首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Feedback inhibition of nitric oxide synthase activity by nitric oxide.   总被引:23,自引:7,他引:16       下载免费PDF全文
1. A murine macrophage cell line, J774, expressed nitric oxide (NO) synthase activity in response to interferon-gamma (IFN-gamma, 10 u ml-1) plus lipopolysaccharide (LPS, 10 ng ml-1). The enzyme activity was first detectable 6 h after incubation, peaked at 12 h and became undetectable after 48 h. 2. The decline in the NO synthase activity was not due to inhibition by stable substances secreted by the cells into the culture supernatant. 3. The decline in the NO synthase activity was significantly slowed down in cells cultured in a low L-arginine medium or with added haemoglobin, suggesting that NO may be involved in a feedback inhibitory mechanism. 4. The addition of NO generators, S-nitroso-acetyl-penicillamine (SNAP) or S-nitroso-glutathione (GSNO) markedly inhibited the NO synthase activity in a dose-dependent manner. The effect of NO on the enzyme was not due to the inhibition of de novo protein synthesis. 5. SNAP directly inhibited the inducible NO synthase extracted from activated J774 cells, as well as the constitutive NO synthase extracted from the rat brain. 6. The enzyme activity of J774 cells was not restored after the removal of SNAP by gel filtration, suggesting that NO inhibits NO synthase irreversibly.  相似文献   

2.
1. Nitric oxide (NO) suppresses platelet aggregation and plasminogen activator inhibitor (PAI) release from platelets, playing physiological and/or pathological roles in the haemostatic system. We investigated the effect of NG-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, on the disseminated intravascular coagulation (DIC)-like phenomena in rats under environmental stress, induced by prolonged fluctuation in air temperature, known as SART (specific alternation of rhythm in temperature) stress. 2. Exposure of rats to SART stress for 7 days caused mild DIC-like symptoms such as thrombocytopenia, hypofibrinogenemia, decreased factor VIII: coagulant activity and shortened euglobulin clot lysis time (ECLT). The enhanced fibrinolysis was accompanied by a marked decrease in the activity of plasma PAI. 3. L-NAME, but not its D-enantiomer, when administered orally at 0.3-10 mg kg-1, twice a day for 7-day exposure to stress, inhibited the stress-induced decrease in fibrinogen levels in a dose-dependent manner, whereas it failed to alter platelet count, factor VIII:coagulant activity and plasma protein levels in stressed rats. All these parameters in unstressed rats were resistant to L-NAME at 10 mg kg-1. 4. Repeated treatment with 10 mg kg-1 of L-NAME blocked the shortening of ECLT and the decrease in PAI activity following stress exposure, although it was without effect in unstressed rats. 5. The inhibitory effects of L-NAME at 10 mg kg-1 on the stress-induced alterations in fibrinogen levels and in ECLT were significantly reduced by coadministered L-arginine at 1000 mg kg-1. 6. These findings demonstrate that repeated administration of L-NAME attenuates the enhanced fibrinolysis, without aggravating thrombocytopenia, in SART-stressed rats. Endogenous NO appears to contribute to the stress-induced development of fibrinolysis by suppressing, plasma PAI activity, most probably as a result of inhibition of the PAI release from platelets.  相似文献   

3.
Previous studies have shown an increased mortality in response to endotoxin in 24-hr-old neonatal rats compared with older neonates and adults. This increased susceptibility may be related to increased nitric oxide (NO) and thromboxane (TxB2) production. Twenty-four-hour-old neonatal rat pups were given either N(G)-nitro-L-arginine methyl ester (L-NAME; a nonspecific NO synthase inhibitor), S-methylthioisourea (SMT; a specific NO synthase inhibitor), or molsidomine (a NO donor) subcutaneously prior to or after an LD50 of intracardiac endotoxin. Mortality was followed for 72 hr. There was no statistically significant difference in mortality between control animals and those pretreated with L-NAME, SMT, or molsidomine. A trend toward increased mortality with nonspecific NO synthase inhibition and decreased mortality with the NO donor was noted. Splenic cells were obtained for in vitro cytokine stimulation studies. In vitro adherent splenic cell stimulation studies confirmed an increase in NO production with NO donor pretreatment and decreased production of NO with NO synthase inhibition pretreatment. There was no difference in TxB2 production with either the NO synthase inhibitor or the NO donor. In conclusion, at the several doses employed, neither nonselective or selective NO synthase inhibitors nor NO donors prevented endotoxin-induced mortality in rat neonatal shock. Although these findings do not preclude possible involvement of NO in neonatal pathophysiology, increased NO production thus does not appear to be the primary determinant of the increased susceptibility of the neonatal rat to endotoxic shock.  相似文献   

4.
This study tested the hypothesis that nitric oxide (NO) synthase inhibition in mice would result in hypertension characterized by increased agonist-induced vasoconstrictor responsiveness and attenuated endothelium-dependent vasodilation. Administration of N-nitro-L-arginine (L-NNA), an NO synthase inhibitor (1 g/L, 4 weeks), via drinking water to mice resulted in significant elevations in blood pressure. Phenylephrine-induced contraction was significantly increased in aortic rings from L-NNA-treated mice compared with rings from control mice. Aortic rings from control mice showed a concentration-dependent relaxation to acetylcholine whereas those obtained from L-NNA-treated mice showed a biphasic response, contracting at lower concentrations while relaxing at higher concentrations. Aortic rings from L-NNA-treated mice had decreased relaxation to acetylcholine and increased sensitivity to sodium nitroprusside compared with control rings. The relaxation induced by an NO-independent soluble guanylyl cyclase activator was not different between groups. In aortic rings from control and L-NNA-treated mice pre-contracted with phenylephrine, the administration of L-NNA to the organ bath caused additional and sustained contraction. When compared with the contraction induced by phenylephrine, L-NNA-induced contraction in aorta from control mice was significantly higher than that in aorta from L-NNA-treated mice. We conclude that mice treated with L-NNA develop hypertension and that a reduction in NO availability is responsible for the changes observed in vascular reactivity.  相似文献   

5.
1. In the present study, we investigated the effects of the inducible nitric oxide (iNOS) inhibitors S-methylisothiourea (SMT) and l-N(6)-(1-iminoethyl)-lysine (l-Nil) on endotoxin-induced acute lung injury (ALI), as well as the associated physiological, biomedical and pathological changes, in anaesthetized Sprague-Dawley rats and in rat isolated perfused lungs. 2. Endotoxaemia was induced by an intravenous (i.v.) infusion of lipopolysaccharide (LPS; Escherichia coli 10 mg/kg). Lipopolysaccharide produced systemic hypotension and tachycardia. It also increased the lung weight/bodyweight ratio, lung weight gain, exhaled nitric oxide (NO), the protein concentration in bronchoalveolar lavage and microvascular permeability. 3. Following infusion of LPS, plasma nitrate/nitrite, methyl guanidine, pro-inflammatory cytokines (tumour necrosis factor-alpha and interleukin-1beta) were markedly elevated. Pathological examination revealed severe pulmonary oedema and inflammatory cell infiltration. Pretreatment with SMT (3 mg/kg, i.v.) or l-Nil (3 mg/kg, i.v.) significantly attenuated the LPS-induced changes and ALI. 4. The results suggest that the inflammatory responses and ALI following infusion of LPS are due to the production of NO, free radicals and pro-inflammatory cytokines through the iNOS system. Inhibition of iNOS is effective in mitigating the endotoxaemic changes and lung pathology. Inhibitors of iNOS may be potential therapeutic agents for clinical application in patients with acute respiratory distress syndrome.  相似文献   

6.
The subcellular localization of neuronal nitric oxide synthase (NOS I, EC 1.14.13.39) was investigated in the longitudinal muscle/myenteric plexus (LM/MP) preparation of rat small intestine. The presence of NOS I, inducible nitric oxide synthase (NOS II), and endothelial nitric oxide synthase (NOS III) was assessed after homogenization and low-speed centrifugation in a postnuclear supernatant by immunological detection after PAGE and Western blotting. Only NOS I was clearly present, whereas NOS II and NOS III were below detection limits. After high-speed centrifugation of the postnuclear supernatant, soluble and particulate fractions were obtained, and the presence of NOS I in these fractions was investigated by measurement of NOS I immunoreactivity and enzyme activity. We found that 90 +/- 1% of NOS I immunoreactivity and 97 +/- 1% of NOS enzyme activity were confined to the soluble fraction of the tissue. Further immunological analysis demonstrated that washing the particulate fraction revealed detectable amounts of NOS I only after concentration of the washing supernatant. Most particulate NOS I remained in the pellet and therefore represents cell organelle-associated enzyme. No NOS I immunoreactivity could be detected as a soluble protein within organelles of the cell. Particulate NOS I could in part be solubilized by Triton X-100 treatment, and the detection of Triton X-100-soluble NOS I was dependent on the antibody used. In conclusion, our results indicate that NOS I in the LM/MP preparation of rat small intestine is mainly soluble and that the particulate NOS I is partly an intrinsic membrane protein and can partly be solubilized by detergent treatment.  相似文献   

7.
《General pharmacology》1998,30(2):245-248
  • 1.1. Previous study showed that NG-nitro-l-arginine (l-NOARG), an inhibitor of nitric oxide synthase, induces catalepsy in a dose-dependent manner in male albino-Swiss mice.
  • 2.2. The objective of the present work was to further investigate this effect, extending it to other NOS inhibitors.
  • 3.3. Results showed that l-NOARG (40–80 mg/kg IP), NG-nitro-l-arginine methylester (l-NAME, 40–160 mg/kg IP) or NG-monomethyl-l-arginine (l-NMMA, 80 mg/kg IP) were able to induce catalepsy in mice. The effect of l-NOARG (40 mg/kg) was antagonized by pretreatment with l-arginine (300 mg/kg), but not by d-arginine (300 mg/kg). The catalepsy-inducing effect of l-NOARG suffered rapid tolerance, showing a significant decrease after two days of chronic treatment (40 mg/kg IP, twice a day).
  • 4.4. The results suggest that interference with the formation of nitric oxide induces significant motor effects in mice.
  相似文献   

8.
1. The aim of this study was to investigate the effect of N-(3-(aminomethyl)benzyl)acetamidine (1400W), a selective inhibitor of inducible calcium-independent nitric oxide synthase (iNOS), on the functional and histopathological outcomes of experimental transient focal cerebral ischaemia in rats. 2. Transient ischaemia was produced by the occlusion for 2 h of both the left middle cerebral artery and common carotid artery. Treatments with 1400W (20 mg kg(-1)) or vehicle were started 18 h after occlusion of the arteries and consisted in seven subcutaneous injections at 8 h interval. Ischaemic outcomes and NOS activities (constitutive and calcium-independent NOS) were evaluated 3 days after ischaemia. 3. 1400W significantly reduced ischaemic lesion volume by 31%, and attenuated weight loss and neurological dysfunction. 4. 1400W attenuated the calcium-independent NOS activity in the infarct by 36% without affecting the constitutive NOS activity. 5. These findings suggest that iNOS activation contributes to tissue damage and that selective inhibitors of this isoform may be of interest for the treatment of stroke.  相似文献   

9.
In the present study, intraperitoneal injection of lipopolysaccharide (10 mg/kg) to anaesthetized rats produced a gradual fall in mean arterial pressure in 6 h. Aortic rings from lipopolysaccharide-treated rats showed a significant reduction in the contractile response to vasoconstrictors. Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME) or aminoguanidine, two nitric oxide synthase (NOS) inhibitors, abolished this vascular hyporeactivity. In ventricular myocytes isolated from lipopolysaccharide-treated rats, both electrically induced Ca(2+) transients and the intracellular Ca(2+) response to beta-adrenergic stimulation were significantly depressed when compared with those recorded from myocytes from sham control rats. L-NAME and aminoguanidine alone had no effects on electrically stimulated Ca(2+) transients in ventricular myocytes either from control or lipopolysaccharide-treated rats. However, these two NOS inhibitors augmented the intracellular Ca(2+) response to beta-adrenergic stimulation in myocytes from lipopolysaccharide-treated rats, but not in control myocytes. In addition, 1H-[1,2,4]oxadiazolo[4, 3-a]quinoxalin-1-one (ODQ), an inhibitor of nitric oxide (NO)-sensitive guanylyl cyclase, also reversed the intracellular Ca(2+) hyporesponsiveness to beta-adrenergic stimulation in myocytes from lipopolysaccharide-treated rats. In cardiac myocytes from lipopolysaccharide-rats pretreated with aminoguanidine, the intracellular Ca(2+) hyporesponsiveness to beta-adrenergic stimulation was abolished. However, there still existed a depressed Ca(2+) response to electrical field stimulation. These data indicate that NO following lipopolysaccharide stimulation contributes to vascular hyporeactivity and the depressed intracellular Ca(2+) response to beta-adrenergic stimulation in lipopolysaccharide-treated rats, but is not responsible for the reduced Ca(2+) response to electrical stimulation in our experimental conditions.  相似文献   

10.
11.
一氧化氮合酶抑制剂的研究进展   总被引:14,自引:3,他引:14  
一氧化氮(nitricoxide,NO)是一种能调节细胞多种功能的信息分子,它参与心血管、外周和中枢神经以及免疫等系统生理过程和生物信号的调节。体内组织中的NO由NO合酶(Nitricoxidesynthase,NOS)催化左旋精氨酸而合成,合成后的NO迅速跨膜扩散释放。各种调节NO释放的因素均作用于NOS催化的化学反应过程,而体内影响该反应的NOS在各组织的表达不同。特异性NOS抑制剂通过调控NO的合成,对NOS表达相关的各种疾病的预防和治疗具有重要的临床意义。本文对近年来NOS抑制剂的研究进展作一概述。  相似文献   

12.
Besides inducing cardiotoxicity, doxorubicin also affects the vasculature. Recent observations in cultured endothelial cells indicated that the endothelial form of nitric oxide synthase might be inhibited by doxorubicin thereby seriously interfering with vascular function. We have investigated the effect of doxorubicin on the relaxation induced by the muscarinic agonist carbachol in the isolated rat aorta. It was found that doxorubicin at concentrations up to 50 microM does not alter the relaxant response to carbachol. Direct measurement of nitrite, the metabolite of NO*, by the Griess assay confirmed our observation that NO*)production is not inhibited by doxorubicin.  相似文献   

13.
The focus of this review is the influence of an immunosuppressive xenobiotic drug mycophenolic acid on the induction of nitric oxide production in various cell types. The potential therapeutic significance of the cell-specific fine-tuning of nitric oxide release by mycophenolic acid, as well as the mechanisms behind the drug action are discussed.  相似文献   

14.
1. The effect of endotoxin (E. coli lipopolysaccharide) on the induction of nitric oxide synthase (NOS) and the changes in vascular permeability in the colon and jejunum over a 5 h period have been investigated in the rat. 2. Under resting conditions, a calcium-dependent constitutive NOS, determined by the conversion of radiolabelled L-arginine to citrulline, was detected in homogenates of both colonic and jejunal tissue. 3. Administration of endotoxin (3 mg kg-1, i.v.) led, after a 2 h lag period, to the appearance of calcium-independent NOS activity in the colon and jejunum ex vivo, characteristic of the inducible NOS enzyme. 4. Administration of endotoxin led to an increase in colonic and jejunal vascular permeability after a lag period of 3 h, determined by the leakage of radiolabelled albumin. 5. Pretreatment with dexamethasone (1 mg kg-1 s.c., 2 h prior to challenge) inhibited both the induction of NOS and the vascular leakage induced by endotoxin. 6. Administration of the NO synthase inhibitor NG-monomethyl-L-arginine (12.5-50 mg kg-1, s.c.) 3 h after endotoxin injection, dose-dependently reduced the subsequent increase in vascular permeability in jejunum and colon, an effect reversed by L-arginine (300 mg kg-1, s.c.). 7. These findings suggest that induction of NOS is associated with the vascular injury induced by endotoxin in the rat colon and jejunum.  相似文献   

15.
1. The role of endogenous nitric oxide (NO) in maintaining intestinal vascular integrity following acute endotoxin (E. coli. lipopolysaccharide) challenge was investigated in the anaesthetized rat by use of NG-monomethyl-L-arginine (L-NMMA), a selective inhibitor of NO synthesis. 2. L-NMMA (10-50 mg kg-1, i.v.) pretreatment enhanced both the macroscopic and histological intestinal damage and the increases in vascular permeability, measured as the leakage of [125I]-labelled human serum albumen, induced after 15 min by endotoxin (50 mg kg-1, i.v.). 3. The effects of L-NMMA (50 mg kg-1, i.v.) were enantiomer specific, as D-NMMA had no effect. Furthermore, these effects were reversed by L-arginine (300 mg kg-1, i.v.), the precursor of NO synthesis but not by D-arginine (300 mg kg-1, i.v.). 4. L-NMMA (10-50 mg kg-1, i.v.) increased mean systemic arterial blood pressure but this does not appear to be the mechanism by which endotoxin-induced intestinal damage was enhanced, since similar systemic pressor responses induced by phenylephrine (10 micrograms kg-1 min-1, i.v.), had no such effect. 5. The results suggest that synthesis of NO from L-arginine has a role in maintaining the microvascular integrity of the intestinal mucosa following acute endotoxin challenge.  相似文献   

16.
The present study examined the role of glutathione in the development of hypertension induced by long-term inhibition of nitric oxide (NO)-synthase. Three groups of rats were investigated: control group, L-NAME group: group with NO-synthase inhibition by N(G)-nitro-L-arginine methyl ester (L-NAME, 40 mg/kg per day) for 2 weeks, and BSO group: group with glutathione synthesis inhibitor L-buthionine sulfoximine (BSO, 1.4 mmol/kg per 12 h) for 3 days. All the groups were subjected to an acute i.v. experiment in which the given substances were exchanged between groups. There was no change in systolic blood pressure (SBP) in the control group after 1 and 2 h of acute BSO (1.4 mmol/kg, i.v.) treatment. In the L-NAME group, SBP increased significantly by 10% after 2 h of acute BSO treatment. In the BSO group, SBP did not change vs control; however, after 2 h of acute L-NAME (10 mg/kg, i.v.) treatment, the increase in SBP exceeded by 12% (P<0.05) that of the control group. Along with the increase in SBP, acute BSO treatment significantly potentiated the decrease in plasma nitrite/nitrate concentration in the L-NAME group. The acute BSO-induced glutathione decrease was significantly greater in the L-NAME group than in the control group. In NO-deficient hypertensive rats, the results are indicative of a decrease in glutathione synthesis and a stabilizing role of glutathione.  相似文献   

17.
Acute lung injury (ALI) is associated with severe alterations in lung structure and function and is characterized by hypoxemia, pulmonary edema, low lung compliance and widespread capillary leakage. Asymmetric dimethylarginine (ADMA), a known cardiovascular risk factor, has been linked to endothelial dysfunction and the pathogenesis of a number of cardiovascular diseases. However, the role of ADMA in the pathogenesis of ALI is less clear. ADMA is metabolized via hydrolytic degradation to l-citrulline and dimethylamine by the enzyme, dimethylarginine dimethylaminohydrolase (DDAH). Recent studies suggest that lipopolysaccharide (LPS) markedly increases the level of ADMA and decreases DDAH activity in endothelial cells. Thus, the purpose of this study was to determine if alterations in the ADMA/DDAH pathway contribute to the development of ALI initiated by LPS-exposure in mice. Our data demonstrate that LPS exposure significantly increases ADMA levels and this correlates with a decrease in DDAH activity but not protein levels of either DDAH I or DDAH II isoforms. Further, we found that the increase in ADMA levels cause an early decrease in nitric oxide (NOx) and a significant increase in both NO synthase (NOS)-derived superoxide and total nitrated lung proteins. Finally, we found that decreasing peroxynitrite levels with either uric acid or Manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTymPyp) significantly attenuated the lung leak associated with LPS-exposure in mice suggesting a key role for protein nitration in the progression of ALI. In conclusion, this is the first study that suggests a role of the ADMA/DDAH pathway during the development of ALI in mice and that ADMA may be a novel therapeutic biomarker to ascertain the risk for development of ALI.  相似文献   

18.
1. The role of nitric oxide (NO) formed by the inducible isoform of NO synthase (NOS) in the generation of indomethacin-induced intestinal microvascular leakage was investigated in the rat. 2. Indomethacin (10 mg kg-1, s.c.) provoked an elevation of vascular leakage of radiolabelled human serum albumin in the jejunum over 48 h, commencing 18 h after its administration. This was associated with the induction of a calcium-independent NOS, as assessed by the conversion of radiolabelled L-arginine to citrulline. 3. Pretreatment with the glucocorticoid, dexamethasone (1 mg kg-1 day-1, s.c.) inhibited the induction of NOS and reduced jejunal microvascular leakage, determined 24 and 48 h after indomethacin. 4. Administration of the broad-spectrum antibiotic, ampicillin (800 mg kg-1 day-1, p.o.) likewise inhibited both the induction of NOS and the plasma leakage observed 24 and 48 h after indomethacin. 5. Ampicillin pretreatment did not, however, inhibit the induction of NOS, determined 5 h following endotoxin (3 mg kg-1 i.v.) challenge. Furthermore, incubation with ampicillin (1 mM, 10 min) did not inhibit the activity of the calcium-independent isoform in vitro. 6. Administration of the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 2-10 mg kg-1, s.c.), at the time of the detectable expression of the inducible NOS (18 h after indomethacin), dose-dependently attenuated the plasma leakage, determined 6 later. This effect was reversed by pretreatment with L-arginine (300 mg kg-1, s.c.) 15 min before L-NAME. 7. These findings suggest that induction of a calcium-independent NOS following indomethacin administration involves gut bacteria and leads to microvascular injury in the rat jejunum.  相似文献   

19.
Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10 mg/kg, i.v.) 1 h before LPS (5 mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24 h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). In conclusion: AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号