首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim:

To investigate the protective effect and underlying mechanisms of Bu-7, a flavonoid isolated from the leaves of Clausena lansium, against rotenone-induced injury in PC12 cells.

Methods:

The cell viability was evaluated using MTT assay. The cell apoptosis rate was analyzed using flow cytometry. JC-1 staining was used to detect the mitochondrial membrane potential (MMP). Western blotting analysis was used to determine the phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38), tumor protein 53 (p53), Bcl-2–associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), and caspase 3.

Results:

Treatment of PC12 cells with rotenone (1–20 μmol/L) significantly reduced the cell viability in a concentration-dependent manner. Pretreatment with Bu-7 (0.1 and 10 μmol/L) prevented PC12 cells from rotenone injury, whereas Bu-7 (1 μmol/L) had no significant effect. Pretreatment with Bu-7 (0.1 and 10 μmol/L) decreased rotenone-induced apoptosis, attenuated rotenone-induced mitochondrial potential reduction and suppressed rotenone-induced protein phosphorylation and expression, whereas Bu-7 (1 μmol/L) did not cause similar effects. Bu-7 showed inverted bell-shaped dose-response relationship in all the effects.

Conclusion:

Bu-7 protects PC12 cells against rotenone injury, which may be attributed to MAP kinase cascade (JNK and p38) signaling pathway. Thus, Bu-7 may be a potential bioactive compound for the treatment of Parkinson''s disease.  相似文献   

2.

Aim:

Proteasome inhibitors have been found to suppress glioma cell proliferation and induce apoptosis, but the mechanisms are not fully elucidated. In this study we investigated the mechanisms underlying the apoptosis induced by the proteasome inhibitor MG-132 in glioma cells.

Methods:

C6 glioma cells were used. MTT assay was used to analyze cell proliferation. Proteasome activity was assayed using Succinyl-LLVY-AMC, and intracellular ROS level was evaluated with the redox-sensitive dye DCFH-DA. Apoptosis was detected using fluorescence and transmission electron microscopy as well as flow cytometry. The expression of apoptosis-related proteins was investigated using Western blot analysis.

Results:

MG-132 inhibited C6 glioma cell proliferation in a time- and dose-dependent manner (the IC50 value at 24 h was 18.5 μmol/L). MG-132 (18.5 μmol/L) suppressed the proteasome activity by about 70% at 3 h. It induced apoptosis via down-regulation of antiapoptotic proteins Bcl-2 and XIAP, up-regulation of pro-apoptotic protein Bax and caspase-3, and production of cleaved C-terminal 85 kDa PARP). It also caused a more than 5-fold increase of reactive oxygen species. Tiron (1 mmol/L) effectively blocked oxidative stress induced by MG-132 (18.5 μmol/L), attenuated proliferation inhibition and apoptosis in C6 glioma cells, and reversed the expression pattern of apoptosis-related proteins.

Conclusion:

MG-132 induced apoptosis of C6 glioma cells via the oxidative stress.  相似文献   

3.

Aim:

To investigate the effect of genipin on apoptosis in human leukemia K562 cells in vitro and elucidate the underlying mechanisms.

Methods:

The effect of genipin on K562 cell viability was measured using trypan blue dye exclusion and cell counting. Morphological changes were detected using phase-contrast microscopy. Apoptosis was analyzed using DNA ladder, propidium iodide (PI)-labeled flow cytometry (FCM) and Hoechst 33258 staining. The influence of genipin on cell cycle distribution was determined using PI staining. Caspase 3 activity was analyzed to detect apoptosis at different time points. Protein levels of phospho-c-Jun, phosphor-c-Jun N-terminal kinase (p-JNK), phosphor-p38, Fas-L, p63, and Bax and the release of cytochrome c were detected using Western blot analysis.

Results:

Genipin reduced the viability of K562 cells with an IC50 value of approximately 250 μmol/L. Genipin 200–400 μmol/L induced formation of typical apoptotic bodies and DNA fragmentation. Additionally, genipin 400 μmol/L significantly increased the caspase 3 activity from 8–24 h and arrested the cells in the G2/M phase. After stimulation with genipin 500 μmol/L, the levels of p-JNK, p-c-Jun, Fas-L, Bax, and cytochrome c were remarkably upregulated, but there were no obvious changes of p-p38. Genipin 200–500 μmol/L significantly upregulated the Fas-L expression and downregulated p63 expression. Dicoumarol 100 μmol/L, a JNK1/2 inhibitor, markedly suppressed the formation of apoptotic bodies and JNK activation induced by genipin 400 μmol/L.

Conclusion:

These results suggest that genipin inhibits the proliferation of K562 cells and induces apoptosis through the activation of JNK and induction of the Fas ligand.  相似文献   

4.
Aim: To investigate the effects of punicalagin, a polyphenol isolated from Punica granatum, on human U87MG glioma cells in vitro. Methods: The viability of human U87MG glioma cells was evaluated using MTT assay. Cell cycle was detected with flow cytometry analysis. The levels of Bcl-2, cleaved caspase-9, cleaved poly(ADP-ribose) polymerase (PARP), phosphor-AMPK and phosphor-p27 at Thr198 were measured using immunoblot analyses. Caspase-3 activity was determined with spectrophotometer. To determine autopha~Lv, LC3 cleavage and punctate patterns were examined. Results: Punicalagin (1-30 pp=VmL) dose-dependently inhibited the cell viability in association with increased cyclin E level and decreased cyclin B and cyclin A levels. The treatment also induced apoptosis as shown by the cleavage of PARP, activation of caspase-9, and increase of caspase-3 activity in the cells. However, pretreatment of the cells with the pan-caspase inhibitor z-DEVD- fmk (50 pmol/L) did not completely prevent the cell death. On the other hand, punicalagin treatment increased LC3-11 cleavage and caused GFP-LC3-11-stained punctate pattern in the cells. Suppressing autopha~, of cells with chloroquine (1-10 pmol/L) dose- dependently alleviated the cell death caused by punicalagin. Punicalagin (1-30 pp=VmL) also increased the levels phosphor-AMPK and phosphor-p27 at Thr198 in the cells, which were correlated with the induction of autophagic cell death. Conclusion: Punicalagin induces human U87MG glioma cell death through both apoptotic and autophagic pathways.  相似文献   

5.

Aim:

To investigate the antiproliferative and apoptotic effects of gemcitabine combined with gum mastic and the underlying mechanisms in human pancreatic cancer cell lines.

Methods:

Cell proliferation and apoptosis were examined using the methyl thiazolyl tetrazolium (MTT) assay and propidium iodine staining, respectively. The expression of Bcl-2, Bax, NF-κB p65 subunit, and IκBα protein was measured using Western blotting.

Results:

Gemcitabine 0.01−100 μg/mL inhibited cell proliferation and induced apoptosis in both pancreatic cancer BxPC-3 and COLO 357 cells. Gum mastic 40 μg/mL significantly potentiated the antiproliferative and apoptotic effects of gemcitabine 10 μg/mL after 72-h treatment. When cells were treated with gemcitabine in combination with gum mastic, the IκBα level was increased, whereas NF-κB activation was blocked; the expression of Bax protein was substantially increased, but Bcl-2 protein was down-regulated.

Conclusion:

Gemcitabine combined with gum mastic causes potent apoptosis in pancreatic cancer cells. The combination may be an effective therapeutic strategy for pancreatic cancer.  相似文献   

6.

Aim:

To investigate the effect of gossypol on the growth of cultured human uterine leiomyoma and myometrial cells, the level of Bcl-2 and the activity of Src and estrogen receptor (ERα).

Methods:

Human uterine leiomyoma and adjacent normal myometrial cells were cultured in vitro. Both cell types were treated with a graded concentration of gossypol. Cell viability was assayed using CCK-8. Morphological change was observed with optical and electronic microscopy. Apoptosis was evaluated using TUNEL assay. Levels of Bcl-2, ERα and Src were analyzed using Western blotting.

Results:

Gossypol significantly inhibited growth and promoted apoptosis in cultured human uterine leiomyoma cells with the IC50 value and its corresponding 95% confidence intervals (CI) of 6.5 (4.0–10.5), 9.0 (4.9–16.5), and 7.5 (4.0–14.1) μmol/L at 20, 40, and 60 h, respectively. Gossypol exerted inhibitory effects on the myometrial cells with the IC50 value and its 95% CI of 49.1 (28.3–85.0), 14.5 (7.7–27.4), and 2.6 (1.2–5.6) μmol/L at 20, 40, and 60 h, respectively. Compared with control, gossypol 0.1-3.0 μmol/L markedly decreased the protein expression of Bcl-2 (P<0.05) in both leiomyoma and myometrial cells in a concentration-dependent manner, and significantly suppressed the level of phospho-Tyr416Src (P<0.05) in both cell types at 3.0 μmol/L without obvious alteration of c-Src and phospho-Tyr527Src levels (P>0.05). In addition, gossypol markedly reduced both the expression of ERα (P<0.05) at the low concentration of 0.1 μmol/L in the myometrial cells and the level of phospho-ser167ERα (P<0.05) at the high concentration of 3.0 μmol/L in the leiomyoma cells.

Conclusion:

Gossypol inhibits proliferation and induces apoptosis in human uterine leiomyoma and myometrial cells. It is likely that the mechanisms of action involve reducing the protein level of Bcl-2 and the activity of Src and ERα.  相似文献   

7.

Aim:

To investigate the role of reactive oxygen species (ROS) in oridonin-induced apoptosis and autophagy in HeLa cells.

Methods:

The cell viability was measured using MTT assay. Morphological changes of apoptosis and autophagy were examined using Hoechst 33258 staining and monodansylcadaverine (MDC) staining, respectively. The mitochondrial membrane potential (ΔΨm) was measured using fluorescent dye rhodamine 123. DCF-induced fluorescence was used to measure the intracellular ROS level. Protein expression was examined using Western blot.

Results:

Treatment of HeLa cells with oridonin (20–160 μmol/L) inhibited the cell growth in time- and concentration-dependent manners. The cells treated with oridonin (80 μmol/L) for 24 h displayed marked DNA fragmentation and MDC-positive autophagosomes. In the presence of the specific autophagy inhibitor 3-MA (2 mmol/L), the oridonin-induced apoptosis was significantly enhanced. Treatment of HeLa cells with oridonin (20–120 μmol/L) induced intracellular ROS generation in a concentration-dependent manner. In the presence of the ROS scavenger NAC (5 mmol/L), the oridinin-induced ROS generation was markedly reduced. NAC (5 mmol/L) or non-thiol antioxidant catalase (1000 U/mL) significantly reduced the oridonin-induced inhibition of cell growth and apoptosis. Furthermore, oridonin significantly reduced ΔΨm, which was blocked by NAC. Oridonin markedly increased Bax expression in mitochondria, and decreased Bcl-2 expression in both the cytosol and mitochondria. Oridonin also markedly increased the phosphorylation of Bcl-2 in the cytosol. All the effects were blocked by NAC. Oridonin increased the levels of caspase-3 and caspase-8, and decreased the expression of pro-caspase 3 and pro-caspase 9, which were blocked by NAC.

Conclusion:

ROS plays a critical role in oridonin-induced apoptosis and autophagy.  相似文献   

8.
Aim: To determine whether angiotensin II receptor blockers (ARBs) could protect central neurons against nutrient deprivation-induced apoptosis in vitro and to elucidate the underlying mechanisms.
Methods: Primary rat cerebellar granule cells (CGCs) underwent B27 (a serum substitute) deprivation for 24 h to induce neurotoxicity, and cell viability was analyzed using LDH assay and WST-1 assay. DNA laddering assay and TUNEL assay were used to detect cell apoptosis. The expression of caspase-3 and Bcl-2, and the phosphorylation of Akt and GSK-3β were detected using Western blot analysis. AT1a mRNA expression was determined using RT-PCR analysis.
Results: B27 deprivation significantly increased the apoptosis of CGCs, as demonstrated by LDH release, DNA laddering, caspase-3 activation and positive TUNEL staining. Pretreatment with 10 μmol/L ARBs (telmisartan, candesartan or losartan) partially blocked B27 deprivation-induced apoptosis of CGCs with telmisartan being the most effective one. B27 deprivation markedly increased the expression of AT1a receptor in CGCs, inhibited Akt and GSK-3β activation, decreased Bcl-2 level, and activated caspase-3, which were reversed by pretreatment with 1 μmol/L telmisartan. In addition, pretreatment with 10 μmol/L PPARγ agonist pioglitazone was more effective in protecting CGCs against B27 deprivation-induced apoptosis, whereas pretreatment with 20 μmol/L PPARγ antagonist GW9662 abolished all the effects of telmisartan in CGCs deprived of B27.
Conclusion: ARBs, in particular telmisartan, can protect the nutrient deprivation-induced apoptosis of CGCs in vitro through activation of PPARγ and the Akt/GSK-3β pathway.  相似文献   

9.
10.

Aim:

To investigate the effects of M3, a derivative of huperzine A, on the apoptosis induced by sodium nitroprusside (SNP) in PC12 cells.

Methods:

Cell viability was detected using MTT method. Apoptosis was examined with annexin V/prodium iodide (PI) stain. The levels of reactive oxygen species (ROS) were measured using fluorophotometric quantitation. The amount of malonaldehyde (MDA) was determined with MDA detection kits. The expression of caspase-3 and Hsp70 were analyzed using Western blotting.

Results:

Exposure of PC12 cells to SNP (200 μmol/L) for 24 h decreased the cell viability to 69.0% of that in the control group. Pretreatment with M3 (10 μmol/L) or huperzine A (10 μmol/L) significantly protected the cells against SNP-induced injury and apoptosis; the ratio of apoptotic bodies in PC12 cells was decreased from 27.3% to 15.0%. Pretreatment with M3 (10 μmol/L) significantly decreased ROS and MDA levels, and increased the expression of Hsp70 in the cells. Quercetin (10 μmol/L) blocked the protective effect of M3, while did not influence on that of huperzine A.

Conclusion:

M3 protects PC12 cells against SNP-induced apoptosis, possible due to ROS scavenging and Hsp70 induction.  相似文献   

11.

Aim:

To Characterize a new human lung cancer cell line Am1010, derived from drug-surviving cells (DSCs).

Methods:

The Am1010 cell line was established after 4 cycles of chemotherapy from an arm muscle metastasic tumor of a patient diagnosed with lung adenocarcinoma. The cell line has been remained in continuous culture for more than one year during this study.

Results:

The Am1010 cell line demonstrated in vitro multi-drug-resistance to cisplatin, taxol, and gefitinib. The Am1010 cell doubling time without drug treatment was 42.395 h. The IC50 value of cisplatin was 4.299 μmol/L and >10 μmol/L for the Am1010 and P0318 (a cell line derived from non-DSCs) cells, respectively. The IC50 value of taxol was 0.067 μmol/L and >1 μmol/L for the Am1010 and P0318 cells, respectively. The IC50 value of gefitinib was 15.233 μmol/L and >70 μmol/L for Am1010 and P0318 cells, respectively. 11 genes involved in the focal adhesion and cell adhesion pathways were found to be differentially expressed. The cells of Am1010 have a significantly larger chromosome number than most lung cancer cell lines.

Conclusion:

This novel DSCs derived lung cancer cell line will be a valuable in vitro tool for the investigation of lung cancer drug resistance and metastasis.  相似文献   

12.
Li J  Shen L  Lu FR  Qin Y  Chen R  Li J  Li Y  Zhan HZ  He YQ 《Acta pharmacologica Sinica》2012,33(2):242-249

Aim:

To investigate the effects and underlying mechanisms of plumbagin, a naphthoquinone derived from medicinal plant Plumbago zeylanica, on human gastric cancer (GC) cells.

Methods:

Human gastric cancer cell lines SGC-7901, MKN-28, and AGS were used. The cell viability was examined using CCK-8 viability assay. Cell proliferation rate was determined using both clonogenic assay and EdU incorporation assay. Apoptosis was detected via Annexin V/propidium iodide double-labeled flow cytometry. Western blotting was used to assess the expression of both NF-κB-regulated gene products and TNF-α-induced activation of p65, IκBα, and IKK. The intracellular location of NF-κB p65 was detected using confocal microscopy.

Results:

Plumbagin (2.5–40 μmol/L) concentration-dependently reduced the viability of the GC cells. The IC50 value of plumbagin in SGC-7901, MKN-28, and AGS cells was 19.12, 13.64, and 10.12 μmol/L, respectively. The compound (5–20 μmol/L) concentration-dependently induced apoptosis of SGC-7901 cells, and potentiated the sensitivity of SGC-7901 cells to chemotherapeutic agents TNF-αand cisplatin. The compound (10 μmol/L) downregulated the expression of NF-κB-regulated gene products, including IAP1, XIAP, Bcl-2, Bcl-xL, tumor factor (TF), and VEGF. In addition to inhibition of NF-κB p65 nuclear translocation, the compound also suppressed TNF-α-induced phosphorylation of p65 and IKK, and the degradation of IκBα.

Conclusion:

Plumbagin inhibits cell growth and potentiates apoptosis in human GC cells through the NF-κB pathway.  相似文献   

13.

Aim:

To investigate the action of salvianolic acid A (SalA) on angiotensin II (Ang II)-induced proliferation of human umbilical vein endothelial cells (HUVECs) and the possible signaling pathways mediating this action.

Methods:

Cell proliferation was examined with MTT assay. The expression levels of Src phosphorylation (phospho-Src), Akt phosphorylation (phospho-Akt), and NADPH oxidase 4 (Nox4) in HUVECs were determined by Western blot. The production of reactive oxygen species (ROS) was estimated using fluorescence-activated cell sorting (FACS).

Results:

SalA (6.25–50 μmol/L) did not affect the viability of HUVECs. Treatment of HUVECs with Ang II (1 μmol/L) markedly increased the cell viability; pretreatment of HUVECs with SalA (12.5, 25 and 50 μmol/L) prevented Ang II-induced increase of the cell viability in a concentration-dependent manner. Treatment of HUVECs with Ang II (1 μmol/L) markedly up-regulated the protein expression levels of phospho-Src, phospho-Akt (473) and Nox4; pretreatment of HUVECs with SalA (12.5, 25 and 50 μmol/L) blocked all the effects in a concentration-dependent manner. Treatment of HUVECs with Ang II (1 μmol/L) dramatically increased ROS production in HUVECs; pretreatment of HUVECs with SalA (12.5, 25 and 50 μmol/L) blocked the ROS production in a concentration-dependent manner.

Conclusion:

SalA inhibits Ang II-induced proliferation of HUVECs via reducing the expression levels of phospho-Src and phospho-Akt (473), thereby attenuating the production of ROS.  相似文献   

14.

Aim:

To investigate noncovalent interactions between borneol and human serum albumin (HSA) under near-physiological conditions.

Methods:

A 65-μm polydimethylsiloxane (PDMS) fiber was selected for sampling. The extraction temperature was kept at 37 °C, and the extraction time was optimized at 10 min. Borneol solutions of different concentrations were equilibrated in 600 μmol/L HSA and 67 mmol/L phosphate buffer solution (pH 7.4, 37 °C) for 24 h prior to solid phase microextraction (SPME) using headspace mode. The binding properties were obtained based on the calculation of extracted borneol amount using gas chromatography (GC) determination.

Results:

The headspace SPME extraction method avoided disturbance from the HSA binding matrix. The recovery showed good linearity for the borneol concentrations over the range of 0.4–16.3 μmol/L with a regression coefficient (R2) of 0.9998. The limit of detection and lower limit of quantitation were determined to be 0.01 μmol/L and 0.4 μmol/L, respectively. The binding constant and the percentage binding rate were estimated to be 2.4×103(mol/L)-1 and 59.5%, respectively.

Conclusion:

Headspace SPME coupled to GC is a simple, sensitive and rapid method for the study of borneol binding to HSA. The method may be applied in the determination of other protein binding properties in human plasma.  相似文献   

15.

Aim:

To investigate whether mitochondria permeability transition pore (mPTP) opening was involved in ginsenoside Rb1 (Gs-Rb1) induced anti-hypoxia effects in neonatal rat cardiomyocytes ex vivo.

Methods:

Cardiomyocytes were randomly divided into 7 groups: control group, hypoxia group (500 μmol/L CoCl2), Gs-Rb1 200 μmol/L group (CoCl2 intervention+Gs-Rb1), wortmannin (PI3K inhibitor) 0.5 μmol/L group, wortmannin+Gs-Rb1 group, adenine 9-β-D-arabinofuranoside (Ara A, AMPK inhibitor) 500 μmol/L group, and Ara A and Gs-Rb1 group. Apoptosis rate was determined by using flow cytometry. The opening of the transient mPTP was assessed by using co-loading with calcein AM and CoCl2 in high conductance mode. Expression of GSK-3β, cytochrome c, caspase-3 and poly (ADP-ribose) polymerase (PARP) was measured by using Western blotting. ΔGSK-3β was defined as the ratio of p-Ser9-GSK-3β to total GSK-3β.

Results:

CoCl2 significantly stimulated mPTP opening and up-regulated the level of ΔGSK-3β. There was a statistically significant positive correlation between apoptosis rate and mPTP opening, between apoptosis rate and ΔGSK-3β, and between mPTP opening and ΔGSK-3β. Gs-Rb1 significantly inhibited mPTP opening induced by hypoxia (41.3%±2.0%, P<0.001) . Gs-Rb1 caused a 77.3%±3.2% reduction in the expression of GSK-3β protein (P<0.001) and a significant increase of 1.182±0.007–fold (P=0.0001) in p-Ser9-GSK-3β compared with control group. Wortmannin and Ara A significantly inhibited the effect of Gs-Rb1 on mPTP opening and ΔGSK-3β. Gs-Rb1 significantly decreased expression of cytochrome c (66.1%±1.7%, P=0.001), caspase-3 (56.5%±2.7%, P=0.001) and cleaved poly ADP-ribose polymerase (PARP) (57.9%±1.4%, P=0.001).

Conclusion:

Gs-Rb1 exerted anti-hypoxia effect on neonatal rat cardiomyocytes by inhibiting GSK-3β-mediated mPTP opening.  相似文献   

16.
17.

Aim:

To investigate the effects of wogonin (5,7-dihydroxy-8-methoxyflavone) extracted from Scutellaria baicalensis Georgi (S baicalensis) on lipotoxicity-induced apoptosis of vascular smooth muscle cells (VSMCs) and the underlying mechanisms.

Methods:

Cultured VSMCs were used. Apoptosis of VSMCs was induced by palmitate (0.75 mmol/L), and detected using TUNEL assay. The expression levels of protein and phosphorylated protein were measured using Western blot analysis.

Results:

Treatment of VSMCs with wogonin (10, 25 and 50 μmol/L) significantly attenuated the apoptosis and endoplasmic reticulum (ER) stress induced by palmitate in concentration- and time-dependent manners. Wogonin (50 μmol/L) decreased palmitate-induced reactive oxygen species (ROS) generation. The ER stress inhibitor 4-phenyl butyric acid (5 mmol/L) significantly decreased palmitate-induced apoptotic cells, and occluded the anti-apoptotic effect of wogonin (25 μmol/L). Wogonin (10, 25 and 50 μmol/L) significantly reduced the intracellular diacylglycerol (DAG) accumulation and expression levels of phosphorylated PKCs in palmitate-treated VSMCs.

Conclusion:

Our results suggest that wogonin inhibits lipotoxicity-induced apoptosis of VSMCs via suppressing the intracellular DAG accumulation and subsequent inhibition of PKC phosphorylation. Wogonin has therapeutic potential for the prevention and treatment of atherosclerosis.  相似文献   

18.

Aim:

To study the molecular mechanisms underlying α-tocopheryl succinate (α-TOS)-induced apoptosis in erbB2-positive breast cancer cells and to determine whether α-TOS and the human recombinant TNF-related apoptosis-inducing ligand (hrTRAIL) act synergically to induce cell death of erbB2-expressing breast cancer cells.

Methods:

The annexin V binding method was used to measure apoptosis induced by α-TOS and/or hrTRAIL. RT-PCR and Western blotting were performed to detect gene and protein expression. A colorimetric assay was performed to detect caspase activity. The TransAMTM NF-κB p65 kit was used to assess NF-κB activation.

Results:

α-TOS (100 μmol/L) significantly inhibited NF-κB nuclear translocation in erbB2-expressing breast cancer cells; this inhibition is expected to result in the inactivation of NF-κB. α-TOS (50 and 100 μmol/L) inhibited the expression of Flice-like inhibitory protein (FLIP) and cellular inhibitor of apoptosis protein 1 (c-IAP1) in erbB2-positive cells. α-TOS (100 μmol/L) inhibited Akt activation and augmented the activity of caspase 3 and caspase 8 in breast cancer cells expressing erbB2. α-TOS (50 μmol/L) and hrTRAIL (30 mg/mL) acted synergically to induce apoptosis in breast cancer cells. α-TOS also decreased the hrTRAIL-induced transient activation of NF-κB .

Conclusion:

Our results suggest that α-TOS mediates the apoptosis of erbB2-positive breast cancer cells and acts synergically with hrTRAIL via the NF-κB pathway.  相似文献   

19.

Aim:

To explore the role of the glucagon-like peptide 1 receptor (GLP-1R) in geniposide regulated insulin secretion in rat INS-1 insulinoma cells.

Methods:

Rat INS-1 insulinoma cells were cultured. The content of insulin in the culture medium was measured with ELISA assay. GLP-1R gene in INS-1 cells was knocked down with shRNA interference. The level of GLP-1R protein in INS-1 cells was measured with Western blotting.

Results:

Geniposide (0.01–100 μmol/L) increased insulin secretion from INS-1 cells in a concentration-dependent manner. Geniposide (10 μmol/L) enhanced acute insulin secretion in response to both the low (5.5 mmol/L) and moderately high levels (11 mmol/L) of glucose. Blockade of GLP-1R with the GLP-1R antagonist exendin (9–39) (200 nmol/L) or knock-down of GLP-1R with shRNA interference in INS-1 cells decreased the effect of geniposide (10 μmol/L) on insulin secretion stimulated by glucose (5.5 mmol/L).

Conclusion:

Geniposide increases insulin secretion through glucagon-like peptide 1 receptors in rat INS-1 insulinoma cells.  相似文献   

20.

Aim:

To investigate the anticancer effect of crocetin, a major ingredient in saffron, and its underlying mechanisms.

Methods:

Cervical cancer cell line HeLa, non-small cell lung cancer cell line A549 and ovarian cancer cell line SKOV3 were treated with crocetin alone or in combination with vincristine. Cell proliferation was examined using MTT assay. Cell cycle distribution and sub-G1 fraction were analyzed using flow cytometric analysis after propidium iodide staining. Apoptosis was detected using the Annexin V-FITC Apoptosis Detection Kit with flow cytometry. Cell death was measured based on the release of lactate dehydrogenase (LDH). The expression levels of p53 and p21WAF1/Cip1 as well as caspase activation were examined using Western blot analysis.

Results:

Treatment of the 3 types of cancer cells with crocetin (60-240 μmol/L) for 48 h significantly inhibited their proliferation in a concentration-dependent manner. Crocetin (240 μmol/L) significantly induced cell cycle arrest through p53-dependent and -independent mechanisms accompanied with p21WAF1/Cip1 induction. Crocetin (120-240 μmol/L) caused cytotoxicity in the 3 types of cancer cells by enhancing apoptosis in a time-dependent manner. In the 3 types of cancer cells, crocetin (60 μmol/L) significantly enhanced the cytotoxicity induced by vincristine (1 μmol/L). Furthermore, this synergistic effect was also detected in the vincristine-resistant breast cancer cell line MCF-7/VCR.

Conclusion:

Ccrocetin is a potential anticancer agent, which may be used as a chemotherapeutic drug or as a chemosensitizer for vincristine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号