首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bronchogenic carcinomas arise from bronchial epithelial cells (BECs). Inhalation exposure of BECs to nitrosamines in cigarette smoke is an important exogenous risk factor for malignant transformation of BECs. Thus, an important endogenous risk factor is likely to be the capacity of BECs to metabolize nitrosamines. Among the cytochrome P450 enzymes capable of metabolizing nitrosamines, CYP2A6, CYP2E1 and CYP2B6 are expressed in BECs. In this study, we used quantitative RT-PCR to evaluate expression of CYP2A6 and CYP2E1 in primary human BECs from 12 non-smokers and eight smokers. CYP2A6 was expressed in 20/20 cases and quantifiable in 18/20 cases, with a mean level of 580 mRNA/10(6) beta- actin mRNA. CYP2E1 expression was observed in 9/20 cases, but in all cases it was expressed at levels below our limit of quantification (10 mRNA/10(6) beta-actin mRNA). There was significant (P < 0.05) 20-fold inter-individual variation in expression of CYP2A6. Further, the mean level of CYP2A6 among smokers (260 mRNA/10(6) beta-actin mRNA) was significantly lower than among non-smokers (740 mRNA/10(6) beta-actin mRNA). It is hypothesized that: (i) inter-individual variation in CYP2A6 gene expression may contribute to inter-individual variation in risk for bronchogenic carcinoma; (ii) smoking may reduce the level of expression of CYP2A6 in the BECs of some individuals; and (iii) CYP2A6 is more important than CYP2E1 for metabolic activation of nitrosamines in bronchial epithelial cells.   相似文献   

3.
Analysis of the TSC1 and TSC2 genes in sporadic renal cell carcinomas.   总被引:3,自引:0,他引:3  
The genetic events involved in the aetiology of non-clear-cell renal cell carcinoma (RCC) and a proportion of clear cell RCC remain to be defined. Germline mutations of the TSC1 and TSC2 genes cause tuberous sclerosis (TSC), a multi-system hamartoma syndrome that is also associated with RCC. We assessed 17 sporadic clear cell RCCs with a previously identified VHL mutation, 15 clear-cell RCCs without an identified VHL mutation and 15 non-clear-cell RCCs for loss of heterozygosity (LOH) at chromosomes 9q34 and 16p13.3, the chromosomal locations of TSC1 and TSC2. LOH was detected in 4/9, 1/11 and 3/13 cases informative at both loci. SSCP analysis of the whole coding region of the retained allele did not reveal any cases with a detectable intragenic second somatic mutation. Furthermore, RT-PCR analysis of TSC1 and TSC2 on total RNA from 8 clear-cell RCC cell lines confirmed expression of both TSC genes. These data indicate that biallelic inactivation of TSC1 or TSC2 is not frequent in sporadic RCC and suggests that the molecular mechanisms of renal carcinogenesis in TSC are likely to be distinct.  相似文献   

4.
The Eker (Tsc2 mutant) rat model of renal carcinoma is an example of Mendelian dominantly inherited predisposition to a specific cancer. Effects of genetic background on renal carcinogenesis in the Eker rat model (Eker/Eker > Eker/BN strain) indicate the presence in the BN rat genome of a modifier gene(s) that suppresses tumorigenesis. The identification of such a modifier gene(s) might help clarify the diversity of tuberous sclerosis in humans. i) We found that preneoplastic lesions in 8-week-old F1 rats [(Eker x LE) and (Eker x BN)] were more numerous in the LE strain than in the BN strain although the difference was not large. ii) We next administered N-ethyl-N-nitrosourea (ENU; single injection, i.p.) at the age of 4 weeks to amplify the strain difference in tumorigenesis, as we had done in an earlier study to identify the predisposing gene. iii) This experiment was also done in BN congenic Eker rats to confirm the strain difference in tumorigenesis. Preneoplastic lesions were fewer in BN congenic rats than in Eker rats by a factor of 100. We used this ENU system to perform a backcross experiment [F1(Eker x BN) x Eker] and finally succeeded in mapping a new modifier locus on rat chromosome 5 (the LOD score of the D5Rat12 was 3.13).  相似文献   

5.
6.
Cytochrome P450 (CYP) 2A6 and CYP2E1 are enzymes with a high ability to activate a nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), to its potent and ultimate carcinogens. The polymorphic CYP2A6 and CYP2E1 have been implicated in increased susceptibility to certain malignancies. In our study, 120 Japanese patients with gastric adenocarcinoma and 158 healthy controls were compared for frequencies of CYP2A6 and CYP2E1 genotypes. The frequency with which the subjects carried homozygotes of the CYP2A6 gene deletion allele, which causes lack of the enzyme activity, was significantly higher in the gastric cancer patients than in the healthy control subjects (OR = 3.14, 95% confidence interval (95% CI) = 1.05-9.41). Subdividing gastric adenocarcinoma according to tumor differentiation, patients with the well-differentiated type were 4.9-fold more likely to have the CYP2A6 homozygote deletion genotype (OR = 4.91, 95% CI 1.17-20.52). Stratifying by smoking status, we did not find the risk of CYP2A6 gene deletion allele in gastric adenocarcinoma. The CYP2E1 polymorphism detected by RsaI was not significantly different between gastric adenocarcinoma patients (40.8%) and the control population (44.3%). No statistically significant changes were observed when the CYP2E1 genotype was examined relative to tumor differentiation and smoking status. These results suggest that the CTY2A6 deletion is associated with gastric adenocarcinoma among Japanese populations.  相似文献   

7.
Chlorinated hydrocarbons (CHCs) are environmental contaminants that bioaccumulate and hence are detected in human tissues. Epidemiological evidence suggests that the increased incidence of a variety of human cancers, such as lymphoma, leukemia and liver and breast cancers, might be attributed to exposure to these agents. The ability of CHCs to disrupt estrogen homeostasis is hypothesized to be responsible for their biological effects. The present study examined the effect of CHCs on the expression of cytochrome P450 (CYP)1A1, CYP1A2 and CYP1B1 mRNAs and the consequent 2- and 4-hydroxylation of 17beta-estradiol (E(2)) in female Sprague-Dawley rats. Animals were administered a single dose of the LD(50) of 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) (25 microg/kg), 2, 4-dichlorophenoxyacetic acid (2,4-D) (375 mg/kg) and dieldrin (DED) (38 mg/kg) by gavage. Seventy-two hours after treatment, increased expression of CYP1A1, CYP1A2 and CYP1B1 was observed in the liver, kidney and mammary tissue. Since CYP1A and CYP1B1 are the major enzymes catalyzing 2- and 4-hydroxylation of E(2), respectively, the effect of these CHCs on the metabolism of E(2) was investigated in rat tissues. Formation of 2- and 4-catechol estrogens was increased in a tissue-specific manner in response to treatment. TCDD was the most potent inducer for CYP1 enzyme mRNA and for the 2- and 4-hydroxylation of E(2). 2,4-D and DED induced similar responses, but less than that of TCDD. These results suggest that induction of CYP1 family enzymes and consequent increases in estrogen metabolism by CHCs in target tissues may be factors contributing to the biological effects associated with exposure to these agents.  相似文献   

8.
Cytochrome P450s are enzymes which catalyze Phase-I metabolism reactions; cytochrome P450 1A1 (CYP1A1) is a member of the CYP1 family and participates in the metabolism of a vast number of xenobiotics, as well as endogenous substrates. Four single nucleotide polymorphisms in CYP1A1 have been studied concerning their potential implication in terms of breast cancer risk: T3801C, T3205C, A2455G (Ile462Val), and C2453A (Thr461Asp); controversy exists regarding their role. This meta-analysis aims to examine whether the four aforementioned polymorphisms are associated with breast cancer risk. Separate analyses were performed on Caucasian, Chinese, and African populations, as well as on premenopausal and postmenopausal women. Eligible articles were identified by a search of MEDLINE bibliographical database for the period up to October 2009. Concerning T3801C, 32 studies were eligible (11,909 cases and 16,179 controls), 29 studies (12,257 cases and 20,379 controls) were eligible for A2455G, 11 studies (7,189 cases and 8,491 controls) were eligible for C2453A, and eight studies were eligible for T3205C (1,378 cases and 1,642 controls). Pooled odds ratios (OR) were appropriately derived from fixed- or random-effect models. Sensitivity analysis excluding studies whose genotype frequencies in controls significantly deviated from Hardy–Weinberg equilibrium was performed. Homozygous subjects of Caucasian origin carrying the A2455G G allele exhibited elevated breast cancer risk (pooled OR = 2.185, 95% CI 1.253–3.808, fixed effects), whereas heterozygous carriers did not (pooled OR = 1.062, 95% CI 0.852–1.323, random effects). A2455G polymorphism status was not associated with breast cancer risk in Chinese subjects or specifically in premenopausal/postmenopausal women. T3801C, T3205C, and C2453A status were not associated with breast cancer risk at any analysis. In conclusion, this meta-analysis points to the A2455G G allele as a risk factor for breast cancer among Caucasian subjects. On the contrary, T3801C, T3205C, and C2453A status does not seem capable of modifying breast cancer risk.  相似文献   

9.
A high level of Cyp2a-5 was found in spontaneous and transplanted mouse hepatomas compared with normal liver. Increased expression of Cyp2a-5 was associated with an increase in coumarin 7-hydroxylation, a marker activity of Cyp2a-5, and the corresponding mRNA, suggesting that regulation of Cyp2a-5 in hepatomas is pretranslational. In contrast, the total P450 content and arylhydrocarbon hydroxylase and amidopyrene demethylase activities decreased. Pyrazole, a strong inducer of Cyp2a-5 in normal mouse livers, also increases this isozyme in hepatomas. A parallel increase in the corresponding mRNA suggests that pyrazole, like the formation of hepatomas, affects the regulation of Cyp2a-5 pretranslationally.  相似文献   

10.
MicroRNA regulates the expression of human cytochrome P450 1B1   总被引:5,自引:0,他引:5  
  相似文献   

11.
12.
Eker rats heterozygous for a dominant germline mutation in the tuberous sclerosis 2 (Tsc2) tumor suppressor gene were used as a model to study renal carcinogenesis. Eker and corresponding wild-type rats were exposed to genotoxic aristolochic acid (AA) or non-genotoxic ochratoxin A (OTA) to elucidate early carcinogen-specific gene expression changes and to test whether Eker rats are more sensitive to carcinogen-induced changes in gene expression. Male Eker and wild-type rats were gavaged daily with AA (10 mg/kg body weight) or OTA (210 microg/kg body weight). After 1, 3, 7, and 14 days of exposure, renal histopathology, tubular cell proliferation, and Affymetrix gene expression profiles from renal cortex/outer medulla were analyzed. AA-treated Eker and wild-type rats were qualitatively comparable in all variables assessed, suggesting a Tsc2-independent mechanism of action. OTA treatment resulted in slightly increased cortical pathology and significantly elevated cell proliferation in both strains, although Eker rats were more sensitive. Deregulated genes involved in the phosphatidylinositol 3-kinase-AKT-Tsc2-mammalian target of rapamycin signaling, among other important genes prominent in tumorigenesis, in conjunction with the enhanced cell proliferation and presence of preneoplastic lesions suggested involvement of Tsc2 in OTA-mediated toxicity and carcinogenicity, especially as deregulation of genes involved in this pathway was more prominent in the Tsc2 mutant Eker rat.  相似文献   

13.
The metabolic activation of estrone (E1), a potent estrogen was investigated using recombinant human cytochrome P450 enzymes, 1A2, 2B6, 2C8, 2C9, 2C9R144C, 2E1, 3A4, 3A5 and liver microsomes from 14 human organ donors. At least five products of E1 were detected and quantitated by HPLC and gas chromatography-mass spectrometry (GC-MS). Among these metabolites, 16alpha-OH-E1, 2-OH-E1 and 4-OH-E1, which are believed to be associated with estrogen carcinogenesis in animals, were definitively identified. Of all P450s examined, 1A2 and 3A4 exhibited the highest activities with turnovers of 3.4 and 2.5 nmol/min/nmol P450 for the total metabolism of E1, respectively, while 3A5, 2C9 and 2C9R144C showed moderate activities. 2B6, 2E1 and 2C8 did not produce any significant amount of products. 1A2 formed almost exclusively the 2- OH-E1 at a rate of 3.3 nmol/min/nmol but 3A4 preferentially formed the metabolite X1 (an unknown hydroxylation product) and 16alpha-OH-E1. Kinetic characterization showed that the Km values of 1A2, 3A4 and 3A5 were 14, 95 and 64 microM and Vmax were 5.43, 0.68 and 0.35 min(-1), respectively. All human liver microsomes were capable of metabolizing estrone and a 4-fold variation was seen between individuals. The relative amount of metabolites formed was generally 2-OH-E1 > metabolite X1 > 4-OH-E1 > 16alpha-OH-E1 > metabolite X2. 3A4/5 enzyme complex was assessed by inhibitory monoclonal antibody specific for 3A4/5 to contribute 60-88% to the formation of individual metabolites in human liver except for 2-OH-E1 (3%). The formation of 2-OH-E1 and 16alpha-OH-E1 by 14 human liver microsomes was significantly correlated with caffeine 3-demethylation supported by 1A2 (r2 = 0.87) and with testosterone 6beta-hydroxylation by 3A4 (r2 = 0.66), respectively. Thus the metabolic patterns exhibited by human liver are likely due to the combined activities of the P450 1A2 and 3A4 enzymes.   相似文献   

14.
The genetic factors that mediate the pathogenesis of multipleprimary cutaneous basal cell carcinomas (BCC) are largely unclear.Thus, some patients suffer many BCC (>30) and/or rapid accrual(number of tumours/year from first presentation) of furtherlesions. We have studied, in 827 English Caucasians, the influenceof polymorphism in carcinogen-metabolizing enzymes on susceptibilityto this cancer. Accordingly, we describe, first, a cross-sectionalanalysis of the influence of GSTM1, GSTT1, CYP2D6 and CYP1A1genotypes on tumour numbers, and secondly, a longitudinal analysis,in 169 of these cases, of the effect of these genes on tumouraccrual. We have confirmed the expected importance of age andnumber of lesions at presentation, and male gender and skintype as risk factors. Furthermore, the cross-sectional analysisshowed CYP1A1 m1m1 (P = 0.004; rate ratio 1.242) and CYP2D6EM (P < 0.001, rate ratio 1.266) are associated with increasednumbers of BCC. The longitudinal study showed, after adjustmentfor age and tumour number at presentation, that GSTT1 null (P<0.001, rate ratio 2.677) and CYP2D6 EM (P< 0.001, rate ratio2.154) were significant determinants of accrual while CYP1A1Ile/Ile was associated with slower accrual than the Ile/Valand Val/Val genotypes (P = 0.008, rate ratio 0.690). We believethese are the first genetic factors to be associated with tumouraccrual. No significant interactions between genotypes wereidentified, though the combinations GSTM1 null/skin type 1 (P< 0.001, rate ratio 2.702), CYP2D6 EM/male gender (P = 0.049,rate ratio 1.279) and CYP2D6 EM/blue+green eyes (P = 0.046,rate ratio 1388) influenced tumour numbers. Previous studiesindicate the importance of effective repair of UV-damaged DNAin the pathogenesis of multiple BCC; indeed the influence ofGSTM1 may result from its ability to utilize 5'-hydroxymethyluracil.However, the finding that CYP2D6 and CYP1A1 influence tumournumbers and accrual indicates detoxification of unknown moleculesis important and supports the view that factors other than UVare important in the pathogenesis of BCC.  相似文献   

15.
Gene therapy using vector-mediated transfer of prodrug activating genes is a promising treatment approach for malignant tumors. As demonstrated recently, the novel prodrug activating gene coding for rabbit cytochrome P450 4B1 (CYP4B1) is able to induce tumor cell death at low micromolar concentrations in glioblastoma cells after treatment with the prodrug 4-ipomeanol (4-IM) in vitro and in vivo. The rabbit CYP4B1 converts this prodrug and other furane analogs and aromatic amines, such as 2-aminoanthracene, to highly toxic alkylating metabolites, whereas the human isoenzyme exhibits only minimal enzymatic activity. In the present study, the cDNA encoding rabbit CYP4B1 was used for pharmacogene therapy of hepatocellular carcinoma (HCC). Cell clones derived from the human HCC cell lines Hep3B, HuH-7, and HepG2 and stably expressing the chimeric protein CYP4B1-EGFP (the CYP4B1 coding sequence fused to the enhanced green fluorescent protein (EGFP) gene) were selected. HCC clones expressing EGFP served as controls. 4-IM rapidly induced tumor cell death in CYP4B1-EGFP-expressing clones at low concentrations (a 50% lethal dose of between 0.5 and 2 microg/mL). No signs of toxicity were found in control cells expressing EGFP even at high prodrug concentrations (20 microg/mL). Cell death occurred by apoptosis and was independent of functional p53. A pronounced direct bystander effect was observed in Hep3B cells, whereas bystander HepG2 and HuH-7 cells were highly resistant to toxic 4-IM metabolites. These results demonstrate that the CYP4B1/4-1M system efficiently and rapidly induces cell death in HCC cells, and that a cell line-specific mechanism may exist that limits the extent of the bystander effect of this novel prodrug activating system.  相似文献   

16.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potenttobacco-specific nitrosamine in animals and has been suggestedto play a role in human tobacco-related cancers. Our previousstudy demonstrated that cytochrome P450 (P450) 1A2 catalyzesthe formation of 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol)(an  相似文献   

17.
18.
In order to develop more efficient in vitro systems for thestudy of pro-mutagenic or pro-carcinogenic chemicals, we haveproduced transgenic C3H/10T1/2 cell lines expressing human cytochromeP450 (CYP) 2A6. A retroviral vector containing the cDNA waspackaged in  相似文献   

19.
PURPOSE: Many chemotherapeutic drugs have an inherent lack of safety due to interindividual variability of hepatic cytochrome P450 (CYP) 3A4 drug metabolism. This reduction in CYP3A4 in cancer patients is possibly mediated by cytokines associated with tumor-derived inflammation. We sought to examine this link by using an explant sarcoma in a novel transgenic mouse model of human CYP3A4 regulation. EXPERIMENTAL DESIGN: Engelbreth-Holm-Swarm sarcoma cells were injected into the hindlimb of transgenic CYP3A4/lacZ mice. Hepatic expression of the human CYP3A4 transgene was analyzed by direct measurement of the reporter gene product, beta-galactosidase enzyme activity. Hepatic expression of murine Cyp3a was analyzed at the mRNA, protein, and function levels. The acute phase response was assessed by examining cytokines [interleukin-6 (IL-6) and tumor necrosis factor] in serum, liver, or tumor as well as hepatic expression of serum amyloid protein P. RESULTS: Engelbreth-Holm-Swarm sarcoma elicited an acute phase response that coincided with down-regulation of the human CYP3A4 transgene in the liver as well as the mouse orthologue Cyp3a11. The reduction of murine hepatic Cyp3a gene expression in tumor-bearing mice resulted in decreased Cyp3a protein expression and consequently a significant reduction in Cyp3a-mediated metabolism of midazolam. Circulating IL-6 was elevated and IL-6 protein was only detected in tumor tissue but not in hepatic tissue. CONCLUSIONS: The current study provides a mechanistic link between cancer-associated inflammation and impaired drug metabolism in vivo. Targeted therapy to reduce inflammation may provide improved clinical benefit for chemotherapy drugs metabolized by hepatic CYP3A4 by improving their pharmacokinetic profile.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号