首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limonene, a monocyclic monoterpene, is present in orange peel and other plants and has been shown to have chemopreventive activities. (+)- and (-)-Limonene enantiomers were incubated with human liver microsomes and the oxidative metabolites thus formed were analyzed using gas chromatography-mass spectrometry. Two kinds of metabolites, (+)- and (-)-trans-carveol (a product by 6-hydroxylation) and (+)- and (-)-perillyl alcohol (a product by 7-hydroxylation), were identified, and the latter metabolites were found to be formed more extensively, the former ones with liver microsomes prepared from different human samples. Sulfaphenazole, flavoxamine, and antibodies raised against purified liver cytochrome P450 (P450) 2C9 that inhibit both CYP2C9- and 2C19-dependent activities, significantly inhibited microsomal oxidations of (+)- and (-)-limonene enantiomers. The limonene oxidation activities correlated well with contents of CYP2C9 and activities of tolbutamide methyl hydroxylation in liver microsomes of 62 human samples, whereas these activities did not correlate with contents of CYP2C19 and activities of S-mephenytoin 4-hydroxylation. Of 11 recombinant human P450 enzymes (expressed in Trichoplusia ni cells) tested, CYP2C8, 2C9, 2C18, 2C19, and CYP3A4 catalyzed oxidations of (+)- and (-)-limonenes to respective carveols and perillyl alcohol. Interestingly, human CYP2B6 did not catalyze limonene oxidations, whereas rat CYP2B1 had high activities in catalyzing limonene oxidations. These results suggest that both (+)- and (-)-limonene enantiomers are oxidized at 6- and 7-positions by CYP2C9 and CYP2C19 in human liver microsomes. CYP2C9 may be more important than CYP2C19 in catalyzing limonene oxidations in human liver microsomes, since levels of the former protein are more abundant than CYP2C19 in these human samples. Species-related differences exist in the oxidations of limonenes in CYP2B subfamily in rats and humans.  相似文献   

2.
(+)-Limonene is shown to cause renal toxicity in male rats, but not in female rats and other species of animals including mice, guinea pigs, rabbits, and dogs. We have previously shown that male-specific rat CYP2C11 (but not female-specific CYP2C12) is able to convert limonenes to carveols and perillyl alcohols (M. Miyazawa, M. Shindo, and T. Shimada: Chem. Res. Toxicol., 15, 15-20, 2002). Here, we investigated whether (+)- and (-)-limonene enantiomers are differentially metabolized by P450 enzymes in liver microsomes of mice, rats, guinea pigs, rabbits, dogs, monkeys, and humans. Limonene enantiomers were converted to respective carveols, perillyl alcohols, and carvones (oxidative metabolites of carveols) by liver microsomes of dogs, rabbits, and guinea pigs. Mice, rats, monkeys, and humans produced carveols and perilly alcohols, but not carvones. Reconstituted monooxygenase systems containing purified rabbit CYP1A2 and 2B4 and NADPH-P450 reductase were found to catalyze (+)-limonene to (+)-carveol, (+)-carvone, and (+)-perillyl alcohol, being more active with CYP2B4. When (+)-carveol and (+)-carvone were used as substrates, dogs, rabbits, and guinea pigs metabolized them to (+)-carvone and (+)-carveol, respectively. Again humans, monkeys, rats, and mice did not convert (+)-carveol to (+)-carvone, but metabolized (+)-carvone to (+)-carveol, with male rats having the highest rates. CYP2C enzymes were suggested to play major roles in metabolizing (+)-carveol to (+)-carvone and (+)-carvone to (+)-carveol by liver microsomes, since the activities were inhibited significantly by anti-human CYP2C9 antibodies in these animal species. Studies with recombinant P450 enzymes suggested that CYP2C9 and 2C19 in humans and CYP2C11 in untreated male rats were the major enzymes in metabolizing (+)-carvone. These results suggest that there are species-related differences in the metabolism of limonenes by P450 enzymes, particularly in the way from (+)-carveol to (+)-carvone. However, it remains unclear whether these differences in limonene metabolism by these animal species explain species-related differences in limonene-induced renal toxicity.  相似文献   

3.
This study examines strain differences in testosterone (T)-hydroxylations between Wistar and Dark Agouti (DA) rats of both genders. The DA rat, an animal model, is a poor metabolizer of such drugs as debrisoquine, which are metabolized by cytochrome P450 (CYP) 2D. T-16α-, 2α-hydroxylations, which are linked to CYP2C11, were catalyzed at similar rates by the microsomes of both strains. In contrast, the liver microsomes from mature male DA rats catalyzed T-6β-hydroxylation, the CYP3A mediated activity, at higher rates (~ 2-fold) than Wistar rat liver microsomes did. There was no difference between immature male DA and Wistar rats for T-6β-hydroxylation, indicating that the activity in male DA rat increases with maturation. Polyclonal antibodies raised against rat liver microsomal CYP3A2 and a CYP3A inhibitor, troleandomycin (TAO), effectively inhibited T-6β-hydroxylation by liver microsomes from both strains of rats. The level of T-6β- hydroxylation activity correlated well with the amount of CYP3A protein in the microsomes in mature as well as in immature male and female Wistar and DA rats. Northern blot analysis repeatedly indicated that the cellular contents of CYP3A2 mRNA are slightly (~ 20%) higher in the liver of mature DA rats than in that of mature Wistar rats. These results indicate that the increased levels of CYP3A are responsible for the increased T-6β-hydroxylation activity and protein in DA rat.  相似文献   

4.
(-)-Verbenone, a monoterpene bicyclic ketone, is a component of the essential oil from rosemary species such as Rosmarinus officinalis L., Verbena triphylla, and Eucalyptus globulus and is used for an herb tea, a spice, and a perfume. In this study, (-)-verbenone was found to be converted to 10-hydroxyverbenone by rat and human liver microsomal cytochrome p450 (p450) enzymes. The product formation was determined by high-performance liquid chromatography with UV detection at 251 nm. There was a good correlation between activities of coumarin 7-hydroxylation and (-)-verbenone 10-hydroxylation catalyzed by liver microsomes of 16 human samples, indicating that CYP2A6 is a principal enzyme in (-)-verbenone 10-hydroxylation in humans. Human recombinant CYP2A6 and CYP2B6 catalyzed (-)verbenone 10-hydroxylation at Vmax values of 15 and 21 nmol/min/nmol p450 with apparent Km values of 16 and 91 microM, respectively. In contrast, rat CYP2A1 and 2A2 did not catalyze (-)-verbenone 10-hydroxylation at all, suggesting that there were species-related differences in the catalytic properties of human and rat CYP2A enzymes in the metabolism of (-)-verbenone. In the rat, recombinant CYP2C11, CYP2B1, and CYP3A2 catalyzed (-)-verbenone 10-hydroxylation with Vmax and Km ratios (ml/min/nmol p450) of 0.73, 0.20, and 0.03, respectively. Male-specific CYP2C11 was a major enzyme in (-)-verbenone 10-hydroxylation by untreated rat livers, and CYP2B1 catalyzed this reaction in liver microsomes of phenobarbital-treated rats. Rat CYP2C12, a female-specific enzyme, did not catalyze (-)verbenone 10-hydroxylation. These results suggest that human CYP2A6 and rat CYP2C11 are the major catalysts in the metabolism of (-)-verbenone by liver microsomes and that there are species-related differences in human and rat CYP2A enzymes and sex-related differences in male and female rats in the metabolism of (-)-verbenone.  相似文献   

5.
1,8-Cineole, the monoterpene cyclic ether known as eucalyptol, is one of the components in essential oils from Eucalyptus polybractea. We investigated the metabolism of 1,8-cineole by liver microsomes of rats and humans and by recombinant cytochrome P450 (P450 or CYP) enzymes in insect cells in which human P450 and NADPH-P450 reductase cDNAs had been introduced. 1,8-Cineole was found to be oxidized at high rates to 2-exo-hydroxy-1,8-cineole by rat and human liver microsomal P450 enzymes. In rats, pregenolone-16alpha-carbonitrile (PCN) and phenobarbital induced the 1,8-cineole 2-hydroxylation activities by liver microsomes. Several lines of evidence suggested that CYP3A4 is a major enzyme involved in the oxidation of 1,8-cineole by human liver microsomes: (1), 1,8-cineole 2-hydroxylation activities by liver microsomes were inhibited very significantly by ketoconazole, a CYP3A inhibitor, and anti-CYP3A4 immunoglobulin G; (2), there was a good correlation between CYP3A4 contents and 1,8-cineole 2-hydroxylation activities in liver microsomes of eighteen human samples; and (3), of various recombinant human P450 enzymes examined, CYP3A4 had the highest activities for 1,8-cineole 2-hydroxylation; the rate catalyzed by CYP3A5 was about one-fourth of that catalyzed by CYP3A4. Kinetic analysis showed that K(m) and V(max) values for the oxidation of 1,8-cineole by liver microsomes of human sample HL-104 and rats treated with PCN were 50 microM and 91 nmol/min/nmol P450 and 20 microM and 12 nmol/min/nmol P450, respectively. The rates observed using human liver microsomes and recombinant CYP3A4 were very high among other CYP3A4 substrates reported so far. These results suggest that 1,8-cineole, a monoterpenoid present in nature, is one of the effective substrates for CYP3A enzymes in rat and human liver microsomes.  相似文献   

6.
The ω- and (ω- 1 )-hydroxylation of the medium-chain fatty acid, dodecanoic or lauric acid, was studied in liver and kidney cortex microsomes from seven human cadavers. The rates of laurate hydroxylation in human liver microsomes were found to exceed the rates recorded in human kidney cortex microsomes by 4-to 30-fold. The mean specific activity of laurate hydroxylation from the seven human kidneys was six to fourteen times lower than the specific activities found in pig, rat or hamster kidney microsomes. The effects of several known inhibitors of the liver microsomal cytochrome P-450-dependent mono-oxygenase system were also studied. Metyrapone preferentially inhibited the (ω- 1)-hydroxylase activity of human liver microsomes, but did not affect the ω-hydroxylation reaction. In the presence of 7,8-benzoflavone, the human liver microsomal (ω- 1 )-hydroxylase activity was stimulated, but an inhibitory effect was observed on the ω-hydroxylation reaction. 2-Diethylaminoethyl-2,2-diphenylvaIerate (SKF 525A) inhibited both hydroxylase activities in human liver microsomes. Neither metyrapone nor SKF 525A inhibited the laurate hydroxylation reactions catalyzed by human kidney microsomes. These studies indicate that the cytochrome P-450-mediated hydroxylations of medium chain fatty acids in human kidney cortex microsomes are much less active than in kidneys of other species investigated. The effects of the inhibitors, metyrapone and SKF 525A, on ω- and (ω- 1)-hydroxylation of laurate in human liver and kidney microsomes were similar to the effects reported in other mammalian species.  相似文献   

7.
We have examined the 4-hydroxylation of bunitrolol in rabbit and rat liver microsomes. Significant species differences (rabbit < rat of both sexes) and sex (male > female of both species) were observed in the formation of 4-hydroxybunitrolol from racemic bunitrolol (10 μM). The 4-hydroxylation of bunitrolol racemate and enantiomers showed biphasic kinetics, a low-Km system and a high-K.m system, in liver microsomes from rabbits of both sexes. There were significant differences in Km and Vmax values [(+) > (-)] for 4-hydroxylations of (+)-bunitrolol and (-)-bunitrolol in the low-K.m system. Furthermore, the rate of clearance (Vmax/Km) was 20- to 200-fold for the low-Km system compared with the high-Km system, indicating that enzymes in the low-Km system play a major part in the rabbit liver microsomal bunitrolol metabolism. Inhibition studies using cytochrome P450 inhibitors such as quinidine, quinine, and α-naphthoflavone or polyclonal antibodies raised against rat P450-2D and ?1A enzymes did not make clear which P450 enzymes are involved in bunitrolol 4-hydroxylation in rabbit liver microsomes. The 4-hydroxylase activity of (+)-bunitrolol was slightly higher than that of (-)-bunitrolol in separated incubations containing male rabbit liver microsomes and an enantiomer concentration of 10 μM. However, the 4-hydroxylation of (+)-bunitrolol (10 μM) was markedly suppressed in the presence of its antipode (10 μM), whereas (-)-bunitrolol 4-hydroxylation was not affected by the presence of its antipode, resulting in a change of the stereoselectivity from (+) > (-) for enantiomer to (+) < (-) for racemate. The difference in the Michaelis constants in the low-Km system, where the Km value of (-)-bunitrolol is one-eighth that of (+)-bunitrolol, is thought to cause the change in the stereoselectivity in rabbit liver microsome-mediated bunitrolol 4-hydroxylation.  相似文献   

8.
Juvenile visceral steatosis (jvs) mice, isolated from the C3H-H-2 degrees strain, exibit a systemic carnitine deficiency (SCD) phenotype and develop fatty liver, hyperammonemia and hypoglycemia. This phenotype is caused by a missense mutation (Leu352Arg) of a sodium-dependent carnitine/organic cation transporter, Octn2 (Slc22a5). The jvs mouse could be a useful model for pharmacokinetics and drug metabolism studies concerning Octn2 substrate drugs. In the present study, the effects of the SCD phenotype on the cytochrome P450 (P450 or CYP) dependent activities of four endobiotic and seven xenobiotic oxidations catalyzed by liver and kidney microsomes from jvs mice were investigated. The jvs-type mutation was genotyped by PCR-RFLP. The contents of total P450 and NADPH-P450 reductase were similar in the the liver microsomes from male or female mice of the wild-type and those heterozygous or homozygous for the jvs-type mutation. The 6beta-hydroxylation activities of testosterone and progesterone (marker for Cyp3a) based on the protein contents were 1.2- to 2.0-fold higher in liver microsomes from jvs/jvs-type mice compared to jvs/wt- or wt/wt-type mice. Coumarin 7-hydroxylation activities (marker for Cyp2a) were decreased to 0.7-fold in the male jvs/jvs-type mice. The activities of lauric acid 12-hydroxylation (a marker for Cyp4a) and aniline p-hydroxylation (a marker for Cyp2e1) in liver microsomes were increased 1.4- to 1.9-fold in female jvs/jvs-type mice. Genotoxic activation of 2-aminofluorene (a marker for Cyp4b1) by male and female mouse kidney microsomes were not affected by the SCD phenotype. These results demonstrated that the SCD phenotype affected the P450-dependent catalytic activities in liver microsomes. The jvs mouse could provide valuable information in drug interaction and drug metabolism studies of OCTN2 substrate drugs and new compounds in development.  相似文献   

9.
The in vitro metabolism of (-)-camphor was examined in human liver microsomes and recombinant enzymes. Biotransformation of (-)-camphor was investigated by gas chromatography-mass spectrometry (GC-MS). (-)-Camphor was oxidized to 5-exo-hydroxyfenchone by human liver microsomal cytochrome (P450) enzymes. The formation of metabolites of (-)-camphor was determined by the relative abundance of mass fragments and retention time on gas chromatography (GC). CYP2A6 was the major enzyme involved in the hydroxylation of (-)-camphor by human liver microsomes, based on the following lines of evidence. First, of eleven recombinant human P450 enzymes tested, CYP2A6 catalyzed the oxidation of (-)-camphor. Second, oxidation of (-)-camphor was inhibited by (+)-menthofuran and anti-CYP2A6 antibody. Finally, there was a good correlation between CYP2A6 contents and (-)-camphor hydroxylation activities in liver microsomes of 9 human samples.  相似文献   

10.
In rats, cytochrome P450 (P450) IIIA enzymes are an important determinant of digitoxin toxicity. Induction of these liver microsomal enzymes decreases the toxicity of digitoxin by increasing its oxidative cleavage to digitoxigenin bis- and monodigitoxoside (dt2 and dt1). The present study shows that the susceptibility of different mammalian species to digitoxin toxicity is inversely related to liver microsomal P450 IIIA activity (measured as testosterone 6 beta-hydroxylase activity). Based on this correlation, we correctly predicted that hamsters, which have the highest P450 IIIA activity, are extremely resistant to digitoxin toxicity. To further examine the relationship between digitoxin toxicity and P450 IIIA activity, the pathways of digitoxin metabolism catalyzed by liver microsomes from nine mammalian species were examined by high performance liquid chromatography. The overall rate of digitoxin metabolism varied approximately 90-fold and followed the rank order: hamster greater than rat greater than guinea pig greater than dog greater than mouse approximately monkey greater than rabbit approximately cat greater than human. The qualitative differences in digitoxin metabolism were as striking as the quantitative differences. Formation of 16- and/or 17-hydroxydigitoxin was the major pathway of digitoxin oxidation catalyzed by liver microsomes from hamster, guinea pig, rabbit, cat, dog, and cynomolgus monkey. Guinea pig and, to a lesser extent, hamster liver microsomes also converted digitoxin to an unknown metabolite, the formation of which was catalyzed by P450. None of the species examined catalyzed the 12-hydroxylation of digitoxin to digoxin at a high rate. Similarly, none of the species examined catalyzed a high rate of conversion of digitoxin to dt2, with the notable exception of the rat. However, dt2 formation was the major pathway of digitoxin metabolism catalyzed by human liver microsomes, although humans were much less active (approximately 2%) than rats in this regard. The rate of dt2 formation varied approximately 41-fold among 22 samples of human liver microsomes, which was highly correlated (r = 0.841) with the rate of testosterone 6 beta-hydroxylation. Antibody against rat P450 IIIA1 inhibited the high rate of dt2 formation by rat liver microsomes and the low rate catalyzed by mouse, guinea pig, dog, monkey, and human liver microsomes. In contrast, anti-P450 IIIA1 did not inhibit the 12-, 16-, or 17-hydroxylation of digitoxin (or the formation of the unknown metabolite), despite the fact that anti-P450 IIIA1 strongly inhibited (greater than 70%) the 6 beta-hydroxylation of testosterone by liver microsomes from each of the species examined (except rabbit liver microsomes, which were inhibited only approximately 30%).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
1-(3-Trifluoromethylphenyl)piperazine (TFMPP) is a designer drug with serotonergic properties. Previous studies with male Wistar rats (WI) had shown, that TFMPP was metabolized mainly by aromatic hydroxylation. In the current study, it was examined whether this reaction may be catalyzed by cytochrome P450 (CYP)2D6 by comparing TFMPP vs. hydroxy TFMPP ratios in urine from female Dark Agouti rats, a model of the human CYP2D6 poor metabolizer phenotype (PM), male Dark Agouti rats, an intermediate model, and WI, a model of the human CYP2D6 extensive metabolizer phenotype. Furthermore, the human hepatic CYPs involved in TFMPP hydroxylation were identified using cDNA-expressed CYPs and human liver microsomes. Finally, TFMPP plasma levels in the above mentioned rats were compared. The urine studies suggested that TFMPP hydroxylation might be catalyzed by CYP2D6 in humans. Studies using human CYPs showed that CYP1A2, CYP2D6 and CYP3A4 catalyzed TFMPP hydroxylation, with CYP2D6 being the most important enzyme accounting for about 81% of the net intrinsic clearance, calculated using the relative activity factor approach. The hydroxylation was significantly inhibited by quinidine (77%) and metabolite formation in poor metabolizer genotype human liver microsomes was significantly lower (63%) compared to pooled human liver microsomes. Analysis of the plasma samples showed that female Dark Agouti rats exhibited significantly higher TFMPP plasma levels compared to those of male Dark Agouti rats and WI. Furthermore, pretreatment of WI with the CYP2D inhibitor quinine resulted in significantly higher TFMPP plasma levels. In conclusion, the presented data give hints for possible differences in pharmacokinetics in human PM and human CYP2D6 extensive metabolizer phenotype subjects relevant for risk assessment.  相似文献   

12.
The in vitro metabolism of (-)-fenchone was examined in human liver microsomes and recombinant enzymes. The biotransformation of (-)-fenchone was investigated by gas chromatography-mass spectrometry. (-)-Fenchone was found to be oxidized to 6-exo-hydroxyfenchone, 6-endo-hydroxyfenchone and 10-hydroxyfenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on gas chromatography (GC). CYP2A6 and CYP2B6 were major enzymes involved in the hydroxylation of (-)-fenchone by human liver microsomes, based on the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 and CYP2B6 catalysed the oxidation of (-)-fenchone. Second, oxidation of (-)-fenchone was inhibited by thioTEPA and (+)-menthofuran. Finally, there was a good correlation between CYP2A6, CYP2B6 contents and (-)-fenchone hydroxylation activities in liver microsomes of 11 human samples. CYP2A6 may be more important than CYP2B6 in human liver microsomes. Kinetic analysis showed that the Vmax/Km values for (-)-fenchone 6-endo-, 6-exo- and 10-hydroxylation catalysed by liver microsomes of human sample HG-03 were 24.3, 44.0 and 1.3nM(-1)min(-1) , respectively. Human recombinant CYP2A6 and CYP2B6 catalysed (-)-fenchone 6-exo-hydroxylation with Vmax values of 2.7 and 12.9 nmol min(-1) nmol(-1) P450 and apparent Km values of 0.18 and 0.15 mM and (-)-fenchone 6-endo-hydroxylation with Vmax values of 1.26 and 5.33nmolmin(-l) nmol(-1) P450 with apparent Km values of 0.29 and 0.26mM. (-)-Fenchone 10-hydroxylation was catalysed by CYP2B6 with Km and Vmax values of 0.2 mM and 10.66 nmol min(-1) nmol(-1) P450, respectively.  相似文献   

13.
OBJECTIVE: The aim of this investigation was to clarify the stereoselective properties in lansoprazole metabolism by monitoring the metabolic consumption for each enantiomer and the formation of the main metabolites, lansoprazole sulfone and 5-hydroxylansoprazole, in the presence of human liver microsomal enzymes. METHODS: Human liver microsomes or recombinant cytochrome P450 (CYP) enzymes were incubated with either (+/- )-, (+)-, or (-)-lansoprazole in the presence of reduced nicotinamide adenine dinucleotide phosphate. The metabolic consumption of lansoprazole enantiomers was estimated from the amounts of enantiomers consumed by microsomal enzymes after incubation at 37 degrees C for 60 min. Metabolites of lansoprazole, lansoprazole sulfone, and 5-hydroxylansoprazole were determined after incubation at 37 degrees C for 20 min, and kinetic parameters [Michaelis constant (Km) and maximum velocity (Vmax)] were obtained using Eadie-Hofstee plots. RESULTS: (-)-Lansoprazole was metabolized more preferentially than (+)-lansoprazole in human liver microsomes. Stereoselective sulfoxidation and hydroxylation [(+) > (-)] were observed in human liver microsomes. Strikingly, in sulfoxidation, a significantly higher intrinsic clearance (Vmax,l/Km,l) of (-)-lansoprazole (0.023 +/- 0.001 ml/min/mg) than (+)-lansoprazole (0.006 +/- 0.000 ml/min/mg) was observed. Consequently, sulfoxidation is likely to play an important role in the stereoselective metabolism of lansoprazole enantiomers. P450-isoform specificity for each enantiomer was evident. CYP3A4, which mainly catalyzed sulfoxidation, was more active toward (-)-lansoprazole in either a chiral or racemic drug as a substrate. CYP2C19, which catalyzed hydroxylation, preferentially metabolized (+)-lansoprazole. The consumption of (+)-lansoprazole was markedly inhibited by (-)-lansoprazole, indicating a metabolic enantiomer/enantiomer interaction. However, this alteration of recombinant CYP2C19 specificity for (+)-lansoprazole did not appear in metabolism in human liver microsomes. CONCLUSIONS: Stereoselective metabolism was observed in human liver microsomes, and this stereoselectivity was mainly based on CYP3A4 specificity for preferable metabolism of (-)-lansoprazole.  相似文献   

14.
1. Oxidation of 1,4-cineole, a monoterpene cyclic ether, was studied in rat and human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes expressed in insect cells in which human P450 and NADPH-P450 reductase cDNAs have been introduced. On analysis with gas chromatography/mass spectrometry, 2- exo -hydroxy-1,4-cineole was identified as a principal oxidation product of 1,4-cineole catalysed by rat and human P450 enzymes. 2. CYP3A4 was a major enzyme involved in the 2-hydroxylation of 1,4-cineole by human liver microsomes, based on the following lines of evidence. First, 1,4-cineole 2-hydroxylation activities catalysed by human liver microsomes were inhibited by ketoconazole, a potent inhibitor of CYP3A activities, and an anti-CYP3A4 antibody. Second, there was a good correlation between CYP3A4 contents and 1,4-cineole 2-hydroxylation activities in liver microsomes of eighteen human samples examined. Finally, of 10 recombinant human P450 enzymes examined, CYP3A4 had the highest activity for 1,4-cineole 2-hydroxylation. 3. Liver microsomal 1,4-cineole 2-hydroxylation activities were induced in rat by pregnenolone 16 α-carbonitrile and dexamethasone and extensively inhibited by ketoconazole, indicative of the possible roles of CYP3A enzymes in this reaction. 4. Kinetic analysis showed that V max / K m for 1,4-cineole 2-hydroxylation catalysed by liver microsomes was higher in a human sample HL-104 (4.6 μM -1?min -1) than those of rat treated with pregnenolone 16 α-carbonitrile (0.49 μM -1?min -1) and dexamethasone (0.36 μM -1?min -1). 5. 1,8-Cineole, a structurally related monoterpene previously shown to be catalysed by CYP3A enzymes, inhibited 1,4-cineole 2-hydroxylation catalysed by human liver microsomes, whereas 1,4-cineole did not inhibit 1,8-cineole 2-hydroxylation activities. Both compounds caused inhibition of testosterone 6 β -hydroxylation by human liver microsomes, the former compound being more inhibitory than the latter. 6. These results suggest that 1,4-cineole and 1,8-cineole, two plant essential oils present in Citrus medica L. var. acida and Eucalyptus polybractea, respectively, are converted to 2-hydroxylated products by CYP3A enzymes in rat and human liver microsomes. It is unknown at present whether the 2-hydroxylation products of these compounds are more active biologically than the parent compound.  相似文献   

15.
1. Oxidation of 1,4-cineole, a monoterpene cyclic ether, was studied in rat and human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes expressed in insect cells in which human P450 and NADPH-P450 reductase cDNAs have been introduced. On analysis with gas chromatography/mass spectrometry, 2-exo-hydroxy-1,4-cineole was identified as a principal oxidation product of 1,4-cineole catalysed by rat and human P450 enzymes. 2. CYP3A4 was a major enzyme involved in the 2-hydroxylation of 1,4-cineole by human liver microsomes, based on the following lines of evidence. First, 1,4-cineole 2-hydroxylation activities catalysed by human liver microsomes were inhibited by ketoconazole, a potent inhibitor of CYP3A activities, and an anti-CYP3A4 antibody. Second, there was a good correlation beteeen CYP3A4 contents and 1,4-cineole 2-hydroxylation activities in liver microsomes of eighteen human samples examined. Finally, of 10 recombinant human P450 enzymes examined, CYP3A4 had the highest activity for 1,4-cineole 2-hydroxylation. 3. Liver microsomal 1,4-cineole 2-hydroxylation activities were induced in rat by pregnenolone 16alpha-carbonitrile and dexamethasone and extensively inhibited by ketoconazole, indicative of the possible roles of CYP3A enzymes in this reaction. 4. Kinetic analysis showed that Vmax/Km for 1,4-cineole 2-hydroxylation catalysed by liver microsomes was higher in a human sample HL-104 (4.6 microM(-1) min(-1)) than those of rat treated with pregnenolone 16alpha-carbonitrile (0.49 microM(-1) min(-1)) and dexamethasone (0.36 microM(-1) min(-1)). 5. 1,8-Cineole, a structurally related monoterpene previously shown to be catalysed by CYP3A enzymes, inhibited 1,4-cineole 2-hydroxylation catalysed by human liver microsomes, whereas 1,4-cineole did not inhibit 1,8-cineole 2-hydroxylation activities. Both compounds caused inhibition of testosterone 6beta-hydroxylation by human liver microsomes, the former compound being more inhibitory than the latter. 6. These results suggest that 1,4-cineole and 1,8-cineole, two plant essential oils present in Citrus medica L. var. acida and Eucalyptus polybractea, respectively, are converted to 2-hydroxylated products by CYP3A enzymes in rat and human liver microsomes. It is unknown at present whether the 2-hydroxylation products of these compounds are more active biologically than the parent compound.  相似文献   

16.
朱传江  张均田 《药学学报》2003,38(9):654-657
目的研究黄皮酰胺(clausenamide,Clau)对映体在大鼠肝微粒体中的酶促反应动力学并比较其立体选择性差异。方法应用反相HPLC法测定Clau对映体在体外代谢系统中的产物,并用Eadie-Hofstee作图法分析数据、求算酶促反应动力学参数KmVmax以及肝代谢速率Vmax/Km。结果在体外代谢系统中,左旋黄皮酰胺主要生成7-羟-Clau、5-羟-Clau和4-羟-Clau,其优势代谢途径为7位羟化;7位羟化代谢的Vmax/Km值高于5位和4位。右旋黄皮酰胺的4位羟化反应Km最小、Vmax最大, 因此代谢速率最高,是左旋体4位羟化的8倍;而其7-羟-Clau和5-羟-Clau 的产生量很小。结论黄皮酰胺对映体在大鼠肝微粒体中的羟化代谢存在明显的底物立体选择性差异。  相似文献   

17.
1.?Common marmosets (Callithrix jacchus) are potentially useful nonhuman primate models for preclinical drug metabolism studies. However, the roles of marmoset cytochrome P450 (P450) isoforms in the oxidation of endobiotic progesterone have not been fully investigated. In this study, the roles of marmoset P450 isoforms in progesterone hydroxylation were extensively determined.

2.?The activities of liver microsomes from individual marmosets with respect to progesterone 21/17α- and 16α/6β-hydroxylation were significantly correlated with those for flurbiprofen 4-hydroxylation and midazolam 1′-hydroxylation, respectively, as similar correlations have been found in humans. Anti-P450 2?C and 3?A antibodies suppressed progesterone 21/17α- and 16α/6β-hydroxylation, respectively, in marmoset liver microsomes.

3.?Recombinant marmoset P450 2C58 and 2C19 catalyzed progesterone to form 21-hydroxyprogesterone and 16α-hydroxyprogesterone, respectively, as major products with high maximum velocity/Km values of 0.53 and 0.089?mL/min/nmol, respectively. Recombinant marmoset P450 3A4/90 oxidized progesterone to form 6β-hydroxyprogesterone as a major product with homotropic cooperativity (>1 of Hill coefficients).

4.?These results indicate that the overall activities and roles of liver microsomal P450 enzymes in marmoset livers are similar to those in humans, especially for progesterone 21/17α- and 16α/6β-hydroxylation by marmoset P450 2?C and 3?A enzymes, respectively, suggesting important roles for these P450 enzymes in the metabolism of endobiotics in marmosets.  相似文献   

18.
The enantioselectivity of hydroxylation of nortriptyline (NT) to E-10-hydroxynortriptyline (E-10-OH-NT) was studied in human liver microsomes, intestinal homogenate, and patients treated with NT. The rate of formation of (-)-E-10-OH-NT was higher than that of (+)-E-10-OH-NT both in the liver microsomes and in the intestinal homogenate. Quinidine, a prototype competitive inhibitor of the cytochrome P450IID6 ("debrisoquin hydroxylase"), inhibited the formation of (-)-E-10-OH-NT in a concentration-dependent manner in liver microsomes, while the formation of (+)-E-10-OH-NT was hardly affected. This indicates that P450IID6 catalyzes the hydroxylation of NT in a highly enantioselective manner to (-)-E-10-OH-NT in the liver. Another P450 isozyme besides IID6 seems to be responsible for the formation of the (+)-enantiomer in the liver. In intestinal homogenate, the formation of both enantiomers of E-10-OH-NT was inhibited to about the same extent by quinidine, the maximum inhibition being much less than in the liver. In the urine of six patients treated with NT, the (-)-enantiomer accounted for 91 +/- 2% of the unconjugated E-10-OH-NT, and for 78 +/- 6% of the glucuronide conjugates. The study shows that NT is hydroxylated in a highly enantioselective way, probably catalyzed by the polymorphic P450IID6, to (-)-E-10-OH-NT both in vitro in human liver as well as in vivo in patients treated with the drug.  相似文献   

19.
Levels of cytochrome P450 (P450 or CYP) proteins immunoreactive to antibodies raised against human CYP1A2, 2A6, 2C9, 2E1, and 3A4, monkey CYP2B17, and rat CYP2D1 were determined in liver microsomes of rats, guinea pigs, dogs, monkeys, and humans. We also examined several drug oxidation activities catalyzed by liver microsomes of these animal species using eleven P450 substrates such as phenacetin, coumarin, pentoxyresorufin, phenytoin, S-mephenytoin, bufuralol, aniline, benzphetamine, ethylmorphine, erythromycin, and nifedipine; the activities were compared with the levels of individual P450 enzymes. Monkey liver P450 proteins were found to have relatively similar immunochemical properties by immunoblotting analysis to the human enzymes, which belong to the same P450 gene families. Mean catalytic activities (on basis of mg microsomal protein) of P450-dependent drug oxidations with eleven substrates were higher in liver microsomes of monkeys than of humans, except that humans showed much higher activities for aniline p-hydroxylation than those catalyzed by monkeys. However, when the catalytic activities of liver microsomes of monkeys and humans were compared on the basis of nmol of P450, both species gave relatively similar rates towards the oxidation of phenacetin, coumarin, pentoxyresorufin, phenytoin, mephenytoin, benzphetamine, ethylmorphine, erythromycin, and nifedipine, while the aniline p-hydroxylation was higher and bufuralol 1′-hydroxylation was lower in humans than monkeys. On the other hand, the immunochemical properties of P450 proteins and the activities of P450-dependent drug oxidation reactions in dogs, guinea pigs, and rats were somewhat different from those of monkeys and humans; the differences in these animal species varied with the P450 enzymes examined and the substrates used. The results presented in this study provide useful information towards species-related differences in susceptibilities of various animal species regarding actions and toxicities of drugs and xenobiotic chemicals. Received: 28 August 1996 / Accepted: 20 November 1996  相似文献   

20.
The primary metabolism of m-xylene in rat lung and liver microsomes was investigated. The ratio of side chain to aromatic hydroxylation was found to be approximately 1:1 in lung microsomes from untreated rats and in a reconstituted system containing the major cytochrome P-450 isozyme induced in rat liver by phenobarbital, cytochrome P-450-PB-B2, as compared to 8:1 in liver microsomes. Antibody inhibition studies showed the major importance of cytochrome P-450-PB-B2 for the formation of both primary m-xylene metabolites (3-methylbenzylalcohol and 2,4-dimethylphenol) in lung microsomes. Antibodies to the major cytochrome P-450 isozyme induced in rat liver by beta-naphthoflavone, P-450-BNF-B2, did not inhibit m-xylene metabolism in either liver or lung microsomes from beta-naphthoflavone treated rats although this isozyme efficiently catalyzed m-xylene hydroxylation in a reconstituted system. m-Xylene metabolism by purified P-450-BNF-B2 appeared to cause rapid inactivation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号