首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tactile allodynia, the enhanced perception of pain in response to normally non-painful stimulation, represents a common complication of diabetic neuropathy. The activation of endothelin ET(A) receptors has been implicated in diabetes-induced reductions in peripheral neurovascularization and concomitant endoneurial hypoxia. Endothelin receptor activation has also been shown to alter the peripheral and central processing of nociceptive information. The present study was conducted to evaluate the antinociceptive effects of the novel endothelin ET(A) receptor-selective antagonist, 2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N, N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid (ABT-627), in the streptozotocin-induced diabetic rat model of neuropathic pain. Rats were injected with 75 mg/kg streptozotocin (i. p.), and drug effects were assessed 8-12 weeks following streptozotocin treatment to allow for stabilization of blood glucose levels (>/=240 mg/dl) and tactile allodynia thresholds (相似文献   

2.
The chronic constriction injury model is a rat model of neuropathic pain based on a unilateral loose ligation of the sciatic nerve. The aim of the present study was to test its sensitivity to various clinically validated and experimental drugs. Mechanical allodynia and thermal hyperalgesia developed within one week post-surgery and were reliably present for at least 7 weeks. Mechanical allodynia was strongly attenuated by morphine (minimal effective dose in brackets: 8 mg/kg, p.o.) and the cannabinoids Delta9-tetrahydrocannabinol (3 mg/kg, p.o.) and (-)-cis-3-[2-hydroxy-4(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol (CP 55,940; 0.05 mg/kg, i.p.), and weakly/moderately attenuated by the anticonvulsants gabapentin (50 mg/kg, i.p.) and carbamazepine (32 mg/kg, i.p.), the muscle relaxant baclofen (3 mg/kg, i.p.), and the adenosine kinase inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine (ABT-702; 30 mg/kg, i.p.). Thermal hyperalgesia was strongly attenuated by morphine (16 mg/kg, p.o.), Delta9-tetrahydrocannabinol (6 mg/kg, p.o.), CP 55,940 (0.025 mg/kg, i.p.), carbamazepine (32 mg/kg, i.p.) and the antidepressant amitriptyline (32 mg/kg, p.o.), and weakly/moderately attenuated by gabapentin (50 mg/kg, i.p.), the anti-inflammatory cyclooxygenase-2 inhibitor rofecoxib (30 mg/kg, i.p.) and the adenosine A1 receptor positive allosteric modulator 2-amino-4,5,6,7-tetrahydrobenzo(b)thiophen-3-yl 4-chlorophenylmethanone (T62; 30 mg/kg, i.p.). Both symptoms were hardly or not affected by the nonselective N-methyl-d-aspartate receptor antagonists ketamine and dizocilpine, and the N-methyl-d-aspartate receptor NR2B-selective antagonists ifenprodil and R-(R*,S*)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenyl-methyl)-1-piperidine propranol (Ro 25-6981). The finding that mechanical allodynia and/or thermal hyperalgesia are attenuated by various established compounds further supports the validity of the chronic constriction injury model for the study of neuropathic pain and its use for the identification of novel treatments.  相似文献   

3.
The objective of this study was to resolve discrepancies regarding the possible antinociceptive synergy between morphine and nefopam in animal models of pain. Firstly, we have examined the antinociceptive activity of nefopam, a nonopioid antinociceptive compound that inhibits monoamine reuptake, in pain models of allodynia and hyperalgesia induced by carrageenan injection, or skin and muscle incision of the rat hind paw. Single subcutaneous administration of nefopam at 30 mg/kg blocked carrageenan- and incision-induced thermal hyperalgesia, and weakly but significantly diminished carrageenan-induced tactile allodynia. A weaker dose of nefopam (10 mg/kg) only reduced carrageenan-induced tactile allodynia and incision-induced thermal hyperalgesia. Secondly, we assessed the usefulness of the coadministration of nefopam with morphine. Combination of a nonanalgesic dose of nefopam (10 mg/kg) with a nonanalgesic dose of morphine (0.3 or 1.0 mg/kg) completely inhibited carrageenan- or incision-induced thermal hyperalgesia, respectively. In carrageenan-induced tactile allodynia, coadministration of weak analgesic doses of nefopam (10 and 30 mg/kg) with a nonanalgesic dose (1 mg/kg) or moderately analgesic dose (3 mg/kg) of morphine significantly reduced or reversed allodynia, respectively. In conclusion, coadministration of nefopam with morphine enhances the analgesic potency of morphine, indicating a morphine sparing effect of nefopam.  相似文献   

4.
The purpose of this study was to assess the antinociceptive and antiallodynic effect of pyritinol as well as its possible mechanism of action in diabetic rats. Streptozotocin (50 mg/kg) injection caused hyperglycemia within 1 week. Formalin-evoked flinching was increased in diabetic rats as compared to non-diabetic rats. Oral acute administration of pyritinol (50-200 mg/kg) dose-dependently reduced flinching behavior in diabetic rats. Moreover, prolonged administration of pyritinol (12.5-50 mg/kg, every 2 days for 2 weeks) reduced formalin-induced nociception. 1H-[1,2,4]-oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, a guanylyl cyclase inhibitor, 2 mg/kg, i.p.), but not naltrexone (a non-selective opioid receptor antagonist, 1 mg/kg, s.c.) or indomethacin (a non-selective cycloxygenase inhibitor, 5 mg/kg, i.p.), blocked the pyritinol-induced antinociception in diabetic rats. Given alone ODQ, naltrexone or indomethacin did not modify formalin-induced nociception in diabetic rats. Oral acute (200 mg/kg) or prolonged (25 mg/kg, every 2 days for 2 weeks) administration of pyritinol significantly reduced streptozotocin-induced changes in free carbonyls, dityrosine, malondialdehyde and advanced oxidative protein products. Four to 8 weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. On this condition, oral administration of pyritinol (50-200 mg/kg) reduced tactile allodynia in diabetic rats. Results indicate that pyritinol is able to reduce formalin-induced nociception and tactile allodynia in streptozotocin-injected rats. In addition, data suggest that activation of guanylyl cyclase and the scavenger properties of pyritinol, but not improvement in glucose levels, play an important role in these effects.  相似文献   

5.
The study was designed to investigate the role of nitric oxide (NO) in the diabetes-induced decrease of the antinociceptive effect of morphine. The nociceptive threshold in diabetic and non-diabetic mice was measured in the tail-flick test. Streptozotocin (200 mg/kg i.p.) was administered to induce experimental diabetes in the mice. Four weeks after the administration of streptozotocin, the tail-flick test was performed and urinary nitrite concentration was estimated using Greiss reagent. Experimental diabetes markedly decreased the antinociceptive effect of morphine (10 microg in 5 microl/mice i.c.v.) and significantly increased the urinary nitrite concentration. Administration of aminoguanidine (12 mg/mice) markedly improved the antinociceptive effect of morphine and attenuated the increase in urinary nitrite concentration in diabetic mice. It may be tentatively concluded that an increase in NO formation may be responsible for the observed decrease in antinociceptive effect of morphine in diabetic mice.  相似文献   

6.
Preclinical Research
The aim of this study was to evaluate fosinopril‐induced changes in hemodynamic parameters and tactile allodynia in a rat model of diabetes. Diabetes was induced by streptozotocin (STZ; 50 mg/kg, i.p.) in male Wistar rats. STZ produced hyperglycemia, weight loss, polydipsia, polyphagia, and polyuria as well as long‐term arterial hypotension, bradycardia, and tactile allodynia at 10–12 weeks. Daily administration of the angiotensin converting enzyme inhibitor, fosinopril (25 mg/kg, p.o., for 11 weeks) partially reduced the loss of body weight, decreased hyperglycemia, and systolic blood pressure in diabetic rats. Likewise, systemic administration of fosinopril prevented the development and maintenance of tactile allodynia in STZ‐induced diabetic rats. These data suggest that fosinopril may have a role in the pharmacotherapy of diabetic neuropathic pain. Drug Dev Res 76 : 442–449, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Benfotiamine relieves inflammatory and neuropathic pain in rats   总被引:3,自引:0,他引:3  
Benfotiamine has shown therapeutic efficacy in the treatment of painful diabetic neuropathy in human beings. However, so far there is no evidence about the efficacy of this drug in preclinical models of pain. The purpose of this study was to assess the possible antinociceptive and antiallodynic effect of benfotiamine in inflammatory and neuropathic pain models in the rat. Inflammatory pain was induced by injection of formalin in non-diabetic and diabetic (2 weeks) rats. Reduction of flinching behavior was considered as antinociception. Neuropathic pain was induced by either ligation of left L5/L6 spinal nerves or administration of streptozotocin (50 mg/kg, i.p.) in Wistar rats. Benfotiamine significantly reduced inflammatory (10-300 mg/kg) and neuropathic (75-300 mg/kg) nociception in non-diabetic and diabetic rats. Results indicate that oral administration of benfotiamine is able to reduce tactile allodynia from different origin in the rat and they suggest the use of this drug to reduce inflammatory and neuropathic pain in humans.  相似文献   

8.
It is confirmed that pharmacological attenuation of glial cells can alleviate neuropathic pain by lowering proinflammatory cytokine expression. The present study tries to confirm that post-injury administration of glia inhibitor, minocycline, can attenuate the neuropathic pain symptoms and improves the efficacy of morphine anti-nociception in chronic constriction injury (CCI). Male Wistar rats (230-270 g) underwent surgery for induction CCI model of neuropathy. For assessment of the thermal hyperalgesia and mechanical allodynia after CCI induction, morphine (2.5, 5, 7.5, 10 and 15 mg/kg; s.c.) and saline were administered on post-operative days (PODs) 0, 6 and 14. Hargreaves and Von-Frey tests were performed before and 30 min after morphine administration, respectively. The results showed significant decrease in antinociceptive effect of morphine on POD 6 compared to POD 0 only at the dose of 5 mg/kg. On the other hand, on POD 14 the antinociceptive effect of morphine (5, 7.5, 10 and 15 mg/kg) significantly decreased in comparison with POD 0. In another set of experiments, animals received minocycline (10, 20 and 40 mg/kg; i.p.) for eight days from POD 6 to 13 and then the antinociceptive effect of single dose of morphine 5 mg/kg was tested on POD 14. Behavioral tests showed that minocycline (40 mg/kg) could effectively attenuate the thermal hyperalgesia and mechanical allodynia on POD 13. Moreover, minocycline (40, 20 mg/kg) improved the anti-hyperalgesic, and minocycline (40 mg/kg) improved the anti-allodynic effects of morphine 5 mg/kg on POD 14. It seems that the reduction of antinociceptive effect of morphine after CCI may be mediated through glia activation. Modulation of glial activity by minocycline can attenuate CCI-induced neuropathic pain. It is also shown that repeated post-injury administration of minocycline improves the antinociceptive effect of morphine in neuropathic pain.  相似文献   

9.
Nowadays, there are no validated drugs to control the neuropathic pain induced by paclitaxel, one of the most effective antineoplastic drugs.The aim was to study the involvement of opioid and NMDA receptor on established paclitaxel-induced pain, testing three common analgesics drugs morphine, ketamine and methadone.Animals received four intraperitoneal (i.p.) injections on alternate days of paclitaxel (1 mg/kg). Three weeks later, animals showed a mechanical and heat allodynia/hyperalgesia. Morphine (1, 2.5, 5 and 10 mg/kg) abolished the reduction in the mechanical and thermal withdrawal thresholds in a dose dependent manner. This effect was blocked by naloxone. Only highest dose of ketamine (50 mg/kg) was able to increase the mechanical and thermal threshold and returned to basal values. Subanalgesic doses of morphine (1 mg/kg) and ketamine (12.5 mg/kg) produced an additive effect on heat hyperalgesia reaching an antinociceptive effect. This combination did not induce any change on tactile allodynia. Methadone (2.5 and 5 mg/kg) produced an analgesic effect that was completely antagonized by naloxone in both tests.Our results confirm that: the activation of opioids receptor produced analgesia; the blockade of NMDA receptors produce antinociception but at high doses with motor impairments and low doses of ketamine enhancing the effect of opioids.  相似文献   

10.
Various evidence has demonstrated a role of the nitric oxide (NO)/cGMP signaling pathway in the processing of nociception. The exact role of phosphodiesterase-5 (PDE-5) via the NO/cGMP pathway is not fully understood in pain response. The aim of the present study was to investigate the possible peripheral interaction between a PDE-5 inhibitor (sildenafil) and morphine. Carrageenan-induced hyperalgesia in rats and the acetic-acid-induced writhing test in mice were used as animal models. Local administration of sildenafil (50-200 microg/paw, i.pl.) exhibited a dose-dependent antinociceptive effect against the paw pressure test. Sildenafil also demonstrated an antinociceptive effect (1-10 mg/kg, i.p.) against in the writhing test. Co-administration of sildenafil (100 microg/paw, i.pl. and 2 mg/kg, i.p.) significantly enhanced the antinociceptive effect of morphine (2 microg/ paw, i.pl. and 2 mg/kg, i.p respectively). The antinociception produced by the drugs alone or combined was due to a local action, as its administration in the contralateral paws was ineffective. Pretreatment with N(G)-nitro-L-arginine methyl ester (an NO synthesis inhibitor), methylene blue (gunalyl cyclase inhibitor) or naloxone (opioid receptor antagonist) blocked the effect of a sildenafil-morphine combination in both tests. The results suggest that opioid receptor (NO and cGMP) mechanisms are involved in the combined antinociceptive effect. Further, sildenafil produced antinociception per se and increased the response of morphine, probably through the inhibition of cGMP degradation.  相似文献   

11.
The purpose of this study was to assess the antinociceptive and antiallodynic effect of melatonin as well as its possible mechanism of action in diabetic rats. Streptozotocin (50 mg/kg) injection caused hyperglycemia within 1 week. Formalin-evoked flinching was increased in diabetic rats as compared to non-diabetic rats. Oral administration of melatonin (10-300 mg/kg) dose-dependently reduced flinching behavior in diabetic rats. In addition, K-185 (a melatonin MT(2) receptor antagonist, 0.2-2 mg/kg, s.c.) completely blocked the melatonin-induced antinociception in diabetic rats, whereas that naltrexone (a non-selective opioid receptor antagonist, 1 mg/kg, s.c.) and naltrindole (a selective delta opioid receptor antagonist, 0.5 mg/kg, s.c.), but not 5'-guanidinonaltrindole (a selective kappa opioid receptor antagonist, 1 mg/kg, s.c.), partially reduced the antinociceptive effect of melatonin. Given alone K-185, naltrexone, naltrindole or 5'-guanidinonaltrindole did not modify formalin-induced nociception in diabetic rats. Four to 8 weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. On this condition, oral administration of melatonin (75-300 mg/kg) dose-dependently reduced tactile allodynia in diabetic rats. Both antinociceptive and antiallodynic effects were not related to motor changes as melatonin did not modify number of falls in the rotarod test. Results indicate that melatonin is able to reduce formalin-induced nociception and tactile allodynia in streptozotocin-injected rats. In addition, data suggest that melatonin MT(2) and delta opioid receptors may play an important role in these effects.  相似文献   

12.
In this study the pharmacokinetics and pharmacodynamics of morphine-3-glucuronide (M3G) were investigated in rats after i.v. administration as a bolus dose (86.7 μmol kg?1) and as a constant rate infusion (2.9 μmol h?1) over 5 days. After the bolus dose, the clearance (Cl) was 12.1 ± 0.6 ml min ?1* kg, the volume of distribution at steady state (Vss) 1.68 ± 0.89 1 kg?1, the half-life of the first phase 13.2 ± 1.8 min and the halflife of the second phase 11.6 ± 7.7 h. After the constant rate infusion, Cl was 10.5 ± 1.7 ml min?1*kg. The antagonistic effect of M3G on the antinociceptive effect of a bolus dose of morphine (35 μmol kg?1) was tested during steady state concentrations of M3G on day 4 and to M3G naïve rats. No antinociceptive, hyperalgesic or withdrawal effects were observed as a result of M3G administration, but a significantly lower antinociceptive effect of morphine was found in the M3G infusion group compared to the control group. Systemically administered M3G antagonized the antinociceptive effect of morphine, but this cannot be the only explanation to the tolerance development observed after morphine administration.  相似文献   

13.
Although the phenomenon of opioid tolerance and dependence has been widely investigated, neither opioid nor non-opioid mechanisms are completely understood. In view of the modulation of 5-HT transport into presynaptic terminals in the brain by nitric oxide (NO) via cGMP, and the existence of a tonic 5-HTergic inhibition of dopamine release, the present study investigated the effect of fluoxetine, a selective serotonin reuptake inhibitor, and NO modulators L-N(G)-nitroarginine methyl ester (L-NAME; NO synthase inhibitor) and L-Arginine (substrate for nitric oxide synthase) alone or in combination against morphine tolerance and dependence. Animals developed tolerance to the antinociceptive effect of morphine (10 mg/kg s.c. twice daily) on day 3 and the degree of tolerance was further enhanced on days 9 and 10. The development of tolerance to the antinociceptive effect of morphine was delayed by prior administration of fluoxetine (10 mg/kg i.p, twice daily for 9 days) and L-NAME (10 mg/kg i.p. twice daily for 9 days) alone or in combination. It was accentuated by L-Arginine (50 mg/kg i.p. twice daily for 9 days) alone or in combination with fluoxetine (10 mg/kg i.p. twice daily for 9 days). Similarly, fluoxetine (10 mg/kg i.p.) or L-NAME (10 mg/kg i.p.), when administered acutely on day 10, reversed morphine-induced tolerance. L-Arginine (50 mg/kg i.p.) however, when administered acutely on day 10, accentuated morphine tolerance. Fluoxetine (10 mg/kg i.p. twice daily for 9 days) suppressed the development of morphine dependence as assessed by naloxone (2 mg/kg i.p.)-precipitated withdrawal jumps. This suppression of dependence was potentiated by L-NAME (10 mg/kg i.p. twice daily for 9 days) and reversed by L-Arginine (50 mg/kg i.p. twice daily for 9 days), respectively. Acute administration of the respective drugs on day 10 modulated morphine dependence in a similar fashion. L-Arginine also reversed fluoxetine-induced weight loss in morphine-dependent animals. The present study demonstrated that fluoxetine suppressed the dependence and development of tolerance to the antinociceptive effect of morphine. Fluoxetine-induced suppression was potentiated by L-NAME and accentuated by L-Arginine. The results therefore suggest that a complex phenomenon such as morphine tolerance and dependence might involve close interplay of the NO-c GMP/5-HT/DA receptor system. To the best of the authors' knowledge, this is the first report to suggest targeting this cascade for amelioration of opioid tolerance and withdrawal syndrome.  相似文献   

14.
Endogenous adenosine released locally during cerebral ischemia is neuroprotective, and agents which decrease adenosine inactivation may potentiate its protective effects. The effects of 5′-deoxy-5-iodotubercidin (5′d-5IT), an inhibitor of the adenosine-catabolizing enzyme, adenosine kinase, were studied in male Wistar rats subjected to 2 h of transient middle cerebral artery occlusion. 5′d-5IT or the vehicle (10% DMSO in saline) was administered i.p. 30 min before, and 2 h and 6 h after the induction of middle cerebral artery occlusion. The infarct volume was determined using 2,3,5-triphenyltetrazolium chloride staining 48 h after middle cerebral artery occlusion. The infarct volume was significantly reduced in rats treated with 1.85 mg/kg×3 (57% reduction, P<0.001) or 1.0 mg/kg×3 (34% reduction, P<0.05), but not 0.3 mg/kg×3 5′d-5IT compared to vehicle-treated rats. The reduction of infarct volume was accompanied by a significant improvement in behavioral measures of neurological deficit. These data further support a role of adenosine in neuroprotection and suggest that adenosine kinase inhibition may be a useful approach to the treatment of focal cerebral ischemia.  相似文献   

15.
The ability of p-chlorophenylalanine (PCPA), an inhibitor of serotonin (5HT) biosynthesis to antagonize the antinociceptive effects of three classes of analgesics: opiates agonist (morphine), opiate agonist-antagonist (pentazocine) and non-steroid anti-inflammatory (aspirin and clonixin) were evaluated using the rat yeast paw test. The analgesic effect of equipotent doses of each of these drugs was abolished 48 h after PCPA (300 mg/kg i.p.) PCPA (150 mg/kg i.p.) reduced the relative potencies of morphine and aspirin to the same degree. The effect could not be attributed to a hyperalgesia or to an interaction with inflammatory mechanisms. PCPA did not alter the anti-edema activity of clonixin and it blocked morphine-induced increases in reaction times to pressure applied to the non-inflamed paw to the same extent as in the inflamed paw. The serotonin precursor 5-hydroxytryptophan (5HTP, 80 mg/kg i.p.) restored the antinociceptive activity of all four drugs. These results demonstrate serotonin can modulate sensitivity to analgesics with differing mechanisms of action.  相似文献   

16.
In this paper, we directly demonstrate, for the first time, the activation of Ca(2+)-dependent protein kinase C (PKC) in the spinal cord of diabetic mice. In streptozotocin (STZ)-treated (200 mg/kg, i.v.) diabetic mice, hypersensitivity (allodynia) to mechanical stimulation appeared 7 d after STZ injection. This mechanical allodynia was inhibited by intrathecal injection of the PKC inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) and calphostin C, but not the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89). The activity of membrane-associated Ca(2+)-dependent PKC in the spinal cords of STZ-induced diabetic mice was significantly higher than that observed in non-diabetic mice. These results suggest that activation of Ca(2+)-dependent PKC in the spinal cord, contributes to the mechanical allodynia in the pain associated with diabetic neuropathy.  相似文献   

17.
The effect of aminoguanidine, an inducible nitric oxide synthase (iNOS) inhibitor, on morphine-induced tolerance and dependence in mice was investigated in this study. Acute administration of aminoguanidine (20 mg/kg, p.o.) did not affect the antinociceptive effect of morphine (10 mg/kg, s.c.) as measured by the hot plate test. Repeated administration of aminoguanidine along with morphine attenuated the development of tolerance to the antinociceptive effect of morphine. Also, the development of morphine dependence as assessed by naloxone-precipitated withdrawal manifestations was reduced by co-administration of aminoguanidine. The effect of aminoguanidine on naloxone-precipitated withdrawal was enhanced by concurrent administration of the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, dizocilpine (0.25 mg/kg, i.p.) or the non-specific nitric oxide synthase (NOS) inhibitor, l-N(G)-nitroarginine methyl ester (l-NAME; 5 mg/kg, i.p.) and antagonized by concurrent administration of the nitric oxide (NO) precursor, l-arginine (50 mg/kg, p.o.). Concomitantly, the progressive increase in NO production, but not in brain glutamate level, induced by morphine was inhibited by repeated administration of aminoguanidine along with morphine. Similarly, co-administration of aminoguanidine inhibited naloxone-induced NO overproduction, but it did not inhibit naloxone-induced elevation of brain glutamate level in morphine-dependent mice. The effect of aminoguanidine on naloxone-induced NO overproduction was potentiated by concurrent administration of dizocilpine or l-NAME and antagonized by concurrent administration of l-arginine. These results provide evidence that blockade of NO overproduction, the consequence of NMDA receptor activation, by aminoguanidine, via inhibition of iNOS, can attenuate the development of morphine tolerance and dependence.  相似文献   

18.
The present study characterized the antinociceptive effects of tramadol with emphasis on the site of action, the possible development of antinociceptive tolerance, and possible cross-tolerance to morphine. Both tramadol and morphine produced antinociception as assessed in male, ICR mice using the warm water (55°C) tail-flick test. Intrathecal (i.t.) tramadol produced an antinociceptive response, but with a shallow dose-response curve (DRC), but i.c.v. tramadol was ineffective up to toxic doses (> 380 nmol). Simultaneous co-administration of tramadol by the i.c.v. and i.t. routes in a 1:1 fixed dose-ratio resulted in a synergistic interaction. Construction of a naloxone dose-response curve against an A90 dose of agonist yielded an AD50 (and 95% C.L.) of 0.19 (0.14–0.33) and 0.55 (0.38–0.74) μmol/kg against morphine and tramadol, respectively; both agonists were completely antagonized by naloxone. In mice pretreated twice daily (8:00 a.m. and 5:00 p.m.) with s.c. morphine the DRC for morphine was displaced 16-fold to the right, indicating significant development of antinociceptive tolerance. The same pretreatment resulted in only a 3-fold right-ward shift in the tramadol DRC. Chronic twice-daily (8:00 a.m. and 5:00 p.m.) pretreatment with tramadol resulted in only an approximate 3- and 4-fold rightward displacement in the tramadol and morphine DRCs, respectively. These results suggest that tramadol has an unusual antinociceptive mechanism which may reflect a primary site of action at spinal sites with a synergistic spinal/supraspinal interaction. Further, the lack of complete cross-tolerance between tramadol and morphine supports the suggestion of a non-opioid mechanism for this compound, whereas the complete antagonism by naloxone apparently reflects the opioid component of its mechanism in this test. Finally, the minimal development of tolerance to tramadol antinociception reinforces the view of a favorable tolerance-dependence profile for this compound. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The present study was designed to investigate the anti-allodynic effects of current analgesic agents, such as pregabalin, amitriptyline, mexiletine, morphine, and diclofenac, in a rat model of streptozotocin (STZ)-induced diabetic neuropathy. Diabetic rats developed a sustained decrease in withdrawal threshold response to the von Frey test within 8 weeks after a single injection of STZ (45 mg/kg, i.v.). The anti-allodynic effects of analgesic agents were examined after a single oral or subcutaneous administration at 3 and 7 weeks after beginning of STZ-treatment. Pregabalin (3-30 mg/kg, p.o.), an antiepileptic agent, dose-dependently blocked the mechanical allodynia in rats treated both at 3 and 7 weeks. Mexiletine (10-100 mg/kg, p.o.), a sodium channel blocker, dose-dependently ameliorated mechanical allodynia in rats treated at 3 weeks; however, the efficacy was diminished at 7 weeks. Morphine (1-10 mg/kg, s.c.) was effective in rats treated at 3 weeks; however, it was ineffective at 7 weeks. Conversely, an antidepressant amitriptyline (0.3-3 mg/kg, p.o.) improved mechanical allodynia in rats treated at 7 weeks, whereas it was ineffective at 3 weeks. Diclofenac, a non-steroidal anti-inflammatory drug, was ineffective at both time points. These results demonstrate that, except for diclofenac, the standard analgesic agents tested can effectively alleviate the mechanical allodynia seen in STZ-induced diabetic neuropathy. Their efficacies varied depending on the duration of the diabetic condition, suggesting that temporal changes in pharmacodynamic factors could affect the responsiveness of this model to analgesic agents.  相似文献   

20.
The antinociceptive effect of morphine was studied in tail-flick- and acetic acid-induced writhing in mice. Morphine effect was dose-related (1, 2 and 5 mg/kg s.c.). Physostigmine (0.05 and 0.1 mg/kg i.p.) potentiated the antinociceptive effect of morphine, and the anticholinergic, scopolamine (1 mg/kg i.p.), reversed the potentiating effect of physostigmine, indicating the involvement of the cholinergic system in pain. Coadministration of physostigmine would increase the therapeutic index of morphine thereby sparing the dose of morphine and also possibly the side effects including the development of tolerance and addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号