首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Streptococcal inhibitor of complement (Sic) is a highly polymorphic extracellular protein made predominantly by serotype M1 group A Streptococcus (GAS). New variants of the Sic protein frequently appear in M1 epidemics as a result of positive natural selection. To gain further understanding of the molecular basis of M1 epidemics, the sic gene was sequenced from 471 pharyngitis and 127 pyogenic and blood isolates recovered from 598 patients living in metropolitan Helsinki, Finland, during a 37-month population-based surveillance study. Most M1 GAS subclones recovered from pyogenic infections and blood were abundantly represented in the pool of subclones causing pharyngitis. Alleles shared among the pharyngitis, pyogenic, and blood samples were identified in throat isolates a mean of 9.8 months before their recovery from pyogenic infections and blood, which indicates that selection of most sic variants occurs on mucosal surfaces. In contrast, no variation was identified in the emm and covR/covS genes.  相似文献   

2.
In many countries, M1 strains of the human pathogenic bacterium group A Streptococcus are the most common serotype recovered from patients with invasive disease episodes. Strains of this serotype express an extracellular protein that inhibits complement [streptococcal inhibitor of complement (Sic)] and is therefore believed to be a virulence factor. Comparative sequence analysis of the 915-bp sic gene in 165 M1 organisms recovered from diverse localities and infection types identified 62 alleles. Inasmuch as multilocus enzyme electrophoresis and pulsed-field gel electrophoresis previously showed that most M1 organisms represent a distinct streptococcal clone, the extent of sic gene polymorphism was unexpected. The level of polymorphism greatly exceeds that recorded for all other genes examined in serotype M1 strains. All insertions and deletions are in frame, and virtually all nucleotide substitutions alter the amino acid sequence of the Sic protein. These molecular features indicate that structural change in Sic is mediated by natural selection. Study of 70 strains recovered from two temporally distinct epidemics of streptococcal infections in the former East Germany found little sharing of Sic variants among strains recovered in the different time periods. Taken together, the data indicate that sic is a uniquely variable gene and provide insight into a potential molecular mechanism contributing to fluctuations in streptococcal disease frequency and severity.  相似文献   

3.
Streptococcal inhibitor of complement (Sic) is a highly polymorphic extracellular protein made by serotype M1 group A Streptococcus strains that contributes to bacterial persistence in the mammalian upper respiratory tract. New variants of the Sic protein arise very rapidly by positive selection in human populations during M1 epidemics. The human antibody response to Sic was analyzed. Of 636 persons living in diverse localities, 43% had anti-Sic serum antibodies, but only 16.4% had anti-M1 protein serum antibody. Anti-Sic antibody was also present in nasal wash specimens in high frequency. Linear B cell epitope mapping showed that serum antibodies recognized epitopes located in structurally variable regions of Sic and the amino terminal hypervariable region of the M1 protein. Phage display analyses confirmed that the polymorphic regions of Sic are primary targets of host antibodies. These results support the hypothesis that selection of Sic variants occurs on mucosal surfaces by a mechanism that involves acquired host antibody.  相似文献   

4.
Streptococcal inhibitor of complement (Sic) is a secreted protein made predominantly by serotype M1 Group A Streptococcus (GAS), which contributes to persistence in the mammalian upper respiratory tract and epidemics of human disease. Unexpectedly, an isogenic sic-negative mutant adhered to human epithelial cells significantly better than the wild-type parental strain. Purified Sic inhibited the adherence of a sic negative serotype M1 mutant and of non-Sic-producing GAS strains to human epithelial cells. Sic was rapidly internalized by human epithelial cells, inducing cell flattening and loss of microvilli. Ezrin and moesin, human proteins that functionally link the cytoskeleton to the plasma membrane, were identified as Sic-binding proteins by affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Sic colocalized with ezrin inside epithelial cells and bound to the F-actin-binding site region located in the carboxyl terminus of ezrin and moesin. Synthetic peptides corresponding to two regions of Sic had GAS adherence-inhibitory activity equivalent to mature Sic and inhibited binding of Sic to ezrin. In addition, the sic mutant was phagocytosed and killed by human polymorphonuclear leukocytes significantly better than the wild-type strain, and Sic colocalized with ezrin in discrete regions of polymorphonuclear leukocytes. The data suggest that binding of Sic to ezrin alters cellular processes critical for efficient GAS contact, internalization, and killing. Sic enhances bacterial survival by enabling the pathogen to avoid the intracellular environment. This process contributes to the abundance of M1 GAS in human infections and their ability to cause epidemics.  相似文献   

5.
Genome sequences are available for many bacterial strains, but there has been little progress in using these data to understand the molecular basis of pathogen emergence and differences in strain virulence. Serotype M3 strains of group A Streptococcus (GAS) are a common cause of severe invasive infections with unusually high rates of morbidity and mortality. To gain insight into the molecular basis of this high-virulence phenotype, we sequenced the genome of strain MGAS315, an organism isolated from a patient with streptococcal toxic shock syndrome. The genome is composed of 1,900,521 bp, and it shares approximately 1.7 Mb of related genetic material with genomes of serotype M1 and M18 strains. Phage-like elements account for the great majority of variation in gene content relative to the sequenced M1 and M18 strains. Recombination produces chimeric phages and strains with previously uncharacterized arrays of virulence factor genes. Strain MGAS315 has phage genes that encode proteins likely to contribute to pathogenesis, such as streptococcal pyrogenic exotoxin A (SpeA) and SpeK, streptococcal superantigen (SSA), and a previously uncharacterized phospholipase A(2) (designated Sla). Infected humans had anti-SpeK, -SSA, and -Sla antibodies, indicating that these GAS proteins are made in vivo. SpeK and SSA were pyrogenic and toxic for rabbits. Serotype M3 strains with the phage-encoded speK and sla genes increased dramatically in frequency late in the 20th century, commensurate with the rise in invasive disease caused by M3 organisms. Taken together, the results show that phage-mediated recombination has played a critical role in the emergence of a new, unusually virulent clone of serotype M3 GAS.  相似文献   

6.
We describe the genome sequence of a macrolide-resistant strain (MGAS10394) of serotype M6 group A Streptococcus (GAS). The genome is 1,900,156 bp in length, and 8 prophage-like elements or remnants compose 12.4% of the chromosome. A 8.3-kb prophage remnant encodes the SpeA4 variant of streptococcal pyrogenic exotoxin A. The genome of strain MGAS10394 contains a chimeric genetic element composed of prophage genes and a transposon encoding the mefA gene conferring macrolide resistance. This chimeric element also has a gene encoding a novel surface-exposed protein (designated "R6 protein"), with an LPKTG cell-anchor motif located at the carboxyterminus. Surface expression of this protein was confirmed by flow cytometry. Humans with GAS pharyngitis caused by serotype M6 strains had antibody against the R6 protein present in convalescent, but not acute, serum samples. Our studies add to the theme that GAS prophage-encoded extracellular proteins contribute to host-pathogen interactions in a strain-specific fashion.  相似文献   

7.
Acute rheumatic fever (ARF), a sequelae of group A Streptococcus (GAS) infection, is the most common cause of preventable childhood heart disease worldwide. The molecular basis of ARF and the subsequent rheumatic heart disease are poorly understood. Serotype M18 GAS strains have been associated for decades with ARF outbreaks in the U.S. As a first step toward gaining new insight into ARF pathogenesis, we sequenced the genome of strain MGAS8232, a serotype M18 organism isolated from a patient with ARF. The genome is a circular chromosome of 1,895,017 bp, and it shares 1.7 Mb of closely related genetic material with strain SF370 (a sequenced serotype M1 strain). Strain MGAS8232 has 178 ORFs absent in SF370. Phages, phage-like elements, and insertion sequences are the major sources of variation between the genomes. The genomes of strain MGAS8232 and SF370 encode many of the same proven or putative virulence factors. Importantly, strain MGAS8232 has genes encoding many additional secreted proteins involved in human-GAS interactions, including streptococcal pyrogenic exotoxin A (scarlet fever toxin) and two uncharacterized pyrogenic exotoxin homologues, all phage-associated. DNA microarray analysis of 36 serotype M18 strains from diverse localities showed that most regions of variation were phages or phage-like elements. Two epidemics of ARF occurring 12 years apart in Salt Lake City, UT, were caused by serotype M18 strains that were genetically identical, or nearly so. Our analysis provides a critical foundation for accelerated research into ARF pathogenesis and a molecular framework to study the plasticity of GAS genomes.  相似文献   

8.
Analysis of 132 group A streptococcal (GAS) isolates from 151 invasive episodes, including streptococcal toxic shock syndrome (STSS), from 1983 to 1995 showed great genetic variation by use of T serotyping in combination with restriction fragment length polymorphism. In contrast, genetically homogenous T1M1 isolates appeared in epidemic patterns with significantly increased risk of STSS. The speA gene, with the allelic variants speA2 and speA3 carried by the T1M1 and T3M3 serotypes, respectively, was strongly associated with STSS. Infection with a GAS isolate carrying speA, alcohol abuse, and malignancy recently treated with cytostatic drugs were factors independently related to STSS. Neutralization of SpeA lymphocyte mitogenicity was totally absent in sera from patients with STSS and low in sera from persons with uncomplicated bacteremia compared with levels in sera from uncomplicated erysipelas. Neutralization of SpeB was significantly lower in sera of patients with STSS than in sera from persons with bacteremia or erysipelas.  相似文献   

9.
Molecular factors that contribute to the emergence of new virulent bacterial subclones and epidemics are poorly understood. We hypothesized that analysis of a population-based strain sample of serotype M3 group A Streptococcus (GAS) recovered from patients with invasive infection by using genome-wide investigative methods would provide new insight into this fundamental infectious disease problem. Serotype M3 GAS strains (n = 255) cultured from patients in Ontario, Canada, over 11 years and representing two distinct infection peaks were studied. Genetic diversity was indexed by pulsed-field gel electrophoresis, DNA-DNA microarray, whole-genome PCR scanning, prophage genotyping, targeted gene sequencing, and single-nucleotide polymorphism genotyping. All variation in gene content was attributable to acquisition or loss of prophages, a molecular process that generated unique combinations of proven or putative virulence genes. Distinct serotype M3 genotypes experienced rapid population expansion and caused infections that differed significantly in character and severity. Molecular genetic analysis, combined with immunologic studies, implicated a 4-aa duplication in the extreme N terminus of M protein as a factor contributing to an epidemic wave of serotype M3 invasive infections. This finding has implications for GAS vaccine research. Genome-wide analysis of population-based strain samples cultured from clinically well defined patients is crucial for understanding the molecular events underlying bacterial epidemics.  相似文献   

10.
Pharyngitis caused by Streptococcus pyogenes is one of the most common bacterial infections in humans and is also a starting point for invasive S. pyogenes infection. Here, we describe that tonsil fluid from patients with streptococcal pharyngitis contains high amounts of the interferon (IFN)-dependent CXC chemokine known as monokine induced by IFN- gamma (MIG)/CXCL9. Also in vitro, inflamed pharyngeal epithelium produced large amounts of MIG/CXCL9 in the presence of bacteria. The CXC chemokines MIG/CXCL9, IFN-inducible protein-10/CXCL10, and IFN-inducible T cell alpha -chemoattractant/CXCL11 all showed antibacterial activity against S. pyogenes, and inhibition of MIG/CXCL9 expression reduced the antibacterial activity at the surface of inflamed pharyngeal cells. S. pyogenes of the clinically important M1 serotype secrets the protein streptococcal inhibitor of complement (SIC), which inhibited the antibacterial activity of the chemokines. As exemplified by S. pyogenes pharyngitis, the data identify a novel innate defense mechanism against invasive bacteria on epithelial surfaces.  相似文献   

11.
To better understand the molecular events involved in the origin of new pathogenic bacteria, we studied the evolution of a highly virulent clone of serotype M1 group A Streptococcus (GAS). Genomic, DNA-DNA microarray, and single-nucleotide polymorphism analyses indicated that this clone evolved through a series of horizontal gene transfer events that involved (1) the acquisition of prophages encoding streptococcal pyrogenic exotoxin A and extracellular DNases and (2) the reciprocal recombination of a 36-kb chromosomal region encoding the extracellular toxins NAD+-glycohydrolase (NADase) and streptolysin O (SLO). These gene transfer events were associated with significantly increased production of SLO and NADase. Virtual identity in the 36-kb region present in contemporary serotype M1 and M12 isolates suggests that a serotype M12 strain served as the donor of this region. Multiple horizontal gene transfer events were a crucial factor in the evolutionary origin and emergence of a very abundant contemporary clone of serotype M1 GAS.  相似文献   

12.
A nationwide study of invasive group A streptococcal (GAS) infections in Sweden during 1994-1995 was carried out. All Swedish microbiological laboratories were asked to report isolates of GAS from normally sterile sites. During the study period they were also asked to send their isolates for T typing. Questionnaires were sent to the physicians in charge of each patient. The incidence, serotype, clinical presentation, symptoms and outcome were recorded. Clinical data were obtained for 468 of 556 patients with GAS bacteraemia. The lethality rate was 16%, but was much higher (37%) in the 113 patients who developed streptococcal toxic shock syndrome (STSS). Streptococci of serotype T1 dominated during the study period and were linked to the increase in invasive GAS infections. They also carried an increased risk of causing STSS. Invasive streptococcal disease with STSS most often has an unknown primary focus or is associated with soft tissue infections. Invasive streptococcal disease not associated with STSS most often has a skin infection as portal of entry or else an unknown focus.  相似文献   

13.
Clones of Group A streptococcus (GAS) may spread epidemically and may be associated with enhanced virulence. Sociodemographic and clinical characteristics, together with bacterial isolates, of 79 patients with GAS infection in the Berne region between January 1993 and February 1997 were analysed retrospectively. Using pulsed-field gel electrophoresis, most strains (71%) were found to belong to one of 12 clones. Clonal strains caused significantly more frequent skin abscesses and more severe invasive disease than non-clonal strains. The largest clone (M serotype 1) occurred endemically in non-IVDU patients and caused severe disease in most. Three clones occurred almost exclusively among IVDUs: an M serotype 11 was associated with severe, endemic disease; the other 2 clones, both of M serotype 25, caused epidemics of needle abscesses. Epidemic and endemic spread of GAS clones among IVDUs may be more frequent than previously assumed.  相似文献   

14.
Summary The incidence of severe invasive infections caused by Streptococcus pyogenes, a group A streptococcus (GAS), has increased in the past 10 years. Most cases occur outside of the hospital setting. We report on two patients with nosocomial streptococcal toxic shock syndrome (StrepTSS). In patient 1 the syndrome was associated with the development of necrotizing fasciitis following inguinal hernia repair. Patient 2 suffered from StrepTSS shortly after receiving a tetanus vaccine in her left deltoid. Epidemiologic investigations of these cases, which were noted within 48 hours of each other, showed that the same surgeon performed the vaccination on patient 2 after assisting a colleague during the hernia repair procedure on patient 1. He was found to be a nasal carrier of GAS. All GAS isolates from the patients and the surgeon were indistinguishable by pulsed field gel electrophoresis. PCR analysis demonstrated the presence of streptococcal pyogenic exotoxins A and F. All strains were of the T-1 serotype and possessed the gene for M-protein 1. This report demonstrates that a virulent strain of GAS may be spread by asymptomatically colonized medical personnel via the air route. Received: February 26, 1999 · Revision accepted: May 26, 1999  相似文献   

15.
An increasing number of group A streptococci (GAS) with constitutive or inducible resistance to macrolide-lincosamide-streptogramin B antibiotics (cMLS or iMLS phenotype) is observed in Europe, but MLS resistant GAS associated with streptococcal toxic shock syndrome (STSS) has not been reported. We describe a patient admitted with STSS caused by an iMLS resistant T28 M77 Streptococcus pyogenes carrying the ermA [subclass TR] gene. A 2-y retrospective analysis among 701 nationwide collected GAS strains revealed an incidence of 3.1% of this M type 77 GAS. Analysis of 17 available M77 strains (12 T28 and 5 T13) indicated that 2 (12%) were MLS resistant due to the ermA [TR] gene. Both MLS resistant strains were cultured from blood and belonged to T28 serotype. Multilocus sequence typing (MLST) showed that all M77 isolates belonged to sequence type 63. We conclude that 17 M77 GAS collected in the Netherlands in a 2-y period were associated with invasive disease and belonged to the same clonal complex. Since only 12% carried the ermA [TR] resistance gene, it is very likely that the gene has been acquired by horizontal transmission rather than from spread of a resistant circulating clone.  相似文献   

16.
Molecular basis of group A streptococcal virulence   总被引:12,自引:0,他引:12  
The group A streptococcus (GAS) (Streptococcus pyogenes) is among the most common and versatile of human pathogens. It is responsible for a wide spectrum of human diseases, ranging from trivial to lethal. The advent of modern techniques of molecular biology has taught much about the organism's virulence, and the genomes of several GAS types have now been deciphered. Surface structures of GAS including a family of M proteins, the hyaluronic acid capsule, and fibronectin-binding proteins, allow the organism to adhere to, colonise, and invade human skin and mucus membranes under varying environmental conditions. M protein binds to complement control factors and other host proteins to prevent activation of the alternate complement pathway and thus evade phagocytosis and killing by polymorphonuclear leucocytes. Extracellular toxins, including superantigenic streptococcal pyrogenic exotoxins, contribute to tissue invasion and initiate the cytokine storm felt responsible for illnesses such as necrotising fasciitis and the highly lethal streptococcal toxic shock syndrome. Progress has been made in understanding the molecular epidemiology of acute rheumatic fever but less is understood about its basic pathogenesis. The improved understanding of GAS genetic regulation, structure, and function has opened exciting possibilities for developing safe and effective GAS vaccines. Studies directed towards achieving this long-sought goal are being aggressively pursued.  相似文献   

17.
Severe invasive group A streptococcal (GAS) infections emerged in the late 1980s, yet no single virulence factor has been common to all isolates from infected patients. A strong association was recently found between isolates of such cases (regardless of M type) and the production of NAD glycohydrolase (NADase). Of interest, all M-1 strains isolated after 1988 were positive for NADase, whereas virtually all M-1 GAS were previously negative for NADase. Genetic analysis demonstrated that GAS isolates were >96% identical in nga and >99% identical in their upstream regulatory sequences. Furthermore, because NADase-negative strains did not produce immunoreactive NADase, we concluded that additional regulatory element(s) control NADase production. NADase purified from GAS altered neutrophil-directed migration and chemiluminescence responses and had potent ADP-ribosyltransferase activity. In summary, the temporal relationship of NADase expression, alone or with other streptococcal virulence factors, may contribute to the pathogenesis of invasive GAS infections.  相似文献   

18.
A group A Streptococcus (GAS) isolate, serotype M12, recovered from a patient with streptococcal toxic shock syndrome was analyzed for superantigen-carrying prophages, revealing phi149, which encodes superantigen SSA. Sequence analysis of the att-L proximal region of phi149 showed that the phage had a mosaic nature. Remarkably, we successfully obtained lysogenic conversion of GAS clinical isolates of various M serotypes (M1, M3, M5, M12, M19, M28, and M94), as well as of group C Streptococcus equisimilis (GCSE) clinical isolates, via transfer of a recombinant phage phi149::Km(r). Phage phi149::Km(r) from selected lysogenized GAS and GCSE strains could be transferred back to M12 GAS strains. Our data indicate that horizontal transfer of lysogenic phages among GAS can occur across the M-type barrier; these data also provide further support for the hypothesis that toxigenic conversion can occur via lysogeny between species. Streptococci might employ this mechanism specifically to allow more efficient adaptation to changing host challenges, potentially leading to fitter and more virulent clones.  相似文献   

19.
A chemiluminescence method was used to study opsonization of group A Streptococcus (GAS) of serotype T1M1 in serum samples ("sera") obtained from Swedish patients with invasive and noninvasive GAS infection and from healthy blood donors. Acute-phase serum samples ("acute sera") generally demonstrated low ability to opsonize the patient's own GAS isolate, regardless of clinical manifestation. Only approximately 15% of serum samples obtained from healthy blood donors demonstrated high opsonic activity against a standard T1M1 strain. Opsonization of 62 T1M1 isolates (obtained during 1980-1998) by a single immune serum sample showed considerable variation; this indicates that high opsonic immunity may develop only against the infecting isolate or identical clones. T1M1 GAS isolated from 1987 through 1990 were better opsonized by the immune serum sample than were isolates obtained before 1987 or after 1990, a finding that suggests a temporal change of the surface properties that affect opsonization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号