首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Four top-class runners who regularly performed marathon and long-distance races participated in this study. They performed a graded field test on an artificial running track within a few weeks of a competitive marathon. The test consisted of five separate bouts of running. Each period lasted 6 min with an intervening 2-min rest bout during which arterialized capillary blood samples were taken. Blood was analysed for pH, partial pressure of oxygen and carbon dioxide (P02 and PCO2) and lactate concentration ([la]b). The values of base excess (BE) and bicarbonate concentration ([HCO3 ]) were calculated. The exercise intensity during the test was regulated by the runners themselves. The subjects were asked to perform the first bout of running at a constant heart rate f c which was 50 beats · min–1 below their own maximal f c. Every subsequent bout, each of which lasted 6 min, was performed with an increment of 10 beats · min–1 as the target f c. Thus the last, the fifth run, was planned to be performed with fc amounting to 10 beats · min–1 less than their maximal f c. The results from these runners showed that the blood pH changed very little in the bouts performed at a running speed below 100% of mean marathon velocity ( m). However, once mwas exceeded, there were marked changes in acid-base status. In the bouts performed at a velocity above the mthere was a marked increase in [la]b and a significant decrease in pH, [HCO3 ], BE and PCO2. The average marathon velocity ( m) was 18.46 (SD 0.32) km·h–1. The [la]b at a mean running velocity of 97.1 (SD 0.8) % of mwas 2.33 (SD 1.33) mmol ·l–1 which, compared with a value at rest of 1.50 (SD 0.60) mmol·l–1, was not significantly higher. However, when running velocity exceeded the vm by only 3.6 (SD 1.9) %, the [la]b increased to 6.94 (SD 2.48) mmol·l-1 (P<0.05 vs rest). We concluded from our study that the highest running velocity at which the blood pH still remained constant in relation to the value at rest and the speed of the run at which [la]b began to increase significantly above the value at rest is a sensitive indicator of capacity for marathon running.  相似文献   

2.
Summary The relationships between anaerobic glycolysis and the average velocity ( ) sustained during running were studied in 17 top level athletes (11 males and 6 females). A blood sample was obtained within 10 min of the completion of major competitions over 400 m, 800 m and 1500 m and the blood lactate concentration [1a]b was measured. In both male and female athletes [1a]b was related to the relative performance, as expressed as a percentage of the athlete's best of the season. Over 400m, r=0.85 (P<0.01) and r=0.80 (P<0.05) in males and females, respectively. Over 800 m, the corresponding values were r=0.76 (P<0.01) and r=0.91 (P<0.01). In male runners [1a]b was correlated to : r=0.89 (P<0.01) and r=0.71 (P<0.02) over 400 m and 800 m, respectively. No relationship to relative performance or was obtained over 1500 m. Energy expenditure during competition running was estimated in male runners from the [1a]b values. This estimate was based mainly on the assumption that a 1 mmol ·l–1 increase in [1a]b corresponded to the energy produced by the utilization of 3.30 ml·Okg –1. The energy cost of running was estimated, by dividing the estimated total energy expenditure by the race distance, at 0.211 ml·kg–1·m–1 over 800 m and 0.274 ml·kg–1·m–1 over 400m. These results suggested that [1a]b values obtained after the completion of actual competitions can provide an insight into the anaerobic capacity of athletes and data from which the relative contribution of anaerobic metabolism to performance might be inferred, this being more accurate that any laboratory test.  相似文献   

3.
Summary The effect of bicarbonate ingestion on total excess volume of CO2 Output (CO2 excess), due to bicaronate buffering of lactic acid in exercise, was studied in eight healthy male volunteers during incremental exercise on a cycle ergometer performed after ingestion (0.3 g · kg–1 body mass) of CaCO3 (control) and NaHCO3 (alkalosis). The resting arterialized venous blood pH (P<0.05) and bicarbonate concentration ([HCO3 ]b;P<0.01) were significantly higher in acute metabolic alkalosis [AMA; pH, 7.44 (SD 0.03); [HCO3 ]b; 29.4 (SD 1.5) mmol·1-1] than in the control [pH, 7.39 (SD 0.03); [HCO3 ]b, 25.5 (SD 1.0) mmol·1–1]. The blood lactate concentrations ([la]b) during exercise below the anaerobic threshold (AT) were not affected by AMA, while significantly higher [la]b at exhaustion [12.29 (SD 1.87) vs 9.57 (SD 2.14) mmol·1–1,P < 0.05] and at 3 min after exercise [14.41 (SD 1.75) vs 12.26 (SD 1.40) mmol · l–1,P < 0.05] were found in AMA compared with the control. The CO2 excess increased significantly from the control [3177 (SD 506) ml] to AMA [3897 (SD 381) ml;P < 0.05]. The CO2 excess per body mass was found to be significantly correlated with both the increase of [la]b from rest to 3 min after exercise ( [la]b;r=0.926,P < 0.001) and with the decrease of [HCO3 ]b from rest to 3 min after exercise ( [HCO3 ]b;r=0.872,P<0.001), indicating that CO2 excess per body mass increased linearly with both [la b and [HCO3 ]b. As a consequence, CO2 excess per body mass per unit increase of [la]b (CO2 excess·mass–1· [la]b) was similar for the two conditions. The present results would suggest that the relationship between CO2 excess and blood lactate accumulation was unaffected by acute metabolic alkalosis, because the relative contribution of bicarbonate buffering of lactic acid was the same as in the control.  相似文献   

4.
Summary A new maximal anaerobic running power (MARP) test was developed. It consisted ofn · 20-s runs on a treadmill with a 100-s recovery between the runs. During the first run the treadmill speed was 3.97 m · s–1 and the gradient 5°. The speed of the treadmill was increased by 0.35 m · s–1 for each consecutive run until exhaustion. The height of counter-movement jumps and blood lactate concentration ([1a]b) were measured after each run. Submaximal ([la ] b = 3 mmol · l–1 and 10 mmol · l–1) and maximal speed and power ( , and , respectively) were calculated andW was expressed in oxygen equivalents according to the American College of Sports Medicine equation. Thirteen male athletes whose times over 400 m ranged from 47.98 s to 54.70 s served as subjects. In the MARP-test the speed at exhaustion was 6.89 (SD 0.28) m · s–1 corresponding to a of 118 (SD 5) ml · kg–1 · min–1. The peak [1a]b after exhaustion was 17.0 (SD 1.6) mmol · l–1 . A significant correlation (r=0.89,P<0.001) was observed between the and the average speed in the 400-m sprint. The maximal 20-m sprinting speed on a track and correlated with both the and the 400-m speed. It was concluded that the new method allows the evaluation of several determinants of maximal anaerobic performance including changes in the force-generating capacity of leg muscles and [la]b relative to the speed of the sprint running. The [1a]b at submaximal sprinting speed was suggested as describing the anaerobic sprinting economy.  相似文献   

5.
The purpose of this study was to investigate neuromuscular and energy performance characteristics of anaerobic power and capacity and the development of fatigue. Ten endurance and ten sprint athletes performed a new maximal anaerobic running power test (MARP), which consisted ofn x 20-s runs on a treadmill with 100-s recovery between the runs. Blood lactate concentration [la]b was measured after each run to determine submaximal and maximal indices of anaerobic power (P 3mmol·1 –1,P5mmol·1 –1,P10mmol·1 –1andP max) which was expressed as the oxygen demand of the runs according to the American College of Sports Medicine equation: the oxygen uptake (ml·kg–1·min–1)=0.2·velocity (m·min–1) +0.9·slope of treadmill (frac)·velocity (m·min–1)+3.5. The height of rise of the centre of gravity of the counter movement jumps before (CMJrest) and during (CMJ) the MARP test, as well as the time of force production (t F) and electromyographic (EMG) activity of the leg muscles of CMJ performed after each run were used to describe the neuromuscular performance characteristics. The maximal oxygen uptake ( max), anaerobic and aerobic thresholds were determined in the max test, which consisted ofn x 3-min runs on the treadmill. In the MARP-testP max did not differ significantly between the endurance [116 (SD 6) ml·kg–1·min–1] and sprint [120 (SD 4) ml·kg–1·min–1] groups, even though CMJrest and peak [la]b were significantly higher and max was significantly lower in the sprint group than in the endurance group and CMJrest height correlated withP max (r=0.50,P<0.05). The endurance athletes had significantly higher mean values ofP 3mmol·1 –1andP 5mmol·1 –1[89 (SD 7) vs 76 (SD 8) ml·kg–1·min,P<0.001 and 101 (SD 5) vs 90 (SD 8) ml·kg–1·min–1,P<0.01. Significant positive correlations were observed between theP 3mmol·l –1and max, anaerobic and aerobic thresholds. In the sprint group CMJ and the averaged integrated iEMG decreased andt F increased significantly during the MARP test, while no significant changes occurred in the endurance group. The present findings would suggest thatP max reflected in the main the lactacid power and capacity and to a smaller extent alactacid power and capacity. The duration of the MARP test and the large number of CMJ may have induced considerable energy and neuromuscular fatigue in the sprint athletes preventing them from producing their highest alactacidP max at the end of the MARP test. Due to lower submaximal [la]b (anaerobic sprinting economy) the endurance athletes were able to reach almost the sameP max as the sprint athletes.  相似文献   

6.
Summary The purpose of the study was to define a relationship between plasma ammonia [NH3]p1 and blood lactate concentrations [1a]b after exercise in children and to find out whether the [NH3]p1, determined during laboratory treadmill tests, may be useful as a predictor of the children's sprint running ability. A group of 20 girls and 14 boys trained in athletics or swimming and 8 untrained boys, aged 13.2 to 13.7 years, participated in the study. Their [NH3]p1 and [1a]b were measured before and after incremental maximal treadmill exercise. In addition, the subjects' running performance was tested in 30-, 60- and 600- or 1000-m runs under field conditions. The [NH3]p1 during the treadmill runs increased by 20.1 (SD 17.3), 24 (SD 16.7) and 10 (SD 4.3) mol·1–1 in the girls, the trained boys and the untrained boys, respectively. The postexercise [NH3]p1 correlated positively with [1a]b (r=0.565 in the girls and 0.812 in the boys) and treadmill speed attained during the test (r=0.489 in the girls and 0.490 in the boys). Significant correlations were also found between [NH3]p1 obtained during the treadmill test and the times of 30- and 60-m runs (r= –0.676 and –0.648, respectively) in the boys but not in the girls. A comparison of the present data with those reported previously in adults showed that increases in [NH3]p1 during maximal exercise in children would seem to be lower than in adult subjects both in absolute values and in relation to [1a]b. The present data would also suggest that [NH3]p1 reflects involvement of anaerobic processes during maximal treadmill exercise in circumpubertal children but it has a small practical value for predictiton of their sprint running ability.  相似文献   

7.
Summary Twelve male and female subjects (eight trained, four untrained) exercised for 30 min on a treadmill at an intensity of maximal O2 consumption (% O2max) 90.0%, SD 4.7 greater than the anaerobic threshold of 4 mmol ·1–1 (Than =83.6% O2max, SD 8.9). Time-dependent changes in blood lactate concentration ([lab]) during exercise occurred in two phases: the oxygen uptake ( O2) transient phase (from 0 to 4 min) and the O2 steady-state phase (4–30 min). During the transient phase, [lab] increased markedly (l.30 mmol · l –1 · min –1, SD 0.13). During the steady-state phase, [lab] increased slightly (0.02 mmol · 1–1 · min–1, SD 0.06) and when individual values were considered, it was seen that there were no time-dependent increases in [lab] in half of the subjects. Following hyperlacticaemia (8.8 mmol -l–1, SD 2.0) induced by a previous 2 min of supramaximal exercise (120% O2max), [lab] decreased during the O2 transient (–0.118 mmol · 1–1 · min–1, SD 0.209) and steady-state (–0.088 mmol · 1–1 · min –1, SD 0.103) phases of 30 min exercise (91.4% O2max, SD 4.8). In conclusion, it was not possible from the Than to determine the maximal [lab] steady state for each subject. In addition, lactate accumulated during previous supramaximal exercise was eliminated during the O2 transient phase of exercise performed at an intensity above the Than. This effect is probably largely explained by the reduction in oxygen deficit during the transient phase. Under these conditions, the time-course of changes in [lab] during the O2 steady state was also affected.  相似文献   

8.
The purpose of this study was to investigate the influences of treadmill gradients on the rating of perceived exertion (RPE) at two fixed blood lactate concentrations ( [La]b). Ten subjects performed three different incremental treadmill protocols by running either uphill (concentrically-biased), downhill (eccentrically-biased), or on the flat (non-biased). Individual data of each protocol were interpolated to reflect [La]b corresponding to 2.0 and 4.0 mmol·l–1. At 2.0 mmol·l–1 [La b, RPE and treadmill speed during downhill running were greater than during level running which was greater than during uphill running (p < 0.05) . Also, the downhill heart rate (HR) was greater than the uphill HR, and downhill minute ventilation ( ) was greater than the level . Treadmill speed was the only measure at 4.0 mmol·l–1 [La]b to differ between gradients. There was a moderate correlation of RPE with HR at both [La]b (r = 0.73 at 2.0 mmol·l–1;r = 0.48 at 4.0 mmol·l–1) while treadmill speed was moderately correlated with RPE only at 2.0 mmol·l–1 [La]b (r = 0.70). The results of this study demonstrated that the degree of eccentric-bias during running exercise is an influence of perceived exertion at a moderate but not at a high exercise intensity.  相似文献   

9.
The energy cost of running increases with the distance covered   总被引:1,自引:0,他引:1  
Summary The net energy cost of running per unit of body mass and distance (Cr, ml O2·kg–1·km–1) was determined on ten amateur runners before and immediately after running 15, 32 or 42 km on an indoor track at a constant speed. The Cr was determined on a treadmill at the same speed and each run was performed twice. The average value of Cr, as determined before the runs, amounted to 174.9 ml O2·kg–1·km–1 SD 13.7. After 15 km, Cr was not significantly different, whereas it had increased significantly after 32 or 42 km, the increase ranging from 0.20 to 0.31 ml O2·kg–1·km–1 per km of distance (D). However, Cr before the runs decreased, albeit at a progressively smaller rate, with the number of trials (N), indicating an habituation effect (H) to treadmill running. The effects of D alone were determined assuming that Cr increased linearly with D, whereas H decreased exponentially with increasing N, i.e.C r =C r0+aD+He–bN. The Cro, the true energy cost of running in nonfatigued subjects accustomed to treadmill running, was assumed to be equal to the average value of Cr before the run for N equal to or greater than 7 (171.1 ml O2·kg–1·km–1, SD 12.7;n = 30). A multiple regression of Cr on N and D in the form of the above equation showed firstly that Cr increased with the D covered by 0.123%·km–1, SEM 0.006 (i.e. about 0.22 ml O2·kg–1·km–1 per km,P<0.001); secondly, that in terms of energy consumption (obtained from oxygen consumption and the respiratory quotient), the increase of Cr with D was smaller, amounting on average to 0.08%·km–1 (0.0029 J·kg–1·m–1,P<0.001) and thirdly that the effects of H amounted to about 16% of Cr0 for the first trial and became negligible after three to four trials.  相似文献   

10.
The regression of oxygen uptake (O2) on power output and the O2 demand predicted for suprapeak oxygen uptake (O2peak) exercise (power output = 432 W) were compared in ten male cyclists [C, mean O2peak = 67.9 (SD 4.2) ml · kg–1 · min–1] and nine active, yet untrained men [UT, mean O2peak = 54.1 (SD 6.5) ml · kg–1 · min–1]. The O2-power regression was determined using a continuous incremental cycle test (CON4), performed twice, which comprised several 4-min exercise periods progressing in intensity from approximately 40%–85% O2peak. Minute ventilation (E), heart rate (HR), respiratory exchange ratio (R), blood lactate concentration ([1a]b) and rectal temperature (T re) were measured at rest and during CON4. The slope of the O2-power regression was greater (P 0.05) in C [12.4 (SD 0.7) ml · min–1. W–1] compared to UT [11.7 (SD 0.4) ml · min–1 W–1]; as a result, the O2 demand (at 432 W) was also higher (P 0.05) in C [5.97 (SD 0.23) l · min–1] than UT [5.70 (SD 0.15) 1 · min–1]. ExerciseR and [la]b were lower (P 0.05) in C .in comparison to UT at all power outputs, whereas E and HR were relatively lower (P 0.05) in C at power outputs approximating 180 W, 220 W and 270 W. Differences in fat metabolism estimated over the first three power outputs accounted for approximately 19% of the difference in O2-power slopes between the groups and up to 46% of the difference in O2 at a given intensity. Although the O2-power regressions were linear for C [r = 0.997 (SD 0.001)] and UT [r = 0.997 (SD 0.001)], the O2-power slope was higher at power outputs at or above the lactate threshold (13.2 ml · min–1 · W–1 than at lower intensities (11.6 ml · min–1 · W–1) in C, an effect which was less profound in UT. As a result, the exclusion of O2 at the highest power outputs completely abolished the difference in O2-power slopes between C and UT. Thus, the relatively higher O2 during incremental exercise in C can be almost entirely attributed to the higher O2 cost of cycling at higher power outputs. In addition, the presence of non-linear responses in O2 at higher intensities also confirms the invalidity of describing the O2 response across a wide range of power outputs using a linear function, and challenges the validity of predicting the O2 demand of more intense exercise by a linear extrapolation of this same function.  相似文献   

11.
Summary The energy cost of walking (C w). and running (C r), and the maximal O2 consumption (VO2max) were determined in a field study on 17 Pygmies (age 24 years, SD 6; height 160 cm, SD 5; body mass 57.2 kg, SD 4.8) living in the region of Bipindi, Cameroon. TheC w varied from 112 ml·kg–1·km–1, SD 25 [velocity (), 4 km·h–1] to 143 ml·kg–1·km–1, SD 16 (, 7 km·h–1). Optimal walking was 5 km·h–1. TheC r was 156 ml·kg–1·km–1, SD 14 (, 10 km·h–1) and was constant in the 8–11 km·h–1 speed range. TheVO2max was 33.7 ml·kg–1· min–1, i.e. lower than in other African populations of the same age. TheC r andC w were lower than in taller Caucasian endurance runners. These findings, which challenge the theory of physical similarity as applied to animal locomotion, may depend either on the mechanics of locomotion which in Pygmies may be different from that observed in Caucasians, or on a greater mechanical efficiency in Pygmies than in Caucasians. The lowC r values observed enable Pygmies to reach higher running speeds than would be expected on the basis of theirVO2max.  相似文献   

12.
Summary We attempted to determine the change in total excess volume of CO2 Output (CO2 excess) due to bicarbonate buffering of lactic acid produced in exercise due to endurance training for approximately 2 months and to assess the relationship between the changes of CO2 excess and distance-running performance. Six male endurance runners, aged 19–22 years, were subjects. Maximal oxygen uptake (VO2max), oxygen uptake (VO2) at anaerobic threshold (AT), CO2 excess and blood lactate concentration were measured during incremental exercise on a cycle ergometer and 12-min exhausting running performance (12-min ERP) was also measured on the track before and after endurance training. The absolute magnitudes in the improvement due to training for C02 excess per unit of body mass per unit of blood lactate accumulation (Ala) in exercise (CO2 excess·mass–1·la), 12-min ERP, VO2 at AT (AT-VO2) and VO2max on average were 0.8 ml·kg–1·l–1·mmol–1, 97.8m, 4.4 ml·kg–1· min–1 and 7.3 ml·kg–1·min–1, respectively. The percentage change in CO2 excess·mass–1·la (15.7%) was almost same as those of VO2max (13.7%) and AT-VO2 (13.2%). It was found to be a high correlation between the absolute amount of change in CO2 excess·mass–1·la and the absolute amount of change in AT-VO2 (r=0.94, P<0.01). Furthermore, the absolute amount of change in C02 excess·mass–1·la, as well as that in AT-VO2 (r=0.92, P<0.01), was significantly related to the absolute amount of change in 12-min ERP (r=0.81, P<0.05). It was concluded that a large CO2 excess·mass–1·la–1 of endurance runners could be an important factor for success in performance related to comparatively intense endurance exercise such as 3000–4000 m races.  相似文献   

13.
On reaching the respiratory compensation point (RCP) during rapidly increasing incremental exercise, the ratio of minute ventilation (VE) to CO2 output (VCO2) rises, which coincides with changes of arterial partial pressure of carbon dioxide (P aCO2). Since P aCO2 changes can be monitored by transcutaneous partial pressure of carbon dioxide (PCO2,tc) RCP may be estimated by PCO2,tc measurement. Few available studies, however, have dealt with comparisons between PCO2,tc threshold (T AT) and lactic, ventilatory or gas exchange threshold (V AT), and the results have been conflicting. This study was designed to examine whether this threshold represents RCP rather than V AT. A group of 11 male athletes performed incremental excercise (25 W · min–1) on a cycle ergometer. The PCO2,tc at (44°C) was continuously measured. Gas exchange was computed breath-by-breath, and hyperaemized capillary blood for lactate concentration ([la]b) and P aCO2 measurements was sampled each 2 min. The T AT was determined at the deflection point of PCO2,tc curve where PCO2,tc began to decrease continuously. The V AT and RCP were evaluated with VCO2 compared with oxygen uptake (VO2) and VE compared with the VCO2 method, respectively. The PCO2,tc correlated with P aCO2 and end-tidal PCO2. At T AT, power output [P, 294 (SD 40) W], VO2 [4.18 (SD 0.57)l · min–1] and [la] [4.40 (SD 0.64) mmol · l–1] were significantly higher than those at V AT[P 242 (SD 26) W, VO2 3.56 (SD 0.53) l · min–1 and [la]b 3.52 (SD 0.75), mmol · l–1 respectively], but close to those at RCP [P 289 (SD 37) W; VO2 3.97 (SD 0.43) l · min and [la]b 4.19 (SD 0.62) mmol · l–1, respectively]. Accordingly, linear correlation and regression analyses showed that P, VO2 and [la]b at T AT were closer to those at RCP than at V AT. In conclusion, the T AT reflected the RCP rather than V AT during rapidly increasing incremental exercise.  相似文献   

14.
Summary The purpose of this study was to investigate criteria for maximal effort in middle-aged men and women undertaking a maximal exercise test until they were exhausted if no measurements of oxygen uptake are made. A large group of 2164 men and 975 women, all active in sports and aged between 40 and 65 years, volunteered for a medical examination including a progressive exercise test to exhaustion on a cycle ergometer. In the 3rd min of recovery a venous blood sample was taken to determine the plasma lactate concentration ([la]p, 3min). Lactate concentration and maximal heart rate (f c, max) were lower in the women than in the men (P<0.001). Multiple regression analyses were performed to assess the contribution of sex to [la]p, 3 min, independent of age and f c max, It was found that [la]p,3 min was about 2.5 mmol·l–1 lower in women than in men of the same age and f c, max. In our population 88% of the men and 85% of the women met a combination of the following f c, max and [la]p, 3min criteria: f c, max equal to or greater than 220 minus age beats·min–1 and/or [la]p, 3min equal to or greater than 8 mmol·l–1 in the men and f c, max equal to or greater than 220 minus age beats·min–1 and/or [la]p, 3min equal to or greater than 5.5 mmol·1–1 in the women.  相似文献   

15.
Summary This study examined the effect of exposure of the whole body to moderate cold on blood lactate produced during incremental exercise. Nine subjects were tested in a climatic chamber, the room temperature being controlled either at 30°C or at 10°C. The protocol consisted of exercise increasing in intensity in 35 W increments every 3 min until exhaustion. Oxygen consumption (VO2) was measured during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for the measurement of blood glucose, free fatty acid (FFA), noradrenaline (NA) and adrenaline (A) concentrations and, during the last 15 s of each exercise intensity, for the determination of blood lactate concentration [la]b. TheVO2 was identical under both environments. At 10°C, as compared to 30°C, the lactate anaerobic threshold (Than, la ) occurred at an exercise intensity 15 W higher and [Than, la ]b was lower for submaximal intensities above the Than, la Regardless of ambient temperature, glycaemia, A and NA concentrations were higher at exhaustion while FFA was unchanged. At exhaustion the NA concentration was greater at 10°C [15.60 (SEM 3.15) nmol·l–1] than at 30°C [8.64 (SEM 2.37) nmol·l–1]. We concluded that exposure to moderate cold influences the blood lactate produced during incremental exercise. These results suggested that vasoconstriction was partly responsible for the lower [la]b observed for submaximal high intensities during severe cold exposure.  相似文献   

16.
The aim of this study was to estimate the characteristic exercise intensity CL which produces the maximal steady state of blood lactate concentration (MLSS) from submaximal intensities of 20 min carried out on the same day and separated by 40 min. Ten fit male adults [maximal oxygen uptake max 62 (SD 7) ml · min–1 · kg–1] exercisOed for two 30-min periods on a cycle ergometer at 67% (test 1.1) and 82% of max (test 1.2) separated by 40 min. They exercised 4 days later for 30 min at 82% of max without prior exercise (test 2). Blood lactate was collected for determination of lactic acid concentration every 5 min and heart rate and O2 uptake were measured every 30 s. There were no significant differences at the 5th, 10th, 15th, 20th, 25th, or 30th min between , lactacidaemia, and heart rate during tests 1.2 and 2. Moreover, we compared the exercise intensities CL which produced the MLSS obtained during tests 1.1 and 1.2 or during tests 1.1 and 2 calculated from differential values of lactic acid blood concentration ([1a]b) between the 30th and the 5th min or between the 20th and the 5th min. There was no significant difference between the different values of CL [68 (SD 9), 71 (SD 7), 73 (SD 6),71 (SD 11) % of max (ANOVA test,P<0.05). Four subjects ran for 60 min at their CL determined from periods performed on the same day (test 1.1 and 1.2) and the difference between the [la]b at 5 min and at 20 min ( ([la]b)) was computed. The [la]b remained constant during exercise and ranged from 2.2 to 6.7 mmol · l–1 [mean value equal to 3.9 (SD 1) mmol · l–1]. These data suggest that the CL protocol did not overestimate the exercise intensity corresponding to the maximal fractional utilization of max at MLSS. For half of the subjects the CL was very close to the higher stage (82% of max where an accumulation of lactate in the blood with time was observed. It can be hypothesized that CL was very close to the real MLSS considering the level of accuracy of [la]b measurement. This study showed that exercise at only two intensities, performed at 65% and 80% of max and separated by 40 min of complete rest, can be used to determine the intensity yielding a steady state of [la–1]b near the real MLSS workload value.  相似文献   

17.
Summary The effects of growth and pubertal development on bio-energetic characteristics were studied in boys aged 6–15 years (n = 144; transverse study). Maximal oxygen consumption (VO2max, direct method), mechanical power at (VO2max ( ), maximal anaerobic power (Pmax; force-velocity test), mean power in 30-s sprint (P 30s; Wingate test) were evaluated and the ratios between Pmax,P 30s and were calculated. Sexual maturation was determined using salivary testosterone as an objective indicator. Normalized for body massVO2max remained constant from 6 to 15 years (49 ml· min–1 · kg–1, SD 6), whilst Pmax andP 30s increased from 6–8 to 14–15 years, from 6.2 W · kg–1, SD 1.1 to 10.8 W · kg–1, SD 1.4 and from 4.7 W · kg–1, SD 1.0 to 7.6 W · kg–1, SD 1.0, respectively, (P < 0.001). The ratio Pmax: was 1.7 SD 3.0 at 6–8 years and reached 2.8 SD 0.5 at 14–15 years and the ratioP 30s: changed similarly from 1.3 SD 0.3 to 1.9 SD 0.3. In contrast, the ratio Pmax:P 30s remained unchanged (1.4 SD 0.2). Significant relationships (P < 0.001) were observed between Pmax (W · kg–1),P 30s (W · kg–1), blood lactate concentrations after the Wingate test, and age, height, mass and salivary testosterone concentration. This indicates that growth and maturation have together an important role in the development of anaerobic metabolism.  相似文献   

18.
Ammonia and lactate in the blood after short-term sprint exercise   总被引:2,自引:0,他引:2  
Summary Nine well-trained subjects performed 15-, 30-and 45-s bouts of sprint exercise using a cycle ergometer. There was a significant difference in the mean power between a 15-s sprint (706.0 W, SD 32.5) and a 30-s sprint (627.0 W, SD 27.8;P<0.01). The mean power of the 30-s sprint was higher than that of the 45-s sprint (554.7 W, SD 29.8;P<0.01). Blood ammonia and lactate were measured at rest, immediately after warming-up, and 2.5, 5, 7.5, 10, 12.5 min after each sprint. The peak blood ammonia content was 133.8 mol·1–1, SD 33.5,- for the 15-s sprint, 130.2 ol·1–1, SD 44.9, for the 30-s sprint, and 120.8 mol ·1–1, SD 24.6, for the 45-s sprint. Peak blood lactates after the 15-, 30- and 45-s sprints were 8.1 mmol · 1–1, SD 1.7, 11.2 mmol · 1–1, SD 2.4, and 14.7 mmol ·1–1, SD 2.1, respectively. There was a significant linear relationship between peak blood ammonia and lactate in the 15-s (r, 0.709;P< 0.05), 30-s (r, 0.797;P<0.05) and 45-s (r, 0.696;P<0.05) sprints. Though the peak blood lactate content increased significantly with increasing duration of the sprints (P<0.01), no significant difference was found in peak blood ammonia content among the 15-, 30- and 45-s sprints. These results suggest that the peak value of ammonia in the blood appears in sprints within 15-s and that the blood ammonia level is linked to the lactate in the blood.  相似文献   

19.
In addition to a high aerobic fitness, the ability to buffer hydrogen ions (H+) may also be important for repeated-sprint ability (RSA). We therefore investigated the relationship between muscle buffer capacity (min vivo and min vitro) and RSA. Thirty-four untrained females [mean (SD): age 19 (1) years, maximum oxygen uptake (O2peak) 42.3 (7.1) ml·kg–1·min–1] completed a graded exercise test (GXT), followed by a RSA cycle test (five 6-s sprints, every 30 s). Capillary blood was sampled during the GXT and before and after the RSA test to determine blood pH (pHb) and lactate concentration ([La]b). Muscle biopsies were taken before (n=34) and after (n=23) the RSA test to determine muscle lactate concentration ([La]i), hydrogen ion concentration ([H+]i) pHi, min vivo and min vitro. There were significant correlations between work decrement (%) and min vivo (r=–0.72, P<0.05), O2peak (r=–0.62, P<0.05), lactate threshold (LT) (r=–0.56, P<0.05) and changes in [H+]i (r=0.41, P<0.05). There were however, no significant correlations between work decrement and min vitro, or changes in [La]i, or [La]b. There were also no significant correlations between total work (J·kg–1) during the RSA test and min vitro, min vivo, or changes in [La]i, pHi, [La]b, or pHb. There were significant correlations between total work (J·kg–1) and both O2peak (r=0.60, P<0.05) and LT(r=0.54, P<0.05). These results support previous research, identifying a relationship between RSA and aerobic fitness. This study is the first to identify a relationship between min vivo and RSA. This suggests that the ability to buffer H+ may be important for maintaining performance during brief, repeated sprints.  相似文献   

20.
We examined the effects of sodium bicarbonate (BIC) and sodium citrate (CIT) ingestion on distance running performance. Seven male runners [mean = 61.7 (SEM 1.7) ml · kg–1 · min–1] performed three 30-min treadmill runs at the lactate threshold (LT) each followed by a run to exhaustion at 110% of LT. The runs were double-blind and randomly assigned from BIC (0.3 g · kg body mass–1), CIT (0.5 g · kg body mass–1) and placebo (PLC, wheat flour, 0.5 g · kg body mass–1). Venous blood samples were collected at 5, 15 and 25 min during the run and immediately post-exhaustion (POST-EX) and analysed for pH, and the concentrations of lactate ([1a]b) and bicarbonate ([HCO3 ]). Performance was measured as running time to exhaustion at 110% of LT (TIME-EX). The pH was significantly higher (P 0.05) for the BIC and CIT trials during exercise, but not POST-EX compared to PLC. The [1a]b was significantly higher (P 0.05) for the CIT trial compared to PLC during exercise, and for both CIT and BIC compared to PLC at POST-EX. Blood [HCO3 ] was significantly higher (P 0.05) during exercise for BIC compared to PLC. TIME-EX was not significantly different among treatments: BIC 287 (SEM 47.4) s; CIT 172.8 (SEM 29.7) s; and PLC 222.3 (SEM 39.7) s. Despite the fact that buffer ingestion produced favourable metabolic conditions during 30 min of high intensity steady-state exercise, a significant improvement in the subsequent maximal exercise run to exhaustion did not occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号