首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although most agree that 17β-estradiol is neuroprotective via a variety of mechanisms, less is known about the role that biological sex plays in receptor-mediated estradiol neuroprotection. To address this issue we isolated primary cortical neurons from rat pups sorted by sex and assessed the ability of estradiol to protect the neurons from death induced by glutamate. Five-minute pretreatment with 10–50 nM 17β-estradiol protected female but not male neurons from glutamate toxicity 24 h later. Both estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) are expressed in these cultures. Experiments using an ERα selective agonist or antagonist indicate that this receptor is important for neuroprotection in female cortical neurons. The ERβ selective agonist conveys a small degree of neuroprotection to both male and female cortical neurons. Interestingly, we found that 17α estradiol and the novel membrane estrogen receptor (mER) agonist STX, but not bovine serum albumin conjugated estradiol or the GPR30 agonist G1 were neuroprotective in both male and female neurons. Taken together these data highlight a role for ERα in sexually dimorphic neuroprotection.  相似文献   

2.
While glutamatergic transmission is severely altered by early degeneration of cortico-cortical connections and hippocampal projections in Alzheimer's disease (AD), the role of glutamate receptors in the pathogenesis of AD is not yet defined clearly. Nonetheless, as reviewed here, the topographical distribution of different types of receptors likely contributes to the regional selective nature of neuronal degeneration. In particular, metabotropic glutamate receptors (mGluR) may contribute the pathogenesis of many neurological conditions and also regulate neuronal vulnerability against cytotoxic stress. Thus, we here discuss the possible role of mGluR in the pathogenesis of AD based on the results from other neurodegenerative diseases that may give us clues to solve the mysterious selective neurodegeneration evident in AD.  相似文献   

3.
Lu J  Goula D  Sousa N  Almeida OF 《Neuroscience》2003,121(1):123-131
Glutamate receptors have been proposed to mediate the apoptotic actions of glucocorticoids in hippocampal cells. To further analyze the role of glutamate receptors in this process, we pretreated primary hippocampal cells from neonatal (postnatal day 4) rats with antagonists of ionotropic glutamate receptor (iGluR) and metabotropic glutamate receptor (mGluR) antagonists before exposure to the specific glucocorticoid receptor agonist dexamethasone (DEX) at a dose of 1 microM. Dizocilpine (MK801; a general N-methyl-D-aspartic acid [NMDA] receptor antagonist, NMDAR antagonist) and ifenprodil (a specific ligand of the NMDAR 2B subunit, NR2B), were used to block iGluR; (RS)-alpha-ethyl-4-carboxyphenylglycine (E4CPG) and (RS)-alpha-cyclopropyl-4-phosphonophenyl-glycine (CPPG) were employed as I/II (E4CPG) and II/III (CPPG) mGluR antagonists. Blockade of iGluR resulted in a significant attenuation of DEX-induced cell death; the finding that ifenprodil exerted a similar potency to MK801 demonstrates the involvement of NR2B receptors in glucocorticoid-induced cell death. Apoptosis accounted for a significant amount of the cell loss observed, as detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling histochemistry for the in situ labeling of DNA breaks; apoptotic cells were distinguished from necrosis on the basis of morphological criteria, including chromatin condensation, membrane blebbing and presence of apoptotic bodies. Treatment with E4CPG and CPPG completely abolished the apoptotic response to DEX, thus showing the additional contribution of mGluR to the phenomenon. Further, dose-response studies with NMDA revealed that whereas high (10 microM) doses of NMDA themselves elicit cytotoxic responses, low (1-5 microM) concentrations of NMDA can effectively oppose DEX-induced cell death. Interestingly, the neuroprotective actions of low dose NMDA stimulation were abolished when either synaptic or extrasynaptic NMDA receptors were blocked with MK801 in combination with the GABA receptor antagonist bicuculline (synaptic) or ifenprodil (extrasynaptic). In summary, the present data show that both iGluR and mGluR mediate the neurotoxic effects of glucocorticoids on hippocampal cells and that pre-treatment with low doses of NMDA, by acting on synaptic and extrasynaptic receptors, render hippocampal cells less vulnerable to glucocorticoid insults.  相似文献   

4.
Group I metabotropic glutamate receptors: implications for brain diseases.   总被引:16,自引:0,他引:16  
Glutamate is the major excitatory neurotransmitter in the brain and plays a unique role in a variety of central nervous system (CNS) functions. The discovery of the metabotropic receptors (mGluRs), a family of G-protein coupled receptors than can be activated by glutamate, has led to an impressive number of studies in recent years aimed at understanding their biochemical, physiological and pharmacological characteristics. The eight mGluRs now known are divided into three groups according to their sequence homology, signal transduction mechanisms, and agonist selectivity. Group I mGluRs include mGluR1 and mGluR5, which are linked to the activation of phospholipase C; Groups II and III include all others and are negatively coupled to adenylyl cyclases. The availability in recent years of agents selective for Group I mGluRs has made possible the study of the physiological roles of these receptors in the CNS. In addition to mediating glutamatergic neurotransmission, Group I mGluRs can modulate other neurotransmitter receptors, including GABA and the ionotropic glutamate receptors. Group I mGluRs are involved in many CNS functions and may participate in a variety of disorders such as pain, epilepsy, ischemia, and chronic neurodegenerative diseases. This class of receptor may provide important pharmacological therapeutic targets and elucidating its functions will be relevant to develop new treatments for neurological and psychiatric disorders in which glutamatergic neurotransmission is abnormally regulated. In this review anatomical, physiological and pharmacological results are presented with a special emphasis on the role of Group I mGluRs in functional and pathological processes.  相似文献   

5.
Synaptically released glutamate activates ionotropic and metabotropic receptors at central synapses. Metabotropic glutamate receptors (mGluRs) are thought to modulate membrane conductances through transduction cascades involving G proteins. Here we show, in CA3 pyramidal cells from rat hippocampus, that synaptic activation of type 1 mGluRs by mossy fiber stimulation evokes an excitatory postsynaptic response independent of G-protein function, while inhibiting an afterhyperpolarization current through a G-protein-coupled mechanism. Experiments using peptide activators and specific inhibitors identified a Src-family protein tyrosine kinase as a component of the G-protein-independent transduction pathway. These results represent the first functional evidence for a dual signaling mechanism associated with a heptahelical receptor such as mGluR1, in which intracellular transduction involves activation of either G proteins or tyrosine kinases.  相似文献   

6.
Brief exposure of cortical or hippocampal cell cultures to glutamate (500 microM) resulted in a progressive neuronal necrosis which is maximal 18-24 h later. Pretreatment of the cultures by a phencyclidine derivative: thienylphencyclidine (TCP), or the TCP precursor: GK86, or MK801 protected against glutamate toxicity. Non-competitive antagonists of N-methyl-D-aspartate receptors appear as potent tools for the in vitro protection of neuronal cells against excitatory amino acid toxicity.  相似文献   

7.
Activity-dependent and sustained alterations in synaptic efficacy are widely regarded as the cellular correlates underlying learning and memory. Metabotropic glutamate receptors (mGluRs) are intrinsically involved in both hippocampal synaptic plasticity and spatial learning. Group II mGluRs are required for persistent hippocampal long-term depression (LTD), but are not required for long-term potentiation (LTP) in the hippocampal CA1 region in vivo. The role of these receptors in spatial learning, and in synaptic plasticity in the dentate gyrus in vivo has not yet been the subject of close scrutiny. We investigated the effects of group II mGluR antagonism on LTP and LTD in the adult rat, at medial perforant path-dentate gyrus synapses, and on spatial learning in the eight-arm radial maze. Daily application of the group 2 mGluR antagonist (2S)-alpha-ethylglutamic acid (EGLU) resulted in impairment of long-term (reference) memory with effects becoming apparent 6 days after training and drug-treatment began. Short-term (working) memory was unaffected throughout the 10-day study. Acute injection of EGLU did not affect either LTD or LTP in the dentate gyrus in vivo. Following six daily applications of EGLU a clear impairment of LTD but not LTP was apparent however. These data support that prolonged antagonism of group II mGluRs results in an impairment of LTD that parallels the appearance of spatial memory deficits arising from group II mGluR antagonism. These findings support the importance of group II mGluRs for spatial memory formation and offer a further link between LTD and the encoding of spatial information in the hippocampus.  相似文献   

8.
9.
In an earlier study, we demonstrated that PAN-811 (3-aminopyridine-2-carboxaldehyde thiosemicarbazone), a novel neuroprotectant, provides protection against glutamate, staurosporine, veratridine, or hypoxia/hypoglycemia toxicities in primary cortical neuronal cultures by upregulating Bcl-2 expression [R.-W. Chen, C. Yao, X.C. Lu, Z.-G. Jiang, R. Whipple, Z. Liao, H.A. Ghanbari, B. Almassian, F.C. Tortella, J.R. Dave. PAN-811 (3-aminopyridine-2-carboxaldehyde thiosemicarbazone), a novel neuroprotectant, elicits its function in primary neuronal cultures by upregulating Bcl-2 expression. Neuroscience 135 (2005) 191–201]. Both JNK (c-Jun N-terminal kinase) and p38 MAP (mitogen-activated protein) kinase activation have a direct inhibitory action on Bcl-2 by phosphorylation. In the present study, we continued to explore the mechanism of PAN-811 neuroprotection. Our results indicate that treatment of cultured cortical neurons with glutamate (100 μM) induces phosphorylation of both JNK and p38 MAPK. Specifically, pretreatment of neurons with 10 μM PAN-811 (an optimal neuroprotective concentration) for 1 h, 4 h, or 24 h significantly suppresses glutamate-mediated activation of both JNK and p38 MAPK. Furthermore, the p38 MAPK-specific inhibitor SB203580 and the JNK-specific inhibitor SP600125 prevented glutamate-induced neuronal death in these primary cultures. Our results demonstrate that glutamate-induced phosphorylation of JNK and p38 MAPK is suppressed by PAN-811, which might contribute to Bcl-2 upregulation and PAN-811 neuroprotection.  相似文献   

10.
The thalamus relays sensory information to cortex, but this information may be influenced by excitatory feedback from cortical layer VI. The full importance of this feedback has only recently been explored, but among its possible functions are influences on the processing of sensory features, synchronization of thalamic firing, and transitions in response mode of thalamic relay cells. Uncontrolled, corticothalamic feedback has also been implicated in pathological thalamic rhythms associated with certain neurological disorders. We have found a form of presynaptic inhibition of corticothalamic synaptic transmission that is mediated by a Group II metabotropic glutamate receptor (mGluR) and activated by high-frequency corticothalamic activity. We tested putative retinogeniculate and corticogeniculate synapses for Group II mGluR modulation within the dorsal lateral geniculate nucleus of the ferret thalamus. Stimulation of optic-tract fibers elicited paired-pulse depression of excitatory postsynaptic currents (EPSCs), whereas stimulation of the optic radiations elicited paired-pulse facilitation. Paired-pulse responses were subsequently used to characterize the pathway of origin of stimulated synapses. Group II mGluR agonists (LY379268 and DCG-IV) applied to thalamic neurons under voltage-clamp conditions reduced the amplitude of corticogeniculate EPSCs. Stimulation with high-frequency trains produced a facilitating response that was reduced by Group II mGluR agonists, but was enhanced by the selective antagonist LY341495, revealing a presynaptic, mGluR-mediated reduction of high-frequency corticogeniculate feedback. Agonist treatment did not affect EPSCs from stimulation of the optic tract. NAAG (reported to be selective for mGluR3) was ineffective at the corticogeniculate synapse, implicating mGluR2 in the observed effects. Our data are the first to show a synaptically elicited form of presynaptic inhibition of corticothalamic synaptic transmission that is mediated by presynaptic action of mGluR2. This presynaptic inhibition may partially mute sensory feedback and prevent reentrant excitation from initiating abnormal thalamic rhythms.  相似文献   

11.
Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are G protein–coupled receptors (GPCRs) that are expressed at excitatory synapses in brain and spinal cord. GPCRs are often negatively regulated by specific G protein–coupled receptor kinases and subsequent binding of arrestin-like molecules. Here we demonstrate an alternative mechanism in which group I mGluRs are negatively regulated by proline-directed kinases that phosphorylate the binding site for the adaptor protein Homer, and thereby enhance mGluR–Homer binding to reduce signaling. This mechanism is dependent on a multidomain scaffolding protein, Preso1, that binds mGluR, Homer and proline-directed kinases and that is required for their phosphorylation of mGluR at the Homer binding site. Genetic ablation of Preso1 prevents dynamic phosphorylation of mGluR5, and Preso1(?/?) mice exhibit sustained, mGluR5-dependent inflammatory pain that is linked to enhanced mGluR signaling. Preso1 creates a microdomain for proline-directed kinases with broad substrate specificity to phosphorylate mGluR and to mediate negative regulation.  相似文献   

12.
Kainate receptors have recently been shown to be involved in synaptic transmission, to regulate transmitter release and to mediate synaptic plasticity in different regions of the CNS. However, very little is known about endogenous mechanisms that can control native kainate receptor signalling. In this study we have found that GluR5-containing kainate receptor-mediated actions can be modulated by activation of protein kinase C (PKC) but not protein kinase A (PKA). However, both PKA and PKC directly phosphorylate the GluR5 subunit of kainate receptors. Metabotropic glutamate (mGlu) receptors are well known to be involved in synaptic transmission, regulation of transmitter release and synaptic plasticity in a variety of brain regions. We now demonstrate that kainate receptor signalling is enhanced by activation of group I mGlu receptors, in a PKC-dependent manner. These data demonstrate for the first time that kainate receptor function can be modulated by activation of metabotropic glutamate receptors and have implications for understanding mechanisms of synaptic transmission, plasticity and disorders such as epilepsy.  相似文献   

13.
Overactivity of the striatopallidal pathway, associated with an enhancement of enkephalin expression, has been suggested to contribute to the development of parkinsonian symptoms. The aim of the present study was to examine whether the blockade of group I metabotropic glutamate receptors: subtypes 1 and 5 (mGluR1/5), or stimulation of group II: subtypes 2 and 3 (mGluR2/3) may normalize enkephalin expression in the striatopallidal pathway in an animal model of parkinsonism. The proenkephalin mRNA level measured by in situ hybridization in the striatum was increased by pretreatments with haloperidol (1.5 mg/kg s.c., three times, 3 h apart). Triple (3 h apart), bilateral, intrastriatal administration of selective antagonists of mGluR1: (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (3 x 5 microg/0.5 microl) or 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate (3 x 2.5 microg/0.5 microl), reversed the haloperidol-induced increases in proenkephalin mRNA levels in the rostral and central regions of the striatum. Similarly, repeated (6 times, 1.5 h apart), systemic injections of an antagonist of mGluR5, 2-methyl-6-(phenylethynyl)pyridine (6 x 10 mg/kg i.p.) counteracted an increase in the striatal proenkephalin mRNA expression elicited by haloperidol. None of the abovementioned antagonists of mGluR1 and mGluR5 per se influenced the proenkephalin expression. Differential effects were induced by agonists of the group II mGluRs, viz. (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine administered intraventricularly (3 times at 0.1-0.2 microg/4 microl, 3 h apart) increased both the normal and haloperidol-increased proenkephalin mRNA level, whereas (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate injected intrastriatally (3 times at 15 microg/0.5 microl, 3 h apart) was ineffective. The present study indicates that the blockade of striatal glutamate receptors belonging to the group I (mGluR1 and mGluR5) but not stimulation of the group II mGluRs may normalize the function of the striatopallidal pathway in an animal model of parkinsonism, which may be important for future antiparkinsonian therapy in humans.  相似文献   

14.
Monosodium glutamate (MSG) elicits a unique taste in humans called umami. Recent molecular studies suggest that glutamate receptors similar to those in brain are present in taste cells, but their precise role in taste transduction remains to be elucidated. We used giga-seal whole cell recording to examine the effects of MSG and glutamate receptor agonists on membrane properties of taste cells from rat fungiform papillae. MSG (1 mM) induced three subsets of responses in cells voltage-clamped at -80 mV: a decrease in holding current (subset I), an increase in holding current (subset II), and a biphasic response consisting of an increase, followed by a decrease in holding current (subset III). Most subset II glutamate responses were mimicked by the ionotropic glutamate receptor (iGluR) agonist N-methyl-D-aspartate (NMDA). The current was potentiated by glycine and was suppressed by the NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (AP5). The group III metabotropic glutamate receptor (mGluR) agonist L-2-amino-4-phosphonobutyric acid (L-AP4) usually mimicked the subset I glutamate response. This hyperpolarizing response was suppressed by the mGluR antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) and by 8-bromo-cAMP, suggesting a role for cAMP in the transduction pathway. In a small subset of taste cells, L-AP4 elicited an increase in holding current, resulting in taste cell depolarization under current clamp. Taken together, our results suggest that NMDA-like receptors and at least two types of group III mGluRs are present in taste receptor cells, and these may be coactivated by MSG. Further studies are required to determine which receptors are located on the apical membrane and how they contribute to the umami taste.  相似文献   

15.
Activation of metabotropic glutamate receptors (mGluRs) has diverse effects on the functioning of vertebrate synapses. The cellular mechanisms that underlie these changes, however, are largely unknown. The role of presynaptic mGluRs in modulating Ca(2+) dynamics and regulating neurotransmitter release was investigated at the vestibulospinal-reticulospinal (VS-RS) synapse in the lamprey brain stem. Application of the specific Group I mGluRs antagonist 7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) reduced the amplitude of consecutive high-frequency evoked excitatory postsynaptic currents (EPSCs). A series of experiments using techniques of electrophysiology and calcium imaging were carried out to determine the cellular mechanisms by which this phenomenon occurs. Concentration-dependent increases in the pre- and postsynaptic [Ca(2+)](i) were seen with the application of mGluR agonists. Similarly, high-frequency stimulation of axons caused a Group I mGluR-dependent enhancement in presynaptic Ca(2+) transients. Application of mGluR agonist caused a depolarization of the presynaptic elements, while thapsigargin decreased the high-frequency stimulus- and agonist-induced rises in [Ca(2+)](i). These data suggest that both membrane depolarization and the release of Ca(2+) from intracellular stores potentially play a role in mGluR-induced Ca(2+) signaling. To determine the effect of this modulation of Ca(2+) dynamics on spontaneous glutamate release, miniature EPSCs were recorded from postsynaptic reticulospinal neurons. A potent Group I mGluR agonist, (S)-homoquisqualic acid, caused a large increase in the frequency of events. These results demonstrate the presence of presynaptic Group I mGluRs at the VS-RS synapse. Activation of these receptors leads to a rise in [Ca(2+)](i) and enhances the spontaneous and evoked release of glutamate. Taken together, these studies highlight the importance of synaptic activation of these facilitatory autoreceptors in both short-term plasticity and synaptic transmission.  相似文献   

16.
Modulation of excessive glutamatergic transmission within the basal ganglia is considered as an alternative approach to reduce l-Dopa-induced dyskinesias (LIDs) in Parkinson's disease (PD). In this study receptor binding autoradiography of [3H]MPEP, a metabotropic glutamate receptor 5 (mGluR5) selective radioligand, was used to investigate possible changes in mGluR5 in the basal ganglia of l-Dopa-treated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys having developed LIDs compared to animals in which LIDs was prevented by adjunct treatments. LIDs were associated with an increase of mGluR5 specific binding in the posterior putamen and pallidum (+41% and +56%) compared to controls. By contrast, prevention of dyskinesias was associated with an important decrease of mGluR5 specific binding in these areas (-37% and -48%) compared with dyskinetic animals. Moreover, an upregulation (+34%) of mGluR5 receptor binding was seen in the anterior caudate nucleus of saline treated MPTP monkeys. This study is the first to provide evidence that enhanced mGluR5 specific binding in the posterior putamen and pallidum may contribute to the pathogenesis of LIDs in PD.  相似文献   

17.
Glutamatergic abnormalities play roles in several psychiatric disorders. Glutamate acts at two classes of receptors, ionotropic and metabotropic glutamate receptors (mGluR), the latter is classified into three group, based on receptor homology and signaling mechanisms. Among them, recent pharmacological and histochemical studies suggest that the group II mGluR (mGluR2 and mGluR3) plays crucial roles in the control of emotional states. We previously reported that MGS0039, a selective group II mGluR antagonist, exhibited dose-dependent antidepressant-like effects in some animal models. However, the mechanism by which group II mGluR antagonists exhibit such effects is still unclear. In the present two studies, we examined neuropharmacological effects of group II mGluR antagonists on monoaminergic neurons. In an electrophysiological study, MGS0039 dose-dependently and significantly increased the firing rate of dorsal raphe nucleus (DRN) serotonergic neurons. LY341495, another group II mGluR antagonist, also increased DRN serotonergic neural activity significantly. Consistent with the findings of this electrophysiological study, MGS0039 significantly increased extracellular level of serotonin in rat medial prefrontal cortex in a microdialysis study. In contrast, MGS0039 had no effect on the activity of locus coeruleus noradrenergic neurons. These findings suggest that modulation of serotonergic neuron might be, at least in part, responsible for the antidepressant-like effects of group II mGluR antagonists.  相似文献   

18.
The metabotropic glutamate receptors (mGluRs) are found throughout the central nervous system, where they modulate neuronal excitability and synaptic transmission. Here we report the presence of phospholipase C-coupled group I mGluRs (mGluR1 and mGluR5) outside the central nervous system on peripheral unmyelinated sensory afferents. Given their localization on predominantly nociceptive afferents, we investigated whether these receptors modulate nociceptive signaling, and found that agonist-induced activation of peripheral group I mGluRs leads to increased sensitivity to noxious heat, a phenomenon termed thermal hyperalgesia. Furthermore, group I mGluR antagonists not only prevent, but also attenuate established formalin-induced pain. Taken together, these results suggest that peripheral mGluRs mediate a component of hyperalgesia and may be therapeutically targeted to prevent and treat inflammatory pain.  相似文献   

19.
Synaptic activation of metabotropic glutamate receptors (mGluRs) in the locus coeruleus (LC) was investigated in adult rat brain slice preparations. Evoked excitatory postsynaptic potentials (EPSPs) resulting from stimulation of LC afferents were measured with current clamp from intracellularly recorded LC neurons. In this preparation, mGluR agonists (+/-)-1-aminocyclopentane-trans-1, 3-dicarboxylic acid (t-ACPD) and L(+)-2-amino-4-phosphonobutyric acid (L-AP4) activate distinct presynaptic mGluRs, resulting in an inhibition of EPSPs. When two stimuli were applied to afferents at intervals >200 ms, the amplitude of the second [test (T)] EPSP was identical in amplitude to the first [control(C)]. However, when a stimulation volley was delivered before T, the amplitude of the latter EPSP was consistently smaller than C. The activity-dependent depression (ADD) was dependent on the frequency and duration of the train and the interval between the train and T. ADD was potentiated in the presence of an excitatory amino acid (EAA) uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (t-PDC, 100 microM), changing the T/C ratio from 0.84 +/- 0.05 (mean +/- SE) in control to 0.69 +/- 0.04 in t-PDC (n = 9). In the presence of t-PDC, the depolarizing response of LC neurons to focally applied glutamate was also increased. Together, these results suggest that accumulation of EAA after synaptic stimulation may be responsible for ADD. To test if ADD is a result of the activation of presynaptic mGluRs, the effect of selective mGluR antagonists on ADD was assessed. In the presence of t-PDC, bath applied (S)-amino-2-methyl-4-phosphonobutanoic acid (MAP4, 500 microM), a mGluR group III antagonist, significantly reversed the decrease in T/C ratio after a train stimulation [from 0.66 +/- 0.04 to 0.81 +/- 0.02 (mean +/- SE), n = 5]. The T/C ratio in the presence of MAP4 was not different from that measured in the absence of a stimulation volley. Conversely, ethyl glutamic acid (EGLU, 500 microM), a mGluR group II antagonist, failed to alter the T/C ratio. Together, these results suggest that, in LC, group III presynaptic mGluR activation provides a feedback mechanism by which excitatory synaptic transmission can be negatively modulated during high-frequency synaptic activity. Furthermore, this study provides functional differentiation between presynaptic groups II and III mGluR in LC and suggests that the group II mGluR may be involved in functions distinct from those of group III mGluRs.  相似文献   

20.
Cerebellar basket and stellate neurons (BSNs) provide feed-forward inhibition to Purkinje neurons (PNs) and thereby play a principal role in determining the output of the cerebellar cortex. During low-frequency transmission, glutamate released at parallel fiber synapses excites BSNs by binding to AMPA receptors; high-frequency transmission also recruits N-methyl-d-aspartate (NMDA) receptors. We find that, in addition to these ligand-gated receptors, a G-protein-coupled glutamate receptor subtype participates in exciting BSNs. Stimulation of metabotropic glutamate receptor 1alpha (mGluR1alpha) with the mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) leads to an increase in spontaneous firing of BSNs and indirectly to an increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded in PNs. Under conditions in which ligand-gated glutamate receptors are blocked, parallel fiber stimulation generates a slow excitatory postsynaptic current (EPSC) in BSNs that is inhibited by mGluR1alpha-selective antagonists. This slow EPSC is capable of increasing BSN spiking and indirectly increasing sIPSCs frequency in PNs. Our findings reinforce the idea that distinct subtypes of glutamate receptors are activated in response to different patterns of activity at excitatory synapses. The results also raise the possibility that mGluR1alpha-dependent forms of synaptic plasticity may occur at excitatory inputs to BSNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号