首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Subgroups of related short-chain dehydrogenase/reductase (SDR) family members serve as retinoid/androgen/estrogen metabolizing enzymes. These include retinol dehydrogenases (RoDHs) 1-3, cis-retinol/androgen dehydrogenase 1 and 2 (CRAD), retSDRs1-4, 9/11-cis-retinol dehydrogenase, and 17beta-hydroxysteroid dehydrogenase (17beta-HSD) types 6 and 9. Interaction with cellular retinol-binding protein (CRBP), the major physiological form of retinol, led to the identification and cDNA cloning of RoDH1. Probes for RoDH1 contributed to cDNA cloning many of the others. Some of these SDRs show specificity with all-trans-retinol (RoDH, retSDR, 17beta-HSD6 and 9) and others with 9 and/or 11-cis-retinol (CRAD, 9/11-cis-retinol dehydrogenase). Many have 3alpha-HSD activities with 3alpha-androstandiol as the most efficiently used substrate, followed by androsterone. In addition to 3alpha-HSD activity, CRAD2 shows relatively weak 17beta-HSD activity with testosterone. Rat 17beta-HSD6 and mouse 17beta-HSD9, which are not interspecies homologs, have efficient 17beta-HSD activities. 17beta-HSD6 has approximately 50% greater 17beta-HSD activity with estradiol than with 3alpha-androstandiol. With 3alpha-androstandiol, 17beta-HSD9 operates equally efficiently as a 17beta-HSD or a 3alpha-HSD. The multi-substrate nature of these SDRs allows for retinoid/steroid interactions. The ability of some these SDRs to access retinol bound with CRBP provides specificity in retinoid metabolism and allows retinoic acid biosynthesis and retinol esterification to continue, as CRBP protects retinol from the general cellular milieu.  相似文献   

2.
17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) regulate androgen and estrogen concentrations in mammals. By 1995, four distinct enzymes with 17beta-HSD activity had been identified--17beta-HSD-types 1 and 3, which, in vivo, are NADPH-dependent reductases; and 17beta-HSD-types 2 and 4, which, in vivo, are NAD(+)-dependent oxidases. Since then, six additional enzymes with 17beta-HSD activity have been isolated from mammals. With the exception of 17beta-HSD-type 5, which belongs to the aldoketo-reductase (AKR) family, these 17beta-HSDs belong to the short chain dehydrogenase/reductase (SDR) family. Several 17beta-HSDs appear to be examples of convergent evolution. That is, 17beta-HSD activity arose several times from different ancestors. Some 17beta-HSDs share a common ancestor with retinoid oxido-reductases and have retinol dehydrogenase activity. 17beta-HSD-types 2, 6 and 9 appear to have diverged from ancestral retinoid dehydrogenases early in the evolution of deuterostomes during the Cambrian, about 540 million years ago. This coincided with the origin of nuclear receptors for androgens and estrogens suggesting that expression of 17beta-HSDs had an important role in the early evolution of the physiological response to androgens and estrogens.  相似文献   

3.
Receptors for retinoids in the immature rat ovary and the effects of retinol and retinoic acid on luteinizing granulosa cells were studied. Radioreceptor assay demonstrated the presence of specific cellular retinol-binding protein and cellular retinoic acid-binding protein in the ovaries of rats injected with PMSG alone or PMSG and hCG. In addition, when luteinizing granulosa cell from PMSG/hCG-injected immature rats were cultured with or without retinoic acid, the morphology, viability, number of cells in culture, and progesterone (P) accumulation were not affected by up to 10 microM retinoic acid. Beyond 10 microM, the cells began to round up, which was associated with a decrease in cell viability. Surprisingly, the deleterious concentrations of retinoic acid increased progesterone accumulation significantly higher than the medium control value. This increase in progesterone, however, was not accompanied by an increase in cAMP. When cells preincubated for 2 days with 1 microM of either retinoic acid or retinol were subsequently incubated in retinoid-free medium containing various substrates for steroidogenesis, the following results were obtained. Basal progesterone and its accumulation in response to human low density lipoprotein were significantly higher in cells preincubated with retinoids than in the control cells. However, no difference was seen in the degree of stimulation between retinol and retinoic acid pretreatments. Both 25-hydroxycholesterol, a substrate for side-chain cleavage enzyme, and pregnenolone, a substrate for 3 beta-hydroxysteroid dehydrogenase, significantly stimulated the accumulation of progesterone in cells preincubated with retinoids over the control value. Again, no appreciable difference was observed between retinol and retinoic acid pretreatments. Our results suggest that receptors for retinoids are present in gonadotropin-primed immature rat ovaries, retinoids increase luteal cell progesterone accumulation, and no difference exists between retinol and retinoic acid in their ability to increase the accumulation of progesterone by these cells.  相似文献   

4.
Rat and mouse complementary DNAs of type 10 17beta-hydroxysteroid dehydrogenase were cloned and sequenced. The mouse cDNA clone's sequence corrected the previously published nucleotide and amino acid sequence of mouse endoplasmic reticulum-associated beta-amyloid-binding protein. A subunit of the rat enzyme consists of 261 amino acid residues with a calculated molecular mass of 27250 Da. Compared with its human counterpart, rat 17betaHSD type 10 shows 88% identity. Mouse 17betaHSD type 10 is composed of 261 amino acid residues with a calculated molecular mass of 27274 Da. There is 95% identity between the two rodent enzymes. A stereostructure model of rat 17betaHSD type 10 was constructed based on its amino acid sequence. Similar to human type 10 17betaHSD, the rodent enzymes also displayed relatively higher 3alphaHSD activity than 17betaHSD activity. Intracellular localization of rat 17betaHSD type 10 has been determined by subcellular fractionation and confocal microscopy studies. The results unequivocally establish that this is a nuclear gene-encoded mitochondrial enzyme, and that this 17betaHSD is not associated with the endoplasmic reticulum. The unique location distinguishes type 10 from other types of 17beta-hydroxysteroid dehydrogenases.  相似文献   

5.
BACKGROUND: An increasing rate of highly-active antiretroviral therapy (HAART)-associated metabolic and morphological abnormalities has been reported in HIV-infected persons. Some of them resemble retinoid-related adverse events, indicating alteration(s) of retinol metabolism or of retinoic acid-mediated signalling. OBJECTIVE: To evaluate retinol levels in patients with or without HAART and to assess the effect of antiretroviral agents on retinal dehydrogenase (RALDH), a key enzyme involved in retinoic acid synthesis. DESIGN: Plasma retinol levels, measured in six patients receiving HAART and in five others with no antiretroviral therapy, were correlated with levels of serum retinol-binding proteins. We then studied the effects of seven antiretroviral agents on RALDH activity and gene expression in a kidney-derived cell line (LLCPK). RESULTS: Plasma retinol levels in patients receiving HAART were decreased in comparison with those not receiving antiretroviral drugs (51 +/- 5 versus 66 +/- 11 microg/dl; P = 0.03), whereas retinol-binding protein levels were increased (68 +/- 18 versus 45 +/- 10 mg/l; P = 0.04). RALDH activity was heightened by ritonavir (24%), indinavir (17%), saquinavir (17%), zalcitabine (14%), delavirdine (12%) and nelfinavir (10%) and decreased (22%) by DMP-450. RALDH gene expression was induced only by indinavir. CONCLUSIONS: These data indicate that certain retinoid-like adverse effects in HAART-receiving patients are not due to higher retinol levels. Enhanced RALDH activity or/and gene expression by some protease inhibitors could increase retinoic acid concentrations. Elevated retinoic acid levels might be responsible for retinoid-like or other adverse effects due to alterations in the expression of retinoic acid-responsive genes.  相似文献   

6.
The type 2 isoform of human 17beta-hydroxysteroid dehydrogenase (17betaHSD2) efficiently catalyzes the oxidative metabolism of androgens and estrogens, and it is expressed in a large series of human peripheral tissues. To obtain a better understanding of the regulation of local steroid biosynthesis and metabolism in human tissues, we have established a dual steroidogenic activity of the 17betaHSD2 enzyme after transfection of human 17betaHSD2-transfected human embryonic kidney (293) cells. After transient transfection, the metabolism of testosterone, pregnenolone, and dehydroepiandrosterone (DHEA) in intact transfected 293 cells was evaluated by TLC-based radiometric assays. 17betaHSD2-transfected cells converted 91% of testosterone (1 micromol/L) into androstenedione in a 2-h incubation period. In addition, pregnenolone (1 micromol/L) was converted to progesterone (18.5%), whereas DHEA (1 micromol/L) was metabolized to androstenedione (8.3% conversion) in a 15-h incubation period. The kinetics of the 3beta-hydroxysteroid dehydrogenase (3betaHSD) and 17betaHSD2 activities using cell homogenate protein of stably transfected 293 cells indicated that the catalytic efficiency (apparent catalytic efficiency = maximum velocity/Km) of this 3betaHSD activity is approximately 2000-fold (pregnenolone as substrate) or 3000-fold (DHEA as substrate) weaker than that of 17betaHSD2 activity. It is noteworthy, however, that the apparent catalytic efficiency of the HSD3B2 gene product is only approximately 50-fold higher than that of the 3betaHSD aspect of the 17betaHSD2 gene product. Pregnenolone or DHEA effectively inhibited 17betaHSD2 activity in a noncompetitive fashion. Furthermore, the potent 5alpha-reductase/3betaHSD inhibitor, 17beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5alpha-androstane-3-one , inhibited neither 3betaHSD nor 17betaHSD2 activities. We conclude that human 17betaHSD2 enzyme exhibits 3betaHSD activity. Notwithstanding that this 3betaHSD activity is reduced compared to 17betaHSD oxidative activity, it may account for at least some of the reports of 3betaHSD activity found in human peripheral tissues that express notable amounts of the 17betaHSD2 isozyme as well as in individuals with severe classic 3betaHSD deficiency.  相似文献   

7.
Influence of vitamin A (retinol) on growth depends on its sequential oxidation to retinal and then to retinoic acid (RA), producing a ligand for RA receptors essential in development of specific tissues. Genetic studies have revealed that aldehyde dehydrogenases function as tissue-specific catalysts for oxidation of retinal to RA. However, enzymes catalyzing the first step of RA synthesis, oxidation of retinol to retinal, remain unclear because none of the present candidate enzymes have expression patterns that fully overlap with those of aldehyde dehydrogenases during development. Here, we provide genetic evidence that alcohol dehydrogenase (ADH) performs this function by demonstrating a role for Adh3, a ubiquitously expressed form. Adh3 null mutant mice exhibit reduced RA generation in vivo, growth deficiency that can be rescued by retinol supplementation, and completely penetrant postnatal lethality during vitamin A deficiency. ADH3 was also shown to have in vitro retinol oxidation activity. Unlike the second step, the first step of RA synthesis is not tissue-restricted because it is catalyzed by ADH3, a ubiquitous enzyme having an ancient origin.  相似文献   

8.
9.
17beta-hydroxysteroid dehydrogenase from the filamentous fungus Cochliobolus lunatus (17beta-HSDcl) has recently been characterized. Since its function is still unclear, we performed substrate specificity studies to obtain some indications about its physiological function. Different steroids were studied as putative substrates of recombinant 17beta-HSDcl, androgens and estrogens, brassinosteroids, and the fungal steroid herbarulid. Among these androgens and estrogens were most efficiently converted. The following substrates in decreasing order were best reduced: 4-estrene-3,17-dione, 5alpha-androstane-3,17-dione, 4-androstene-3,17-dione and estrone. Two typical inhibitors were tested: carbenoxolone--a representative inhibitor of the SDR family and quercetin--a diagnostic inhibitor of carbonyl reductases. Among these two quercetin was more efficient. Expression studies revealed that 17beta-HSDcl is mainly expressed in the stationary phase of growth indicating its possible involvement in secondary metabolism.  相似文献   

10.
Allopregnanolone (ALLO) and androsterone (ADT) are naturally occurring 3alpha-hydroxysteroids that act as positive allosteric regulators of gamma-aminobutyric acid type A receptors. In addition, ADT activates nuclear farnesoid X receptor and ALLO activates pregnane X receptor. At least with respect to gamma-aminobutyric acid type A receptors, the biological activity of ALLO and ADT depends on the 3alpha-hydroxyl group and is lost upon its conversion to either 3-ketosteroid or 3beta-hydroxyl epimer. Such strict structure-activity relationships suggest that the oxidation or epimerization of 3alpha-hydroxysteroids may serve as physiologically relevant mechanisms for the control of the local concentrations of bioactive 3alpha-hydroxysteroids. The exact enzymes responsible for the oxidation and epimerization of 3alpha-hydroxysteroids in vivo have not yet been identified, but our previous studies showed that microsomal nicotinamide adenine dinucleotide-dependent short-chain dehydrogenases/reductases (SDRs) with dual retinol/sterol dehydrogenase substrate specificity (RoDH-like group of SDRs) can oxidize and epimerize 3alpha-hydroxysteroids in vitro. Here, we present the first evidence that microsomal nicotinamide adenine dinucleotide-dependent 3alpha-hydroxysteroid dehydrogenase/epimerase activities are widely distributed in human tissues with the highest activity levels found in liver and testis and lower levels in lung, spleen, brain, kidney, and ovary. We demonstrate that RoDH-like SDRs contribute to the oxidation and epimerization of ALLO and ADT in living cells, and show that RoDH enzymes are expressed in tissues that have microsomal 3alpha-hydroxysteroid dehydrogenase/epimerase activities. Together, these results provide further support for the role of RoDH-like SDRs in human metabolism of 3alpha-hydroxysteroids and offer a new insight into the enzymology of ALLO and ADT inactivation.  相似文献   

11.
CONTEXT: Polycystic ovary syndrome (PCOS) is characterized by ovarian androgen excess and infertility. Recent experiments have suggested that several genes involved in retinoic acid synthesis may be differentially expressed in PCOS theca cells and may contribute to excessive theca-derived androgen production. OBJECTIVE: The study was performed to examine whether there are differential effects of retinol and retinoids on normal and PCOS theca cell function. DESIGN: We used in vitro assays. SETTING: The study was conducted at the university laboratory. PATIENTS: We studied theca interna cells isolated from normal-cycling women and women with PCOS. INTERVENTIONS: Theca cells were treated with all-trans-retinoic acid (atRA), 9-cis retinoic acid (9-cis RA), or the retinoic acid precursor retinol. MAIN OUTCOME MEASURE(S): We measured dehydroepiandrosterone, testosterone, and progesterone biosynthesis as well as cytochrome P450 17alpha-hydroxylase (CYP17), cytochrome P450 cholesterol side-chain cleavage, and steroidogenic acute regulatory protein mRNA abundance and promoter function. RESULTS: Dehydroepiandrosterone production was increased by atRA and 9-cis RA in normal cells and by atRA, 9-cis RA, and retinol in PCOS. Testosterone production was increased by atRA in normal and by atRA, 9-cis RA, and retinol in PCOS. Progesterone production was not altered by retinoid treatment. Retinoids stimulated mRNA abundance and promoter function for CYP17 and steroidogenic acute regulatory protein in both cell types and cytochrome P450 cholesterol side-chain cleavage in normal cells. Retinol stimulated CYP17 mRNA accumulation and promoter function in PCOS but not normal theca cells. P < 0.05 was considered statistically significant. CONCLUSIONS: Differential responses to retinol and retinoids in normal and PCOS theca suggest that altered retinoic acid synthesis and action may be involved in augmented CYP17 gene expression and androgen production in PCOS.  相似文献   

12.
Sex steroid-producing enzymes in human breast cancer   总被引:6,自引:0,他引:6  
It is well known that sex steroids are involved in the growth of breast cancers, and the great majority of breast carcinomas express estrogen (ER), progesterone (PR), and androgen (AR) receptors. In particular, recent studies have demonstrated that estrogens and androgens are locally produced in breast carcinoma tissues, and total blockade of in situ estrogen production potentially leads to an improvement in prognosis of breast cancer patients. Therefore, it is important to obtain a better understanding of sex steroid-producing enzymes in breast carcinoma tissues. In this review, we summarize recent studies on the expression and regulation of enzymes related to intratumoral production of estrogens (aromatase, 17beta-hydroxysteroid dehydrogenase type 1 (17betaHSD1), and steroid sulfatase (STS) etc) and androgens (17betaHSD5 and 5alpha-reductase) in human breast carcinoma tissues, and discuss the biological and/or clinical significance of these enzymes. The cellular localization of aromatase in breast carcinoma tissues still remains controversial. Therefore, we examined localization of aromatase mRNA in breast carcinoma tissues by laser capture microdissection/real time-polymerase chain reaction. Aromatase mRNA expression was detected in both carcinoma and intratumoral stromal cells, and the expression level of aromatase mRNA was higher in intratumoral stromal cells than in carcinoma cells in the cases examined. We also examined an association among the immunoreactivity of enzymes related to intratumoral estrogen production and ERs in breast carcinoma tissues, but no significant association was detected. Therefore, the enzymes responsible for the intratumoral production of estrogen may not always be the same among breast cancer patients, and not only aromatase but also other enzymes such as STS and 17betaHSD1 may have important therapeutic potential as targets for endocrine therapy in breast cancer patients.  相似文献   

13.
I H Zwain  S S Yen 《Endocrinology》1999,140(8):3843-3852
The brain is a steroidogenic organ that expresses steroidogenic enzymes and produces neurosteroids. Although considerable information is now available regarding the steroidogenic capacity of the brain, little is known regarding the steroidogenic pathway and relative contributions of astrocytes, oligodendrocytes, and neurons to neurosteroidogenesis. In the present study, we investigated differential gene expression of the key steroidogenic enzymes using RT-PCR and quantitatively evaluated the production of neurosteroids by highly purified astrocytes, oligodendrocytes, and neurons from the cerebral cortex of neonatal rat brains using specific and sensitive RIAs. Astrocytes appear to be the most active steroidogenic cells in the brain. These cells express cytochrome P450 side-chain cleavage (P450scc), 17alpha-hydroxylase/C17-20-lyase (P450c17), 3beta-hydroxysteroid dehydrogenase (3betaHSD), 17beta-hydroxysteroid dehydrogenase (17betaHSD), and cytochrome P450 aromatase (P450arom) and produce pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA), androstenedione (A4), testosterone (T), estradiol, and estrone. Oligodendrocytes express only P450scc and 3betaHSD and produce P5, P4, and A4. These cells do not express P450c17, 17betaHSD, or P450arom or produce DHEA, T, or estrogen. Neurons express P450scc, P450c17, 3betaHSD, and P450arom and produce P5, DHEA, A4, and estrogen, but do not express 17betaHSD or produce T. By comparing the ability of each cell type in the production of neurosteroids, astrocytes are the major producer of P4, DHEA, and androgens, whereas oligodendrocytes are predominantly the producer of P5 and neurons of estrogens. These findings serve to define the neurosteroidogenic pathway, with special emphasis on the dominant role of astrocytes and their interaction with oligodendrocytes and neurons in the genesis of DHEA and active sex steroids. Thus, we propose that neurosteroidogenesis is accomplished by a tripartite contribution of the three cell types in the brain.  相似文献   

14.
OBJECTIVES: To investigate the effects of caloric restriction on the serum concentrations of retinoids in man. DESIGN: Samples were drawn before and during caloric restriction by fasting or 4-6 weeks after gastric surgery. SUBJECTS: The fasting group included 17 healthy subjects (11 women and six men) and 16 obese patients (10 women and six men) who underwent bariatric surgery (vertical banded gastroplasty). MAIN OUTCOME MEASURES: Serum concentrations of all-trans, 13-cis, 4-oxo-13-cis retinoic acids and retinol. RESULTS: The serum concentrations of retinol, all-trans and 13-cis retinoic acids decreased by about 20% after 5 days of fasting. After gastroplasty, the serum concentration of retinol, all-trans, 13-cis retinoic acids, retinol-binding protein and transthyretin also decreased to a similar extent after 1 month. In both groups we found a correlation between the delta values of 13-cis retinoic acid and its metabolite 4-oxo-13-cis retinoic acid. In all subjects there were also correlations between the delta values of the retinoids. However, these correlations were comparatively weak (e.g. r2 = 0.36 for retinol--all-trans retinoic acid). The change in retinoid concentrations did not correlate to the change of weight or body mass index. CONCLUSION: Our results support the hypothesis that serum retinol is one of the determinants of serum concentrations of all-trans and 13-cis retinoic acid and that the catabolism of 13-cis retinoic acid is not affected by fasting. However, in the individual case, S-Retinol is a poor predictor of S-All-trans retinoic acid.  相似文献   

15.
16.
The 17beta-hydroxysteroid dehydrogenases (17betaHSD) gene family comprises different enzymes involved in the biosynthesis of active steroid hormones. The 17betaHSD type 3 (17betaHSD3) isoenzyme catalyzes the reductive conversion of the inactive C19-steroid, Delta4-androstenedione (Delta4- A), into the biologically active androgen, testosterone (T), in the Leydig cells of the testis. It is encoded by the 17beta-hydroxysteroid dehydrogenase type 3 (HSD17B3) gene, which maps to chromosome 9q22. Mutations in the HSD17B3 gene are associated with a rare form of 46,XY disorder of sex development referred to as 17betaHSD3 deficiency (or as 17-ketosteroid reductase deficiency), due to impaired testicular conversion of Delta4-A into T. 46,XY patients with 17betaHSD3 deficiency are usually classified as female at birth, raised as such, but develop secondary male features at puberty. Diagnosis, and consequently early treatment, is difficult because clinical signs from birth until puberty may be mild or absent. Biochemical diagnosis of 17betaHSD3 deficiency requires measurement of serum T/Delta4-A ratio after hCG stimulation test in pre-pubertal subjects, while baseline values seem to be informative in early infancy and adolescence. However, low basal T/Delta4-A ratio is not specific for 17betaHSD3 deficiency, being sometimes also found in patients with other defects in T synthesis or with Leydig cells hypoplasia. Mutational analysis of the 17HSDB3 gene is useful in confirming the clinical diagnosis of 17betaHSD3 deficiency. This review describes clinical findings, diagnosis, and molecular basis of this rare disease.  相似文献   

17.
The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) have important roles in the regulation of steroid hormone actions through their catalysis of the oxidation or reduction of estrogens and androgens at position 17. Dysfunctions of the human 17beta-HSDs have been associated with reproduction disorders, neuronal diseases and the development of hormone-dependent forms of cancers. Therefore, these enzymes represent interesting targets for the development of new drugs. Here we present a series of new cinnamic acid esters and amides that inhibit the oxidative and reductive reaction catalyzed by 17beta-HSD from the fungus Cochliobolus lunatus, a model enzyme of the short-chain dehydrogenase/reductase superfamily. We found that esters of unsubstituted cinnamic acid were better inhibitors than esters of 3,4,5-trimethoxycinnamic acid. Cinnamates were also more potent inhibitors than structurally related cinnamamides. The compounds presented in this paper are potential leads for the development of inhibitors of human 17beta-HSD isoforms, which may prove to have different therapeutic applications.  相似文献   

18.
Parlesak A  Menzl I  Feuchter A  Bode JC  Bode C 《Gut》2000,47(6):825-831
BACKGROUND: Epidemiological evidence has been presented for an increased risk of development of colon cancer after chronic alcohol abuse. Alcohol is degraded by cytosolic alcohol dehydrogenases that also are capable of retinol oxidation. Inhibition of retinol oxidation to retinoic acid has been shown to occur in parallel with profound impairment of intracellular retinoid signal transduction and loss of cell differentiation control. AIMS: In the present study, the change in cytosolic retinol oxidation and retinoic acid formation by ethanol concentrations that occur in body tissues in humans after social drinking was measured in cells from the liver, and small and large intestine of the rat. RESULTS: The specific catalytic efficiency V(max)/K(m) (ml/min/g) of cytosolic retinol oxidation in the large intestine (28.9) was found to be distinctly higher than that in the liver (3.4), while the efficiency in the small intestine was negligible (0.20). In the presence of increasing ethanol concentrations (9, 17, and 34 mM), V(max)/K(m) for retinol oxidation decreased in a dose dependent manner to 7.8% of the initial value in the large intestine and to 12% in the liver. The V(max)/K(m) of retinoic acid formation in the liver cytosol decreased to 15%. CONCLUSIONS: Our data demonstrate impairment of hepatic and intestinal cytosolic retinol oxidation and retinoic acid formation by ethanol at concentrations in body tissues after social drinking in humans. The results suggest that the increased risk of developing colorectal neoplasias after alcohol abuse may, at least in part, be caused by impaired retinoid signal transduction.  相似文献   

19.
Purified cellular retinol-binding protein (CRBP), a potential mediator of vitamin A action, was found to enable retinol to bind in a specific manner to isolated nuclei from livers of vitamin A deficient rats. Binding was followed after complexing [3H]retinol with CRBP. The binding was specific, saturable, and temperature dependent. CRBP charged with unlabeled retinol or CRBP without retinol diminished binding of radioactivity whereas free retinol did not. No specific binding sites could be detected for free retinol. Purified cellular retinoic acid binding protein (CRABI) complexed with retinoic acid did not diminish the amount of retinol bound to nuclei. Approximately 3 x 10(5) specific binding sites per nucleus could be detected. Fewer binding sites were found in nuclei isolated from livers of control (chow-fed) rats and also from livers of vitamin A-deficient rats 2 hr after refeeding with retinylacetate.  相似文献   

20.
The ligand-controlled retinoic acid (RA) receptors and retinoid X receptors are important for several physiological processes, including normal embryonic development, but little is known about how their ligands, all-trans and 9-cis RA, are generated. Here we report the identification of a stereo-specific 9-cis retinol dehydrogenase, which is abundantly expressed in embryonic tissues known to be targets in the retinoid signaling pathway. The membrane-bound enzyme is a member of the short-chain alcohol dehydrogenase/reductase superfamily, able to oxidize 9-cis retinol into 9-cis retinaldehyde, an intermediate in 9-cis RA biosynthesis. Analysis by nonradioactive in situ hybridization in mouse embryos shows that expression of the enzyme is temporally and spatially well controlled during embryogenesis with prominent expression in parts of the developing central nervous system, sensory organs, somites and myotomes, and several tissues of endodermal origin. The identification of this enzyme reveals a pathway in RA biosynthesis, where 9-cis retinol is generated for subsequent oxidation to 9-cis RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号