首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Structural simplification of N-n-alkylnicotinium analogs, antagonists at neuronal nicotinic acetylcholine receptors (nAChRs), was achieved by removal of the N-methylpyrrolidino moiety affording N-n-alkylpyridinium analogs with carbon chain lengths of C1 to C20. N-n-Alkylpyridinium analog inhibition of [3H]nicotine and [3H]methyllycaconitine binding to rat brain membranes assessed interaction with alpha4beta2* and alpha7* nAChRs, respectively, whereas inhibition of nicotine-evoked 3H overflow from [3H]dopamine ([3H]DA)-preloaded rat striatal slices assessed antagonist action at nAChR subtypes mediating nicotine-evoked DA release. No inhibition of [3H]methyllycaconitine binding was observed, although N-n-alkylpyridinium analogs had low affinity for [3H]nicotine binding sites, i.e., 1 to 3 orders of magnitude lower than that of the respective N-n-alkylnicotinium analogs. These results indicate that the N-methylpyrrolidino moiety in the N-n-alkylnicotinium analogs is a structural requirement for potent inhibition of alpha4beta2* nAChRs. Importantly, N-n-alkylpyridinium analogs with n-alkyl chains < C10 did not inhibit nicotine-evoked [3H]DA overflow, whereas analogs with n-alkyl chains ranging from C10 to C20 potently and completely inhibited nicotine-evoked [3H]DA overflow (IC50 = 0.12-0.49 microM), with the exceptions of N-n-pentadecylpyridinium bromide (C15) and N-n-eicosylpyridinium bromide (C20), which exhibited maximal inhibition of approximately 50%. The mechanism of inhibition of a representative analog of this structural series, N-n-dodecylpyridinium iodide, was determined by Schild analysis. Linear Schild regression with slope not different from unity indicated competitive antagonism at nAChRs mediating nicotine-evoked [3H]DA overflow and a KB value of 0.17 microM. Thus, the simplified N-n-alkylpyridinium analogs are potent, selective, and competitive antagonists of nAChRs mediating nicotine-evoked [3H]DA overflow, indicating that the N-methylpyrrolidino moiety is not a structural requirement for interaction with nAChR subtypes mediating nicotine-evoked DA release.  相似文献   

2.
The structure of the S(-)-nicotine molecule was modified via N-n-alkylation of the pyridine-N atom to afford a series of N-n-alkylnicotinium iodide salts with carbon chain lengths varying between C(1) and C(12). The ability of these analogs to evoke [(3)H] overflow and inhibit S(-)-nicotine-evoked [(3)H] overflow from [(3)H]dopamine ([(3)H]DA)-preloaded rat striatal slices was determined. At high concentrations, analogs with chain lengths > or =C(6) evoked [(3)H] overflow. Specifically, N-n-decylnicotinium iodide (NDNI; C(10)) evoked significant [(3)H] overflow at 1 microM, and N-n-dodecylnicotinium iodide (NDDNI; C(12)) at 10 microM, whereas N-n-octylnicotinium iodide (NONI; C(8)), N-n-heptylnicotinium iodide (NHpNI; C(7)), and N-n-hexylnicotinium iodide (C(6)) evoked [(3)H] overflow at 100 microM. Thus, intrinsic activity at these concentrations prohibited assessment of inhibitory activity. The most potent N-n-alkylnicotinium analog to inhibit S(-)-nicotine-evoked [(3)H] overflow was NDDNI, with an IC(50) value of 9 nM. NHpNI, NONI, and N-n-nonylnicotinium iodide (C(9)) also inhibited S(-)-nicotine-evoked [(3)H] overflow with IC(50) values of 0.80, 0.62, and 0.21 microM, respectively. In comparison, the competitive neuronal nicotinic acetylcholine receptor (nAChR) antagonist, dihydro-beta-erythroidine, had an IC(50) of 1.6 microM. A significant correlation of N-n-alkyl chain length with analog-induced inhibition was observed, with the exception of NDNI, which was devoid of inhibitory activity. The mechanism of N-n-alkylnicotinium-induced inhibition of the high-affinity, low-capacity component of S(-)-nicotine-evoked [(3)H] overflow was determined via Schild analysis, using the representative analog, NONI. Linear Schild regression and slope not different from unity suggested that NONI competitively interacts with a single nAChR subtype to inhibit S(-)-nicotine-evoked [(3)H]DA release (K(i) value = 80.2 nM). Thus, modification of the S(-)-nicotine molecule converts this agonist into an antagonist at nAChRs, mediating S(-)-nicotine-evoked DA release in striatum.  相似文献   

3.
The present study determined whether repeated administration of the antidepressant and selective norepinephrine (NE) uptake inhibitor reboxetine resulted in an adaptive modification of the function of the NE transporters (NETs), serotonin (5-HT) transporters, or dopamine (DA) transporters. Because antidepressants may be effective tobacco smoking cessation agents and because antidepressants have recently been shown to interact with nicotinic acetylcholine receptors (nAChRs), the interaction of reboxetine with nAChRs was also evaluated. Repeated administration of reboxetine (10 mg/kg i.p., twice daily for 14 days) did not alter the potency or selectivity of reboxetine inhibition of [(3)H]NE, [(3)H]DA, or [(3)H]5-HT uptake into striatal or hippocampal synaptosomes (IC(50) values = 8.5 nM, 89 microM, and 6.9 microM, respectively). In a separate series of experiments, reboxetine did not inhibit (K(i) > 1 microM) [(3)H]methyllycaconitine, [(3)H]cytisine, or [(3)H]epibatidine binding to rat whole brain membranes. However, at concentrations that did not exhibit intrinsic activity, reboxetine potently inhibited (IC(50) value = 7.29 nM) nicotine-evoked [(3)H]NE overflow from superfused hippocampal slices via a noncompetitive mechanism. In the latter experiments, the involvement of NET was eliminated by inclusion of desipramine (10 microM) in the superfusion buffer. Reboxetine also inhibited (IC(50) value = 650 nM) nicotine-evoked (86)Rb(+) efflux at reboxetine concentrations that did not exhibit intrinsic activity in this assay. Thus, in addition to inhibition of NET function, reboxetine inhibits nAChR function, suggesting that it may have potential as a smoking cessation agent.  相似文献   

4.
The current study evaluated a new series of N,N'-alkane-diyl-bis-3-picolinium (bAPi) analogs with C6-C12 methylene linkers as nicotinic acetylcholine receptor (nAChR) antagonists, for nicotine-evoked [3H]dopamine (DA) overflow, for blood-brain barrier choline transporter affinity, and for attenuation of discriminative stimulus and locomotor stimulant effects of nicotine. bAPi analogs exhibited little affinity for alpha4beta2* (* indicates putative nAChR subtype assignment) and alpha7* high-affinity ligand binding sites and exhibited no inhibition of DA transporter function. With the exception of C6, all analogs inhibited nicotine-evoked [3H]DA overflow (IC50 = 2 nM-6 microM; Imax = 54-64%), with N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB; C12) being most potent. bPiDDB did not inhibit electrically evoked [3H]DA overflow, suggesting specific nAChR inhibitory effects and a lack of toxicity to DA neurons. Schild analysis suggested that bPiDDB interacts in an orthosteric manner at nAChRs mediating nicotine-evoked [3H]DA overflow. To determine whether bPiDDB interacts with alpha-conotoxin MII-sensitive alpha6beta2-containing nAChRs, slices were exposed concomitantly to maximally effective concentrations of bPiDDB (10 nM) and alpha-conotoxin MII (1 nM). Inhibition of nicotine-evoked [3H]DA overflow was not different with the combination compared with either antagonist alone, suggesting that bPiDDB interacts with alpha6beta2-containing nAChRs. C7, C8, C10, and C12 analogs exhibited high affinity for the blood-brain barrier choline transporter in vivo, suggesting brain bioavailability. Although none of the analogs altered the discriminative stimulus effect of nicotine, C8, C9, C10, and C12 analogs decreased nicotine-induced hyperactivity in nicotine-sensitized rats, without reducing spontaneous activity. Further development of nAChR antagonists that inhibit nicotine-evoked DA release and penetrate brain to antagonize DA-mediated locomotor stimulant effects of nicotine as novel treatments for nicotine addiction is warranted.  相似文献   

5.
Gabapentin (GBP; Neurontin) has proven efficacy in several neurological and psychiatric disorders yet its mechanism of action remains elusive. This drug, and the related compounds pregabalin [PGB; CI-1008, S-(+)-3-isobutylgaba] and its enantiomer R-(-)-3-isobutylgaba, were tested in an in vitro superfusion model of stimulation-evoked neurotransmitter release using rat neocortical slices prelabeled with [(3)H]norepinephrine ([(3)H]NE). The variables addressed were stimulus type (i.e., electrical, K(+), veratridine) and intensity, concentration dependence, onset and reversibility of action, and commonality of mechanism. Both GBP and PGB inhibited electrically and K(+)-evoked [(3)H]NE release, but not that induced by veratridine. Inhibition by these drugs was most pronounced with the K(+) stimulus, allowing determination of concentration-effect relationships (viz., 25 mM K(+) stimulus: GBP IC(50) = 8.9 microM, PGB IC(50) = 11.8 microM). R-(-)-3-Isobutylgaba was less effective than PGB to decrease stimulation-evoked [(3)H]NE release. Other experiments with GBP demonstrated the dependence of [(3)H]NE release inhibition on optimal stimulus intensity. The inhibitory effect of GBP increased with longer slice exposure time before stimulation, and reversed upon washout. Combination experiments with GBP and PGB indicated a similar mechanism of action to inhibit K(+)-evoked [(3)H]NE release. GBP and PGB are concluded to act in a comparable, if not identical, manner to preferentially attenuate [(3)H]NE release evoked by stimuli effecting mild and prolonged depolarizations. This type of modulation of neurotransmitter release may be integral to the clinical pharmacology of these drugs.  相似文献   

6.
In this study the mechanism and metabolic profile of verapamil-evoked release of radioactivity was investigated in the rat isolated atria preloaded with [3H]norepinephrine [( 3H]NE). Verapamil (10(-7) to 10(-3) M) caused a dose-related increase in the outflow (or the fractional release) of 3H. The fractional 3H-release produced by verapamil was reduced markedly in tissues which had been preloaded with [3H]NE in the presence of cocaine (10 microM) or after pretreatment of animals with reserpine (5 mg/kg i.p., 24 hr before sacrifice). Verapamil-evoked fractional 3H-release was unchanged in the presence of tetrodotoxin (5 X 10(-6) M) or in Ca++-free Krebs' medium containing 2 mM ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid. Whereas greater than 90% of tissue 3H-content consisted of unchanged [3H]NE, 60 to 75% of the spontaneous outflow and the verapamil-evoked overflow consisted of [3H]-3,4-dihydroxyphenylglycol and 2 to 10% was unchanged [3H]NE. When both cocaine (10 microM) and hydrocortisone (28 microM) (uptake-1 and uptake-2 blockers, respectively) were present, although the spontaneous outflow, as well as verapamil-evoked overflow, of radioactivity was increased, the metabolic profiles remained essentially unchanged. The addition of pargyline (10 microM), a monoamine oxidase inhibitor, in addition to the uptake-1 and uptake-2 blockers to the Krebs' solution significantly depressed both the spontaneous outflow and verapamil-evoked overflow of 3H; the verapamil-evoked overflow under this condition, however, consisted of unchanged [3H]NE (greater than 90%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The mechanism of nicotinic acetylcholine receptor (nAChR)-induced hippocampal dopamine (DA) release was investigated using rat hippocampal slices. nAChRs involved in hippocampal DA and norepinephrine (NE) release were investigated using prototypical agonists and antagonists and several relatively novel compounds: ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine], (+/-)-UB-165 [(2-chloro-5-pyridyl)-9-azabicyclo [4.2.1]non2-ene], and MG 624 [N,N,N-triethyl-2-[4-(2 phenylethenyl)phenoxy]-ethanaminium iodine]. (+/-)-Epibatidine, (+/-)-UB-165, anatoxin-a, ABT-594, (-)-nicotine, 1,1-dimethyl-4-phenyl-piperazinium iodide, and (-)-cytisine (in decreasing order of potency) evoked [(3)H]DA release in a mecamylamine-sensitive manner. Aside from (+/-)-UB-165, all the agonists displayed full efficacy relative to 100 microM (-)-nicotine in [(3)H]DA release. In contrast, (+/-)-UB-165 was a partial agonist, evoking 58% of 100 microM (-)-nicotine response. Mecamylamine, MG 624, hexamethonium, d-tubocurare, and dihydro-beta-erythroidine (in decreasing order of potency), but not alpha-conotoxin-MII, methyllycaconitine, alpha-conotoxin-ImI, or alpha-bungarotoxin, attenuated 100 microM (-)-nicotine-evoked [(3)H]DA release in a concentration-dependent manner. (+/-)-UB-165, ABT-594, and MG 624 exhibited different pharmacologic profiles in the [(3)H]NE release assay when compared with their effect on [(3)H]DA release. ABT-594 was 4.5-fold more potent, and (+/-)-UB-165 was a full agonist in contrast to its partial agonism in [(3)H]DA release. MG 624 potently and completely blocked NE release evoked by 100 microM (-)-nicotine and 10 microM (+/-)-UB-165, whereas it only partially inhibited (-)-nicotine-evoked [(3)H]DA release. In conclusion, we provide evidence that [(3)H]DA can be evoked from the hippocampus and that the pharmacologic profile for nAChR-evoked hippocampal [(3)H]DA release suggests the involvement of alpha3beta4(*) and at least one other nAChR subtype, thus distinguishing it from that of nAChR-evoked hippocampal [(3)H]NE release.  相似文献   

8.
In mammals, the most important synchronizer for endogenous rhythms is the environmental light/dark cycle. In this report we have explored the ability of light/dark cycle and melatonin, the pineal hormone released during the night, to modulate cerebellar cholinergic input by interfering with the nicotinic acetylcholine receptors' (nAChRs) availability. Through the analysis of the response to selective cholinergic agonists and antagonists, we observed that nAChRs containing the alpha7 gene product mediate the release of [(3)H]glutamate from rat cerebellum slices. The [(3)H]glutamate overflow induced by alpha7 nAChR activation was higher during the dark phase, although the number of alpha-[(125)I]bungarotoxin binding sites, but not the [(3)H]nicotine binding sites (B(max)), was reduced. On the other hand, glutamate-evoked [(3)H]glutamate release was not modified by the hour of the day. Finally, we show that the nocturnal increase in nicotine-evoked [(3)H]glutamate release is imposed by a nocturnal surge of melatonin, as it is abolished when pineal melatonin production is inhibited by either maintaining the animals in constant light for 48 h or by injecting propranolol just before lights off for 2 days. The difference between light and dark [(3)H]glutamate-evoked release is restored in propranolol-treated animals that received melatonin during the dark period. In conclusion, we show that nicotine-evoked [(3)H]glutamate release in rat cerebellum presents a diurnal variation, driven by nocturnal pineal melatonin surge.  相似文献   

9.
The current study demonstrates that N-n-alkylnicotinium analogs with increasing n-alkyl chain lengths from 1 to 12 carbons have varying affinity (Ki = 90 nM-20 microM) for S-(-)-[3H]nicotine binding sites in rat striatal membranes. A linear relationship was observed such that increasing n-alkyl chain length provided increased affinity for the alpha4beta2* nicotinic acetylcholine receptor (nAChR) subtype, with the exception of N-n-octylnicotinium iodide (NONI). The most potent analog was N-n-decylnicotinium iodide (NDNI; Ki = 90 nM). In contrast, none of the analogs in this series exhibited high affinity for the [3H]methyllycaconitine binding site, thus indicating low affinity for the alpha7* nAChR. The C8 analog, NONI, had low affinity for S-(-)-[3H]nicotine binding sites but was a potent inhibitor of S-(-)-nicotine-evoked [3H]dopamine (DA) overflow from superfused striatal slices (IC50 = 0.62 microM), thereby demonstrating selectivity for the nAChR subtype mediating S-(-)-nicotine-evoked [3H]DA overflow (alpha3alpha6beta2* nAChRs). Importantly, the N-n-alkylnicotinium analog with highest affinity for the alpha4beta2* subtype, NDNI, lacked the ability to inhibit S-(-)-nicotine-evoked [3H]DA overflow and, thus, appears to be selective for alpha4beta2* nAChRs. Furthermore, the present study demonstrates that the interaction of these analogs with the alpha4beta2* subtype is via a competitive mechanism. Thus, selectivity for the alpha4beta2* subtype combined with competitive interaction with the S-(-)-nicotine binding site indicates that NDNI is an excellent candidate for studying the structural topography of alpha4beta2* agonist recognition binding sites, for identifying the antagonist pharmacophore on the alpha4beta2* nAChR, and for defining the role of this subtype in physiological function and pathological disease states.  相似文献   

10.
Lobeline attenuates the behavioral effects of psychostimulants in rodents and inhibits the function of nicotinic receptors (nAChRs), dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Monoamine transporters are considered valid targets for drug development for the treatment of methamphetamine abuse. In the current study, a series of lobeline analogs were evaluated for affinity and selectivity at these targets. None of the analogs was more potent than nicotine at the [3H]methyllycaconitine binding site (alpha7* nAChR subtype). Lobeline tosylate was equipotent with lobeline in inhibiting [3H]nicotine binding but 70-fold more potent in inhibiting nicotine-evoked 86Rb+ efflux, demonstrating antagonism of alpha4beta2* nAChRs. Compared with lobeline, the defunctionalized analogs lobelane, mesotransdiene, and (-)-trans-transdiene showed dramatically reduced affinity at alpha4beta2* nAChRs and a 15- to 100-fold higher affinity (Ki = 1.95, 0.58, and 0.26 microM, respectively) at DATs. Mesotransdiene and (-)-trans-transdiene competitively inhibited DAT function, whereas lobelane and lobeline acted noncompetitively. 10S/10R-MEPP [N-methyl-2R-(2R/2S-hydroxy-2-phenylethyl)6S-(2-phenylethyl)piperidine] and 10R-MESP [N-methyl-2R-(2R-hydroxy-2-phenylethyl)6S-(2-phenylethen-1-yl)piperidine] were 2 to 3 orders of magnitude more potent (Ki = 0.01 and 0.04 microM, respectively) than lobeline in inhibiting [3H]serotonin uptake; 10S/10R-MEPP showed a 600-fold selectivity for this transporter. Uptake results using hDATs and human serotonin transporters expressed in human embryonic kidney-293 cells were consistent with native transporter assays. Lobelane and ketoalkene were 5-fold more potent (Ki = 0.92 and 1.35 microM, respectively) than lobeline (Ki = 5.46 microM) in inhibiting [3H]methoxytetrabenazine binding to VMAT2 in vesicle preparations. Thus, structural modification (defunctionalization) of the lobeline molecule markedly decreases affinity for alpha4beta2* and alpha7* nAChRs while increasing affinity for neurotransmitter transporters, affording analogs with enhanced selectivity for these transporters and providing new leads for the treatment of psychostimulant abuse.  相似文献   

11.
Nicotine's action on the midbrain dopaminergic neurons is mediated by nicotinic acetylcholine receptors (nAChRs) that are present on the cell bodies and the terminals of these neurons. Previously, it was suggested that one of the nAChR subtypes located on striatal dopaminergic terminals may be an alpha3beta2 subtype, based on partial inhibition of nicotine-stimulated [(3)H]dopamine release by alpha-conotoxin MII, a potent inhibitor of heterologously expressed alpha3beta2 nAChRs. More recent studies indicated that alpha-conotoxin MII also potently blocks alpha6-containing nAChRs. In the present study, we have examined the nAChR subtype(s) modulating [(3)H]dopamine release from striatal terminals by using novel alpha-conotoxins that have 37- to 78-fold higher selectivity for alpha6-versus alpha3-containing nAChRs. All of the peptides partially (20-35%) inhibit nicotine-stimulated [(3)H]dopamine release with IC(50) values consistent with those obtained with heterologously expressed rat alpha6-containing nicotinic acetylcholine receptors. These results, together with previous studies by others, further support the idea that alpha6-containing nicotinic receptors modulate nicotine-stimulated dopamine release from rat striatal synaptosomes.  相似文献   

12.
The nicotine metabolite cotinine is an abundant long-lived bio-active compound that may contribute to the overall physiological effects of tobacco use. Although its mechanism of action in the central nervous system has not been extensively investigated, cotinine is known to evoke dopamine release in the nigrostriatal pathway through an interaction at nicotinic receptors (nAChRs). Because considerable evidence now demonstrates the presence of multiple nAChRs in the striatum, the present experiments were done to determine the subtypes through which cotinine exerts its effects in monkeys, a species that expresses similar densities of striatal alpha4beta2* (nAChR containing the alpha4 and beta2 subunits, but not alpha3 or alpha6) and alpha3/alpha6beta2* (nAChR composed of the alpha3 or alpha6 subunits and beta2) nAChRs. Competition binding studies showed that cotinine interacts with both alpha4beta2* and alpha3/alpha6beta2* nAChR subtypes in the caudate, with cotinine IC(50) values for inhibition of 5-[(125) I]iodo-3-[2(S)-azetinylmethoxy]pyridine-2HCl ([(125)I]A-85380) and (125)I-alpha-conotoxinMII binding in the micromolar range. This interaction at the receptor level is of functional significance because cotinine stimulated both alpha4beta2* and alpha3/alpha6beta2* nAChR [(3)H]dopamine release from caudate synaptosomes. Our results unexpectedly showed that nicotine evokes [(3)H]dopamine release from two alpha3/alpha6beta2* nAChR populations, one of which was sensitive to cotinine and the other was not. This cotinine-insensitive subtype was only present in the medial caudate and was preferentially lost with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal damage. In contrast, cotinine and nicotine elicited equivalent levels of alpha4beta2* nAChR-mediated dopamine release. These data demonstrate that cotinine functionally discriminates between two alpha3/alpha6beta2* nAChRs in monkey striatum, with the cotinine-insensitive alpha3/alpha6beta2* nAChR preferentially vulnerable to nigrostriatal damage.  相似文献   

13.
The inhibition of uptake of [(3)H]dopamine into synaptosomes prepared from four mouse brain regions was investigated. The inhibition curves demonstrated that in three regions, striatum, nucleus accumbens, and olfactory tubercle, [(3)H]dopamine was taken up exclusively by dopaminergic terminals. In frontal cortex, however, only a portion of the uptake was into dopaminergic terminals, with a larger amount taken up by noradrenergic terminals, and another small portion by serotonergic terminals. Release studies in frontal cortex indicated that in this region only dopaminergic and noradrenergic terminals are capable of packaging [(3)H]dopamine in a form allowing vesicle-mediated release; additionally, only the dopaminergic terminals have functional presynaptic nAChRs that, when stimulated by nicotinic agonists, evoke [(3)H]dopamine release. Agonist-stimulated [(3)H]dopamine release was characterized from synaptosomes prepared from four mouse brain regions. alpha-Conotoxin MII was a partial inhibitor of dopamine release in all of the brain regions, which suggests that a minimum of two nicotinic cholinergic receptors (nAChRs) are expressed in the nerve terminals of all four brain regions. No nicotine-induced [(3)H]dopamine release was detected in any brain region when the synaptosomes were prepared from beta2 null mutant mice, which indicates that the beta2 subunit is required for all nAChRs mediating this release. Dose-response curves were constructed for seven agonists in each of the brain regions. The pharmacological properties of synaptosomal [(3)H]dopamine release appear similar across the four brain regions. The results suggest that all four regions express the same nAChRs, although subtle regional differences may exist.  相似文献   

14.
In myocardial ischemia, adrenergic terminals undergo ATP depletion, hypoxia, and intracellular pH reduction, causing the accumulation of axoplasmic norepinephrine (NE) and intracellular Na(+) [via the Na(+)-H(+) exchanger (NHE)]. This forces the reversal of the Na(+)- and Cl(-)-dependent NE transporter (NET), triggering massive carrier-mediated NE release and, thus, arrhythmias. We have now developed a cellular model of carrier-mediated NE release using an LLC-PK(1) cell line stably transfected with human NET cDNA (LLC-NET). LLC-NET cells transported [(3)H]NE and [(3)H]N-methyl-4-phenylpyridinium ([(3)H]MPP(+)) in an inward direction. This uptake was abolished by the NET inhibitors desipramine (100 nM) and mazindol (300 nM) and by extracellular Na(+) removal. Na(+)-gradient reversal induced an efflux of (3)H-substrate from preloaded LLC-NET cells. Desipramine and mazindol blocked this efflux. Because of its greater intracellular stability and higher sensitivity to Na(+)-gradient reversal, [(3)H]MPP(+) proved preferable to [(3)H]NE as an NET substrate; therefore, only [(3)H]MPP(+) was used for subsequent studies. The K(+)/H(+) ionophore nigericin (10 microM) evoked a large efflux of [(3)H]MPP(+). This efflux was potentiated by the Na(+),K(+)-ATPase inhibitor ouabain (100 microM), was sensitive to desipramine, and was blocked by the NHE inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; 10 microM). In contrast, EIPA failed to inhibit the [(3)H]MPP(+) efflux elicited by the Na(+) ionophore gramicidin (10 microM). Furthermore, [(3)H]MPP(+) efflux induced by the NHE-stimulant proprionate (25 mM) was negatively modulated by imidazoline receptor activation. Our findings suggest that LLC-NET cells are a sensitive model for studying transductional processes of carrier-mediated NE release associated with myocardial ischemia.  相似文献   

15.
The effects of ethanol on N-methyl-D-aspartate (NMDA)-stimulated [3H]norepinephrine (NE) release from rat cortical slices was studied. NMDA-stimulated [3H]NE release was inhibited by tetrodotoxin, Mg++ and 2-amino-5-phosphonopentanoic acid, indicating that NMDA receptors in the cortex have characteristics similar to those observed using electrophysiological studies. Ethanol (60-200 mM) decreased the release of [3H]NE evoked by 100 microM NMDA in a concentration-dependent manner (32-52% inhibition), but it did not significantly alter the basal release. The inhibitory effect of 100 mM ethanol was due to a reduction in the maximal response with no significant change in the EC50 for NMDA. Pretreatment of the slices with 100 mM ethanol up to 6 min did not alter the magnitude of inhibition. The inhibition of NMDA-stimulated [3H]NE release due to ethanol was reversible after a 13-min recovery period. The presence of ethanol did not significantly affect the IC50 for Mg++ inhibition of NMDA-stimulated [3H]NE release (23 +/- 3 microM). Glycine (10-300 microM) potentiated the release of [3H]NE stimulated by 250 microM NMDA, and 60 mM ethanol did not alter this effect of glycine. Ethanol (100 mM) inhibited the release of [3H]NE evoked by 18.9 mM KCl in the presence or absence of 2-amino-5-phosphonopentanoic acid, but had no effect on release induced by 49.1 mM KCl. Tetrodotoxin (0.3 mM) significantly decreased the release of [3H] NE evoked by 23.2 mM KCl, and 60 to 200 mM ethanol did not alter this release. These results suggest that NMDA receptors in rat cortical slices are located on nerve cell bodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In this study we explored the effect of the stimulation of nicotinic acetylcholine receptors located on interneurons by measuring 4-amino-n-[2,3-(3)H]butyric acid ([(3)H]GABA) release and monitoring [Ca (2+)](i) in superfused hippocampal slices. In the presence of 6-cyano-7-nitroquinoxaline-2,3-dione, (+/-)-2-amino-5-phosphonopentanoic acid, and atropine, i.e., under the blockade of N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate and muscarinic receptors, nicotine did not alter the spontaneous outflow of [(3)H]GABA, but significantly increased the stimulation-evoked [(3)H]GABA efflux. This effect of nicotine depended on the time interval between nicotine treatment and electrical stimulus, the concentration of nicotine (1-100 microM), and the parameters of electrical depolarization. Acetylcholine (0.03-3 mM), and the alpha 7 subtype-selective agonist choline (0.1-10 mM), also potentiated stimulus-evoked release of [(3)H]GABA, whereas 1,1-dimethyl-4-phenilpiperazinium iodide failed to increase the tritium outflow significantly. The effect of nicotine treatment was prevented by tetrodotoxin (1 microM) and by the nicotinic acetylcholine receptor antagonist mecamylamine (10 microM), and the alpha 7 subtype-selective antagonists alpha-bungarotoxin (100 nM) and methyllycaconitine (10 nM), whereas dihidro-beta-erythroidine (20 nM) was without effect. Perfusion of 100 microM nicotine caused a [Ca(2+)](i) transient in about one-third of the tested interneurons; however, the response to subsequent electrical stimulation remained unchanged. Inhibition of the GABA transporter system by nipecotic acid (1 mM) or by decreasing the bath temperature to 12 degrees C abolished completely the effect of nicotine to potentiate the stimulation-evoked release of GABA. These findings indicate that the activation of alpha 7-type nicotinic receptors of hippocampal interneurons results in a long-lasting ability of these cells to respond to depolarization with an increased release of GABA mediated by the transporter system.  相似文献   

17.
Cotinine, a major peripheral metabolite of nicotine, has recently been shown to be the most abundant metabolite in rat brain after peripheral nicotine administration. However, little attention has been focused on the contribution of cotinine to the pharmacological effects of nicotine exposure in either animals or humans. The present study determined the concentration-response relationship for (S)-(-)-cotinine-evoked 3H overflow from superfused rat striatal slices preloaded with [3H]dopamine ([3H]DA) and whether this response was mediated by nicotinic receptor stimulation. (S)-(-)-Cotinine (1 microM to 3 mM) evoked 3H overflow from [3H]DA-preloaded rat striatal slices in a concentration-dependent manner with an EC50 value of 30 microM, indicating a lower potency than either (S)-(-)-nicotine or the active nicotine metabolite, (S)-(-)-nornicotine. As reported for (S)-(-)-nicotine and (S)-(-)-nornicotine, desensitization to the effect of (S)-(-)-cotinine was observed. The classic nicotinic receptor antagonists mecamylamine and dihydro-beta-erythroidine inhibited the response to (S)-(-)-cotinine (1-100 microM). Additionally, 3H overflow evoked by (S)-(-)-cotinine (10-1000 microM) was inhibited by superfusion with a low calcium buffer. Interestingly, over the same concentration range, (S)-(-)-cotinine did not inhibit [3H]DA uptake into striatal synaptosomes. These results demonstrate that (S)-(-)-cotinine, a constituent of tobacco products and the major metabolite of nicotine, stimulates nicotinic receptors to evoke the release of DA in a calcium-dependent manner from superfused rat striatal slices. Thus, (S)-(-)-cotinine likely contributes to the neuropharmacological effects of nicotine and tobacco use.  相似文献   

18.
Paraquat, an herbicide widely used in the agricultural industry, has been associated with lung, liver, and kidney toxicity in humans. In addition, it is linked to an increased risk of Parkinson's disease. For this reason, we had previously investigated the effects of paraquat in mice and showed that it influenced striatal nicotinic receptor (nAChR) expression but not nAChR-mediated dopaminergic function. Because nonhuman primates are evolutionarily closer to humans and may better model the effects of pesticide exposure in man, we examined the effects of paraquat on striatal nAChR function and expression in monkeys. Monkeys were administered saline or paraquat once weekly for 6 weeks, after which nAChR levels and receptor-evoked [(3)H]dopamine ([(3)H]DA) release were measured in the striatum. The functional studies showed that paraquat exposure attenuated dopamine (DA) release evoked by alpha3/alpha6beta2(*) (nAChR that is composed of the alpha3 or alpha6 subunits, and beta2; the asterisk indicates the possible presence of additional subunits) nAChRs, a subtype present only on striatal dopaminergic terminals, with no decline in release mediated by alpha4beta2(*) (nAChR containing alpha4 and beta2 subunits, but not alpha3 or alpha6) nAChRs, present on both DA terminals and striatal neurons. Paraquat treatment decreased alpha4beta2(*) but not alpha3/alpha6beta2(*) nAChR expression. The differential effects of paraquat on nAChR expression and receptor-evoked [(3)H]DA release emphasize the importance of evaluating changes in functional measures. The finding that paraquat treatment has a negative impact on striatal nAChR-mediated dopaminergic activity in monkeys but not mice indicates the need for determining the effects of pesticides in higher species.  相似文献   

19.
We investigated whether selective inhibition of serotonin (5-hydroxytryptamine; 5-HT) transporter with citalopram leads to accumulation of 5-HT in catecholaminergic neurons. In the rabbit olfactory tubercle, citalopram (1-10 microM) inhibited [(3)H]5-HT uptake; however, the maximal degree of inhibition achieved was 70%. Addition of nomifensine (1-10 microM) was required for complete inhibition of [(3)H]5-HT uptake. In slices labeled with 0.1 microM [(3)H]5-HT, cold 5-HT (0.03-1 microM) induced a large increase in the efflux (release) of stored [(3)H]5-HT, an effect blocked by coperfusion with 1 microM citalopram. Similar concentrations (0.03-1 microM) of norepinephrine (NE) or dopamine (DA) failed to release [(3)H]5-HT. When labeling with 0.1 microM [(3)H]5-HT was carried out in the presence of citalopram, 1) low concentrations of 5-HT failed to release [(3)H]5-HT; 2) DA and NE were more potent and effective in releasing [(3)H]5-HT than in control slices; 3) coperfusion of NE, DA, or 5-HT with citalopram enhanced the release of [(3)H]5-HT induced by the catecholamines but not by 5-HT; and 4) coperfusion of NE or DA with nomifensine antagonized NE- and DA-evoked [(3)H]5-HT release, with a greater effect on NE than on DA. These results suggest that in the rabbit olfactory tubercle, where there is coexistence of 5-HT, NE, and DA neurons, inhibition of the 5-HT transporter led to accumulation of 5-HT in catecholaminergic terminals. Thus, during treatment with selective serotonin uptake inhibitors (SSRIs), 5-HT may be stored in catecholaminergic neurons acting as a false neurotransmitter and/or affecting the disposition of DA and/or NE. Transmitter relocation may be involved in the antidepressant action of SSRIs.  相似文献   

20.
Alpha-2 adrenoceptors modulate [3H]dopamine release from rabbit retina   总被引:1,自引:0,他引:1  
In the rabbit retina, preloaded in vitro with [3H]dopamine, calcium-dependent release of radioactivity was elicited by a 1-min period of field stimulation at 3 Hz (20 mA, 2 msec). In the presence of the catecholamine uptake inhibitor nomifensine (30 microM), unlabeled catecholamines (0.01-3 microM), namely, dopamine, norepinephrine and epinephrine, inhibited in a concentration-dependent manner the field stimulation-evoked release of [3H]dopamine from the retina. The concentrations of dopamine, norepinephrine or epinephrine which inhibited by 50% the release of [3H]dopamine (IC50) were 0.30, 0.25 and 0.25 microM, respectively. In the presence of 30 microM nomifensine, S-sulpiride (1 microM) significantly increased the calcium-dependent release of [3H]dopamine, suggesting that this dopamine antagonist blocks a receptor tonically activated by endogenous dopamine in the rabbit retina. In contrast, the alpha receptor antagonist phentolamine (1 microM) alone did not affect the release of [3H]dopamine from the retina. The inhibitory effect of norepinephrine and epinephrine on [3H]dopamine overflow was not modified by S-sulpiride which, on the contrary, selectively antagonized the effect of exogenous dopamine. Phentolamine (1 microM) competitively antagonized the inhibitory effect of norepinephrine and epinephrine on [3H]dopamine release, suggesting that these catecholamines activate alpha adrenoceptors in retina. In the absence of nomifensine, the selective alpha-2 agonist clonidine (IC50 = 0.056 microM) inhibited the stimulation-evoked release of [3H]dopamine from retina, whereas the alpha agonist methoxamine was without effect. The inhibitory effect of clonidine was antagonized by yohimbine (1 microM), but not prazosin, suggesting that the release modulating alpha receptors of the retina are of the alpha-2 subtype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号