti Solehah Zainol Siti Fatmah Azizi Nabil Mohamad Iman Rajasegaran Muniandy Hanis Nazihah Hasmad 《Journal of biomaterials science. Polymer edition》2013,24(17):2051-2067
AbstractAmniotic membrane has the potential to be used as scaffold in various tissue engineering applications. However, increasing its biostability at the same time maintaining its biocompatibility is important to enhance its usage as a scaffold. This studied characteristics genipin-crosslinked amniotic membrane as a bioscaffold. Redundant human amniotic membranes (HAM) divided into native (nAM), decellularized (dAM) and genipin-crosslinked (clAM) groups. The dAM and clAM group were decellularized using thermolysin (TL) and sodium hydroxide (NaOH) solution. Next, clAM group was crosslinked with 0.5% and 1.0% (w/v) genipin. The HAM was then studied for in vitro degradation, percentage of swelling, optical clarity, ultrastructure and mechanical strength. Meanwhile, fibroblasts isolated from nasal turbinates were then seeded onto nAM, dAM and clAM for biocompatibility studies. clAM had the slowest degradation rate and were still morphologically intact after 30 days of incubation in 0.01% collagenase type 1 solution. The dAM had a significantly highest percentage of swelling than other groups (p?<?0.05). Besides, the dAM retained the collagen content at similar level of nAM. Although the dAM had highest mechanical strength compared to the rest of the groups, the differences were statistically insignificant. Cell attachment on dAM and 0.5% clAM was higher compared to that on nAM and 1.0% clAM. In conclusion, clAM have better biostability and biocompatibility compared to the nAM and dAM. Together with other suitable characteristics of the clAM such as percentage of swelling, structural integrity and ECM content, clAM is suitable as scaffold for various tissue engineering applications. 相似文献
17.
In cartilage tissue engineering, hydrogel is widely used as the scaffold for hosting and culturing chondrocyte suspension during neo-tissue formation. In order to develop cultured chondrocytes into a functional cartilage equivalent, the hydrogel must provide an ideal microenvironment for the rapidly proliferating chondrocytes. At the same time, the essential functions of chondrocytes, such as the secretion of type II collagen and glycosaminoglycans, must be maintained. In these studies, we quantitatively characterize the mechanobiology underlying a newly discovered “edge flourish” phenomenon of cultured chondrocytes within a three-dimensional agarose hydrogel, which may ultimately nurture scaffold-free cartilaginous tissue regeneration. First, real-time microscopy was used to track the spatiotemporal distributions of chondrocytes at different focal planes. The chondrocytes were observed to exhibit abundant neo-tissue outgrowth and significant cartilaginous phenotype at the edge of the hydrogel compared to those inside the hydrogel bulk. Secondly, the hydrogel surface stresses induced by the encapsulated chondrocytes were characterized quantitatively in real time using the finite-element method. Finally, the real-time three-dimensional matrix deformations of agarose hydrogel under the influence of chondrocytes were measured using a multiple-particle tracking assay. Our results indicate that the mechanism of the “edge flourish” phenomenon is induced by the oriented outgrowth of chondrocytic isogenous groups located at the edge of hydrogel. These isogenous groups exhibit directed outgrowth towards the surface of the hydrogel and eventually generate substantial surface tension on the interface of hydrogel and medium. Ultimately, the encapsulated chondrocytes closest to the hydrogel/medium interface will spontaneously sprout out of the hydrogel and form a layer of rich proliferative and chondrocytic extracellular matrix secreting chondrocytes at the surface of the hydrogel. 相似文献
18.
Ranjithkumar Ravichandran Sakthivel Gandhi Dhakshinamoorthy Sundaramurthi Swaminathan Sethuraman 《Journal of biomaterials science. Polymer edition》2013,24(17):1988-2005
Mesoporous materials with pore sizes between 2 and 50?nm have elicited widespread interest in catalysis, separation, adsorption, sensors, and drug delivery applications due to its highly ordered pore size along with high hydrothermal stability and easily modifiable surface functionalities. Fabricating these mesoporous materials as continuous fibers offers exciting vistas for biomedical applications especially in tissue engineering. The aim of the present study was to fabricate, characterize, and evaluate the cellular and gene expression of mesoporous silica with a long ordered fibrous morphology to support regeneration of bone tissue. Tetraethyl orthosilicate, polyvinyl pyrrolidone, and the tri-block copolymer P-123 were subjected to electrospinning to fabricate continuous ordered mesoporous silica nanofibers by optimizing solution and operation parameters. Mesoporous silica fibers with an average diameter of 470?nm and mesopores of dimension 5.97?nm were obtained. The combination of micropores, mesopores, macropores, and the nanofibrous morphology imparted excellent bioactivity to the mesoporous silica fibrous scaffolds as demonstrated by the proliferation of human osteoblast-like cells (MG63) and by the maintenance of its phenotype. The upregulation of collagen I, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein signifies the maturation of MG63 cells on the silica scaffold. Hence, these novel scaffolds are promising new biomaterials for orthopaedic applications. 相似文献
19.
文题释义:心脏组织工程:是基于组织工程的技术和原理,利用合适来源的细胞和生物支架制造心脏移植物,用于代替受损心脏组织或促进心肌细胞增殖,以恢复或改善心脏功能的技术。
生物支架:是组织工程技术中用于对细胞成分起支撑作用的移植物,其构成成分类似于细胞外基质成分,部分支架具有孔隙等允许血液中氧气及营养物质通过。
背景:心脏组织工程技术的出现和发展,为心血管疾病尤其是心肌梗死的治疗提供了新的选择。
目的:通过对心脏组织工程的2个核心要素即细胞和生物支架的研究进展进行综述,以期为心脏组织工程技术应用于心血管疾病治疗提供参考及依据。
方法:通过检索PubMed 数据库及中国知网数据库2010至2019年期间心脏组织工程相关文章,以“cardiac tissue engineering,cardiomyocytes differentiation,cardiac tissue engineering,cardiomyocytes
differentiation,bone
marrow derived stem cells,human
embryonic stem cells,induced
pluripotent stem cells,menstrual
blood stem cells,biological
scaffolds”为英文检索词,以“心脏组织工程,心肌细胞分化,干细胞,生物支架”等为中文检索词,最终选择78篇英文文献纳入研究。
结果与结论:多种来源的细胞(包括心肌细胞、骨骼肌细胞、心脏成纤维细胞、骨髓来源干细胞、胚胎干细胞、诱导多能干细胞、月经血干细胞)和生物支架(包括水凝胶、脱细胞支架、细胞片及心脏芯片)都可应用于心脏组织工程,但心脏组织工程仍然存在诸多需要解决的问题,如合适的细胞来源、新型支架材料的研发、诱导分化技术的优化,植入时机及途径的优化。
ORCID:0000-0003-2763-5535(王萍)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程 相似文献
20.
Ashley Thomas 《Journal of biomaterials science. Polymer edition》2019,30(7):561-579
Macroporous composite scaffolds comprising of gelatin and glass ceramic has been fabricated and characterized for bone tissue engineering applications. Gelatin scaffold with varying glass-ceramic content was fabricated using lyophilization technique. The microstructure, compressive strength, bioactivity, biodegradation and biocompatibility of the fabricated scaffolds were evaluated. The scaffolds presented macroporous pore size with porosity varying from 79 to 84%. The compressive strength was enhanced by glass ceramic addition and the scaffolds exhibited strength in the range of 1.9 to 5.7?MPa. The obtained strength and porosity was in the range of cancellous bone. The dissolution of gelatin scaffolds was optimized by an additional in situ glutaraldehyde crosslinking step and further by glass-ceramic addition. The composite scaffolds showed good apatite-forming ability in vitro. Biocompatibility and osteogenic ability of the scaffolds were analyzed in vitro by cell adhesion study, alkaline phosphatase activity and Alizarin S staining. The obtained results revealed the composite scaffolds possessed enhanced osteogenic ability and good cell adhesion properties. The developed scaffold is a prospective candidate as a biomaterial for bone tissue engineering. 相似文献