首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Summary— The involvement of large conductance Ca2+-activated K+ channels (BK) and ATP-sensitive K+ (KATP) channels in the regulation of canine basilar arterial tone was estimated in the presence of the agonist and blockers of these channels, by simultaneously measuring the changes in intracellular Ca2+ concentration ([Ca2+]i) with the fura-2 microfluorimetric method. In the resting condition, levcromakalim reduced [Ca2+]i and vascular tone. Levcromakalim suppressed the serotonin-induced increases in [Ca2+]i and force of contraction, the maximum effects of which were much greater than those of nicardipine. The inhibitory effects of levcromakalim were blocked by glibenclamide but not by tetraethylammonium (TEA) or iberiotoxin (IbTX). In the presence of levcromakalim, the curve relating [Ca2+]i with force in the presence of serotonin at different extracellular Ca2+ concentration ([Ca2+]o) was shifted down- and right-ward compared with that in the absence of levcromakalim, suggesting that levcromakalim may reduce the Ca2+-sensitivity of the contractile proteins. Thus, levcromakalim may be a good candidate to suppress delayed cerebral vasospasm after subarachnoid hemorrhage.  相似文献   

2.
Summary— Cell Na+ and Ca2+ concentrations control each other by various mechanisms. In excitable cells from various origins, Ca2+ extrusion from the cell and its entry are dependent for a large part on the activity of the Na+, Ca2+-countertransport system. Cytosolic free Ca2+ concentration is also controlled by the Na+–H+ exchange activity. To analyze the changes in cytosolic Ca2+ concentration accompanying the reduction of the membrane Na+ gradient, cytosolic free Ca2+ concentration ([Ca2+]i) was measured by fluorescent dyes in platelets and erythrocytes from healthy subjects, before and during digoxin treatment (0.25 mg/day for 6 days). [Ca2+]i was increased in platelets from 169±30 to 321±61 nmol/l ( n = 7, P <0.02) and unchanged in erythrocytes (121±6 and 104±7 nmol/l). This increase in platelet [Ca2+]i was not accompanied by a change in serotonin content (5.43±0.67 vs 5.49±0.61 10−7 mol per 1011 cells) and could not be reproduced by in vitro addition of 10−4 mol/l ouabain (198±33 vs 186±73 nmol/l). The enhanced [Ca2+]i in platelets is thus not a short-term consequence of a reduced membrane Na+ gradient, but reflects either the overload of intracellular Ca2+ stores or an enhanced in vivo stimulation by hormones or neurotransmitters.  相似文献   

3.
Summary— Endothelin-1 (ET-1) by itself was not an effective stimulus for inducing superoxide (O2*) generation in human resting or DMSO-differentiated neutrophil-like HL-60 cells. ET-1 (0.01 – 100 nM) was not able to modulate O2* generation stimulated by the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP, EC50 = 4.24 ± 1.63 nM in the absence and 3.16 ± 1.95 nM in the presence of ET-1). Neither did ET-1 (0.01 – 100 nM) promote the mobilization of intracellular calcium ions or modulate fMLP-induced [Ca2+]i increase in this model of human neutrophils. Phosphoramidon, a neutral endopeptidase inhibitor, was not able to reveal any biological (O2*) or biochemical ([Ca2+]i) response to ET-1 in the absence or in the presence of fMLP in these cells. These results indicate that DMSO-differentiated neutrophil-like HL-60 cells are not sensitive to ET-1 in terms of O2* generation or [Ca2+]i variations.  相似文献   

4.
Abstract. The modulatory effects of transforming growth factor β1 (TGF β1) on the angiotensin II (Ang II)-induced increase in cytosolic free calcium concentration ([Ca2+]i) were investigated in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). [Ca2+]i in VSMC was measured using the fluorescent dye fura-2. When TGF β1 was applied 30 s prior to Ang II, the Ang II-induced [Ca2+]i increase was significantly enhanced in VSMC from SHR ( P < 0.05 compared to control), whereas after the preincubation with TGF β1 for 30 min, the Ang II-induced [Ca2+]i increase was significantly reduced in VSMC from both strains. Using the manganese-quenching technique, it was confirmed that short-term exposure to TGF β1 enhanced the Ang II-induced trans-plasma-membrane calcium influx in SHR. The inhibition of protein kinase C by calphostin C abolished the stimulatory effect of TGF β1 on the Ang II-induced [Ca2+]i increase. It is concluded that TGF β1 modulates the Ang II-induced calcium handling in VSMC.  相似文献   

5.
Abstract. The activation of the respiratory burst by complement factor 5a (C5a), platelet-activating factor (PAF), formyl-Met-Leu-Phe (fMLP) and neutrophil-activating peptide IL-8 was explored in eosinophils from patients with the hypereosinophilic syndrome. The amplitude of the response increased with increasing concentrations of C5a and PAF, but the time for its induction was unaffected by the amount of stimulus applied. Respiratory burst activity resulting from phorbol 12-myristate, 13-acetate (PMA)-mediated activation of protein kinase C (PKC) produced longer onset times, which shortened with increasing PMA concentrations. Total inhibition of the C5a- and PMA-mediated burst could be achieved with the PKC inhibitor staurosporine at concentrations of 100 and 5 nM, respectively. Calcium depletion abolished agonist-induced rises in cytosolic free calcium ([Ca2+]i) and respiratory burst activity, but not PMA-mediated NADPH-oxidase activation. While PMA reduced elevations in [Ca2+]i, it restored the burst response to agonists in Ca2+-depleted eosinophils. These results agree with the agonist-induced activation of the NADPH-oxidase via PKC, but suggest a parallel, Ca2+-, phospholipase C- and PKC-independent signal transduction pathway. Data obtained with B. pertussis toxin showed that the respiratory burst in eosinophils is blocked by ADP-ribosylation of Gi-proteins, but that in the presence of PMA portions of the agonist response could be recovered.  相似文献   

6.
Abstract. The effects of glucose on the cytoplasmic Ca2+ concentration (Ca2+i) regulating insulin release were investigated using pancreatic β-cells representative for the normal and diabetic situations. Increase of the glucose concentration resulted in a slight lowering of Ca2+i followed by a rise, often manifested as high amplitude oscillations. The Ca2+i-lowering component in the glucose action associated with suppression of insulin release became particularly prominent when the β-cells were already depolarized by tolbutamide. Glucose-induced inhibition of insulin release was observed also in experiments with rats made diabetic with streptozotocin or alloxan. Other studies indicated lowering of plasma insulin after intravenous glucose administration in patients with insulin- and noninsu-lin-dependent diabetes mellitus. Brief exposure of β-cells to 2–2 mmol 1-1 streptozotocin resulted in impairment of the response to glucose, manifested as disappearance of the cyclic variation of Ca2+i. The results indicate that glucose-induced depolarisation is a vulnerable process, the disturbance of which may contribute to insulin secretory defects in diabetes mellitus.  相似文献   

7.
Neutrophil functions were studied in patients receiving calcium channel blockers: nifedipine, diltiazem or verapamil. Neutrophils from patients treated with nifedipine showed a significantly lower superoxide generation stimulated by phorbol myristate acetate (PMA) (50 ng mL−1), opsonized zymosan (1 mg mL−1) or formyl-methionyl-leucyl-phenylalanine (FMLP) (10−7  m ), whereas superoxide generation by neutrophils of patients receiving diltiazem or verapamil showed only a slight and insignificant reduction compared with controls. Similarly, chemotaxis towards 10−7  m FMLP and phagocytosis were significantly lower in patients receiving nifedipine compared with controls and were only slightly reduced in patients receiving diltiazem or verapamil. Nifedipine was the most efficient drug in inhibiting the rise in intracellular calcium ion concentration ([Ca2+]i) when added in vitro and in neutrophils of patients receiving this drug, whereas verapamil had no significant effect. The correlation between the inhibitory effect of nifedipine on neutrophil function and the elevation of [Ca2+]i suggests that nifedipine inhibits neutrophil functions through its effect on [Ca2+]i. However, it is not the sole mechanism as superoxide generation induced by PMA, an agent that does not induce a rise in [Ca2+]i, is also inhibited. The unique effect of nifedipine in reducing neutrophil functions in vivo suggests its clinical implications concerning response to acute ischaemic myocardial events.  相似文献   

8.
Abstract. The concentration of plasma immunoreactive parathyroid hormone ([IPTH]) increased within one minute after the plasma ionized calcium concentration ([Ca++]) had been lowered by phosphate infusions in 8 cows. The decrease in [Ca++] could be accounted for by a rise in nonultrafiltrable calcium. The plasma total calcium concentration ([CaTot]) remained unchanged during the first 4 minutes of the phosphate infusion. Until this time [IPTH] was inversely related to [Ca++] and directly related to plasma phosphorus concentrations, but not to [CaTot]. Peak levels of [IPTH] were attained at 4 minutes, before the nadir of [Ca++] was reached and prior to a significant fall in [CaTot]. The data suggest that initial decreases in ionized but not in total calcium stimulate parathyroid hormone secretion. They provide evidence for a model of parathyroid hormone secretion which includes a small storage pool available for immediate release in response to a lowering of the [Ca++]. Between 4 and 12 minutes [IPTH] remained approximately constant in association with a continued fall in [Ca^], whereas between 13 and 16 minutes (the end of the phosphate infusions) [IPTH] was decreasing in association with still falling [Ca++]. It can be speculated that the synthesis of PTH is insufficient to account for a sustained increase in [IPTH], or that abrupt decreases of [Ca++] inside the parathyroid cells inhibit the secretion coupling mechanisms. Finally after 16 minutes [IPTH] continued decreasing in relation to the rising [Ca++].  相似文献   

9.
Summary— Acidosis affects multiple steps in the excitation-contraction coupling pathway of myocardium, producing decreased calcium sensitivity of myofibrils and modification of the function of the sarcoplasmic reticulum. Our aim was to evaluate the effectiveness of three different classes of inotropic agents under acidotic conditions: 1) forskolin, an adenylate cyclase activator that enhances cellular cyclic AMP concentrations, 2) elevated extracellular Ca2+ and 3) endothelin-1, an activator of the inositol triphosphate, diacylglycerol pathway. Ferret papillary muscles were mounted in organ baths containing normal physiological solution (pH = 7.4). After baseline tension was measured, the muscles were bathed in an acidotic solution (pH = 6.98) that decreased tension to 40% of the control; subsequently, the muscles were washed with normal physiological solution until they returned to baseline. Each inotropic agent was added to the bathing solution in a concentration sufficient to increase tension by 40% above the baseline. Then the solution was made acidotic (pH = 6.98) in the continuous presence of that concentration of inotropic agent and the resultant steady-state developed tension measured. The increases in tension induced by each inotropic agent at normal pH were adjusted to be similar; in contrast, the response to each drug in acidosis was significantly different. Under acidotic conditions, endothelin-1 was the most effective inotropic agent in restoring the depressed developed tension. This was possibly due to enhancement of the myofilament sensitivity to Ca2+, which was more effective than increasing [Ca2+]i through elevating extracellular Ca2+ or the addition of forskolin which increased [Ca2+]i but desensitized the myofilaments to Ca2+.  相似文献   

10.
Summary— The regulation and role of the intracellular Ca2+ pools were studied in rat peritoneal mast cells. Cytosolic free calcium concentration ([Ca2+]i) was monitored in fura-2 loaded mast cells. In the presence of Ca2+ and K+, compound 48/80 induced a biphasic increase in [Ca2+]i composed of a fast transient phase and an apparent sustained phase. The sustained phase was partially inhibited by the addition of Mn2+. DTPA, a cell-impermeant chelator of Mn2+, reversed this inhibition, suggesting that a quenching of fura-2 fluorescence occurs in the extracellular medium. In the absence of extracellular Ca2+, the transient phase, but not the sustained one, could be preserved, provided that mast cells were depolarized. The transient phase was completely abolished by thapsigargin, a microsomal Ca2+-ATPase inhibitor. Maximum histamine release induced by either compound 48/80 or antigen was obtained in the absence of added Ca2+ only when mast cells were depolarized. These histamine releases were inhibited by low doses (< 30 nM) of thapsigargin. Thapsigargin at higher doses induced histamine release which was unaffected by changing the plasma membrane potential, but was completely dependent on extracellular Ca2+, showing that a Ca2+ influx is required for thapsigargin-induced exocytosis. Together, these results suggest that the mobilization of Ca2+ from thapsigargin sensitive-intracellular pools induced by compound 48/80 or antigen is sufficient to trigger histamine release. The modulation of these pools by the plasma membrane potential suggest their localization is close to the plasma membrane.  相似文献   

11.
Summary— The pharmacological properties of TH-142177 (N-n-butyl-N-[2'-(1-H-tetrazole-5-yl)biphenyl-4-yl]-methyl-(N-carboxymethyl-benzylamino)-acetamide), a novel antagonist of the angiotensin II (AII) AT1 receptor, were studied in vitro and in vivo, and compared to those of losartan. In the rat isolated aorta, TH-142177 produced parallel shifts to the right of the concentration-response curves for AII-induced contractions without affecting the maximal response (pA2 = 9.07). The inhibitory potency of TH-142177 in the aorta was about three times greater than that of losartan. TH-142177 completely inhibited the specific binding of [125I]AII to AT1 receptor in rat aortic membranes (Ki = 1.6 × 10−8 M), whereas specific [125I]AH binding to AT2 receptor in bovine cerebellum and human myocardium was not affected by concentrations of TH-142177 up to 10−5 M. Losartan also inhibited the [125I] AII binding to rat aortic membranes ( K i = 2.2 × 10−8 M). Following the intravenous administration to anesthetized normotensive rats, TH-142177 dose-dependently inhibited the increase in systolic blood pressure induced by an intravenous bolus injection of AII that was 1.5 times less potent than losartan. Furthermore, the oral administration of TH-142177 to conscious renal hypertensive rats exerted a dose-dependent reduction of systolic blood pressure without significantly effecting the heart rate. TH-142177 was at least three times more potent than losartan. These results demonstrate that TH-142177 is a potent and selective antagonist of AT1 receptors and by oral administration has a long-lasting antihypertensive activity.  相似文献   

12.
The positive inotropic and electrophysiological effects of cardiac glycosides on cardiac muscle are mediated through inhibition of Na+/K+ ATPase by binding to a specific extracytoplasmic site of the a-subunit of this enzyme. The inhibition of Na+/K+ ATPase affects ionic flux and produces direct local effects on cardiac contractility, electrical excitability and conduction, but also profound systemic effects mainly as a result of haemodynamic changes. These effects are responsible for beneficial therapeutic as well as toxic effects.
Inhibition of Na+/K+ ATPase results in potentiation of K+ loss from cells and Na+ entry into cells, so consequently affects action potential generation and propagation. This also underlines the potentiation of certain effects of cardiac glycosides by hypokalemia and hypomagnesaemia, and the effects of changes in calcium homeostasis on the cardiac glycoside pharmacodynamics. Furthermore, inhibition of Na+/Ca++ exchange enhances Ca++ mobilization and promotes contractility. These effects (locally and systemically) differ greatly, depending on the haemodynamic status and myocardial oxygen supply.
Cardiac glycosides have less affinity for Na+/K+ ATPases at other sites (e.g. skeletal muscle), but some extracardiac effects (vascular effects, effects on colour vision, CNS and autonomic effects, renal effects) may be related to Na+/K+ ATPase inhibition.  相似文献   

13.
Summary— Smooth muscle contraction is the basis of the physiological reactivity of several systems (vascular, respiratory, gastrointestinal, urogenital…). Hyperresponsiveness of smooth muscle may also contribute to a variety of problems such as arterial hypertension, asthma and spontaneous abortion. An increase in cytoplasmic calcium concentration ([Ca2+]i) is the key event in excitation-contraction coupling in smooth muscle and the relationship linking the [Ca2+]i value to the force of contraction represents the calcium sensitivity of the contractile apparatus (CaSCA). Recently, it has become evident that CaSCA can be modified upon the action of agonists or drugs as well as in some pathophysiological situations. Such modifications induce, at a fixed [Ca2+]i value, either an increase (referred to as sensitization) or a decrease (desensitization) of the contraction force. The molecular mechanisms underlying this modulation are not yet fully elucidated. Nevertheless, recent studies have identified sites of regulation of the actomyosin interaction in smooth muscle. Sensitization primarily results from the inhibition of myosin light chain phosphatase (MLCP) by intracellular messengers such as arachidonic acid or protein kinase C. In addition, phosphorylation of thin filament-associated proteins, caldesmon and calponin, increases CaSCA. Activation of small (monomeric) G-proteins such as rho or ras is also involved. Desensitization occurs as a consequence of phosphorylation of myosin light chain kinase (MLCK) by the calcium-calmodulin activated protein kinase II, or stimulation of MLCP by cyclic GMP-activated protein kinase. In the present review, examples of physiological modulation of CaCSA as well as pharmacological and pathophysiological implications are illustrated for some smooth muscles.  相似文献   

14.
The authors measured Na+–H+ exchanger kinetics together with Na+–Li+ countertransport V max in the erythrocytes of 21 subjects with essential hypertension and 16 normotensive control subjects. Na+–H+ exchanger V max appeared to be increased in patients with essential hypertension, while the Na+–H+ exchanger affinity for intracellular proton sites ( K 50%) proved to be unchanged and the index of cooperativity among intracellular proton binding sites as measured by Hill's coefficient (Hill's n ) decreased as compared with normotensive control subjects. Na+–Li+ countertransport V max appeared to be higher in patients with essential hypertension than in control subjects. The authors were unable to find any correlations between Na+–H+ exchanger kinetic parameters and metabolic variables such as parameters of insulin resistance and plasma lipids. On the basis of the data obtained, erythrocyte Na+–H+ exchanger activity was found to be abnormal in two kinetic variables in essential hypertensive patients and showed no simple linear correlations with the main variables of glucose metabolism, plasma lipids, renin or aldosterone.  相似文献   

15.
Summary— Na/Ca exchange was recently shown to regulate cytosolic free Ca2+ concentration ([Ca2+]i) in the pancreatic B-cell. The aim of the present study was to provide direct evidence that inhibition of the activity of the exchange may also increase insulin release. In the presence of extracellular Na+, caffeine stimulated 45Ca outflow but did not increase insulin release from islets perifused in the presence of 2.8 mM glucose. By contrast, in the absence of extracellular Na+, caffeine almost failed to increase 45Ca outflow and reversibly stimulated insulin release despite the fact that the absence of extracellular Na+ per se reduced basal insulin release. Similar findings were observed in islets perifused at a higher glucose concentration (8.3 mM) except that, in the presence of extracellular Na+, caffeine more markedly increased 45Ca outflow and stimulated insulin release. Our data provide direct evidence that inhibition of Na/Ca exchange with resulting blockade of Ca2+ outflow may increase insulin release from the pancreatic B-cell under suitable experimental conditions.  相似文献   

16.
Summary— KR31080 (2-butyl-5-methyl-6-(1-oxopyridin-2-yl)-3-[[2'-(1H-tetrazol-5-yl) biphenyl-4-yl]methyl]-3H-imidazo[4,5-b] pyridine) is a potent inhibitor of angiotensin type 1 (AT1) receptors in rabbit aorta and human recombinant AT1 receptors. In the isolated rabbit thoracic aorta, KR31080 caused a nonparallel shift to the right of the concentration-response curves to angiotensin II (All) with decreased maximal response (pD'2 = 10.1 ± 0.1), but had no effect on the contractile response induced by norepinephrine. KR31080 inhibited specific [125I]AII binding to rabbit aortic membranes (AT, receptors) and [125I][Sar1, Ile8]AII binding to human recombinant AT1 receptors in a concentration-dependent manner with IC50 values of 0.84 ± 0.08 nM and 1.92 ± 0.15 nM, respectively, but did not inhibit specific [125I)AII binding to bovine cerebellum membranes (ÀT2 receptors). In the Scatchard analysis, KR31080 interacted with rabbit aortic AT1 receptors in a competitive manner, similar to losartan. These results demonstrate that KR31080 is a potent and AT1 selective angiotensin receptor antagonist which exerts a competitive antagonism in the [125I]AII binding assay and insurmountable AT1 receptor antagonism in the functional study.  相似文献   

17.
Summary.  Dietary flavonoids are known for their antiplatelet activity resulting in cardiovascular protection. Phosphatidylinositol 4,5-bisphosphate (PIP2) was previously reported to play a direct role in phosphatidylserine (PS) exposure, as a Ca2+ target. Thrombin formation and platelet procoagulant activity are dependent on PS exposure. As flavonoids can inhibit phosphoinositide (PPI) kinases, we examined whether changes in PPI metabolism in flavonoid-treated platelets could be involved in their antiplatelet effects. Treatment with the flavonoids quercetin or catechin reduced PS exposure, thrombin formation, PIP2 level and resynthesis after platelet activation with collagen, thrombin or calcium ionophore. Flavonoids also prevented [Ca2+]i increase induced by collagen, but not by the ionophore. The ability of flavonoids to decrease PS exposure induced by ionophore treatment could result from the diminution of PIP2 levels, whereas PS exposure induced by collagen could also be diminished by flavonoids' effects on calcium signaling dependent on PIP2 hydrolysis. These data favor a role for PIP2 in the antiplatelet effects of flavonoids.  相似文献   

18.
Summary.  We have compared the roles of adenosine diphosphate (ADP), thromboxanes and the integrin α2β1 in the activation of washed platelets by collagen in the presence of the αIIbβ3 antagonist lotrafiban. The stimulation of protein tyrosine phosphorylation by a collagen suspension is markedly delayed in the presence of the above inhibitors but shows substantial recovery with time. In comparison, activation of phospholipase C (PLC), Ca2+ elevation and dense granule secretion are more severely suppressed by the above inhibitors. α2β1 blockade has a slightly greater inhibitory effect on all of the above responses than a combination of ADP receptor antagonists and cyclooxygenase inhibitor. Platelets exposed to a collagen monolayer show robust elevation of Ca2+ that is delayed in the presence of the above inhibitors and which is accompanied by α-granule secretion. These results demonstrate that secondary mediators and α2β1 modulate collagen-induced intracellular signaling but have negligible effect on GPVI signaling induced by the specific agonist convulxin. This work supports the postulate that the major role of α2β1 is to increase the avidity of collagen for the platelet surface and by doing so enhance activation of GPVI. Therefore we propose an important role of secondary mediators in collagen-induced signaling is the indirect regulation of GPVI signaling via activation of α2β1.  相似文献   

19.
Summary.  Agonist-induced elevation in cytosolic Ca2+ concentrations is essential for platelet activation in hemostasis and thrombosis. It occurs through Ca2+ release from intracellular stores and Ca2+ entry through the plasma membrane (PM). Ca2+ store release is a well-established process involving phospholipase (PL)C-mediated production of inositol-1,4,5-trisphosphate (IP3), which in turn releases Ca2+ from the intracellular stores through IP3 receptor channels. In contrast, the mechanisms controlling Ca2+ entry and the significance of this process for platelet activation have been elucidated only very recently. In platelets, as in other non-excitable cells, the major way of Ca2+ entry involves the agonist-induced release of cytosolic sequestered Ca2+ followed by Ca2+ influx through the PM, a process referred to as store-operated calcium entry (SOCE). It is now clear that stromal interaction molecule 1 (STIM1), a Ca2+ sensor molecule in intracellular stores, and the four transmembrane channel protein Orai1 are the key players in platelet SOCE. The other major Ca2+ entry mechanism is mediated by the direct receptor-operated calcium (ROC) channel, P2X1. Besides these, canonical transient receptor potential channel (TRPC) 6 mediates Ca2+ entry through the PM. This review summarizes the current knowledge of platelet Ca2+ homeostasis with a focus on the newly identified Ca2+ entry mechanisms.  相似文献   

20.
Abstract. Correlation of ionized calcium concentration, [Ca2+] and blood pH has long been recognized. So far no distinction of the acid-base changes, i.e. respiratory changes or metabolic changes seemed necessary. The present study, with the use of a recently developed system for in vivo analysis of [Ca2+], and with in vitro experiments reinvestigates this question.
In a first series respiratory and metabolic changes were induced in rats. Changes of [Ca2+] (Δ[Ca2+]) and of plasma pH (ΔpH) were recorded continuously in vivo , plasma bicarbonate, [HCO-3] was measured in vitro . In a second series respiratory and metabolic changes were induced in sixteen volunteers and, separately, in vitro in plasma and modified Ringer solution, and the same parameters were determined.
In all experiments Δ[Ca2+] correlates negatively with ΔpH. However, the correlation in respiratory changes was significantly less as compared to that in metabolic changes. As expected, Δ[HCO-3] correlates positively with pH in metabolic and negatively in respiratory changes. We conclude from these experiments that in metabolic changes the effects of calciumalbumin interaction and calcium complexation with bicarbonate are additive, whereas both effects oppose each other in respiratory changes. This might explain the blunted effect of pH changes on [Ca2+] in respiratory changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号