首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydroartemisinin (DHA) is a poorly water-soluble drug that displays low bioavailability after oral administration. Attempts have been made to improve the solubility of DHA. Yet, no information is available concerning improved bioavailability. This study aimed to improve the water solubility of DHA by two systems: solid dispersions with polyvinylpyrrolidone (PVPK30, PVPK25, PVPK15) and inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβCD), as well as improving the bioavailability of both systems. The phase transition of DHA with hydrophilic polymers was evaluated by X-ray diffraction (XRD) and differential scanning calorimetery (DSC). DHA became amorphous in DHA-HPβCD complexes and showed more amorphous behavior in XRD analyses with rise in molecular weight of PVP. Melting onset temperature of DHA decreased, while DSC thermograms revealed the peak area and enhanced enthalpy change (DH) in solid dispersions as well as inclusion complexes. DHA solubility was enhanced 84-fold in DHA-HPβCD complexes and 50-times in DHA-PVPK30. The improved solubility using the four polymers was in the following order: HPβCD > PVPK30 > PVPK25 > PVPK15. Values of area under curve (AUC) and half life (t1/2) of DHA-PVPK30 were highest followed by DHA-HPβCD, DHA-PVPK15 and DHA-PVPK25. Vd/f of DHA-PVPK30 was 7-fold. DHA-HPβCD, DHA-PVPK15 and DHA-PVPK25 showed significantly different pharmacokinetic parameters compared with DHA solutions. The 95% confidence interval was meaningful in AUC and t1/2. Pharmacokinetic parameters revealed that all four-test preparations were significantly more bioavailable than DHA alone.  相似文献   

2.
Solid dispersions of a slightly water-soluble drug, clotrimazole, were prepared in different weight ratios using polyethyleneglycol 4000 and different molecular weight polyvinyl pyrrolidones as carriers. Moreover, binary and ternary β-cyclodextrin complexes were prepared in different molar ratios. Both solid dispersions and β-cyclodextrin complexes were prepared by solvent evaporation technique. A phase solubility method was used to evaluate the effect of the tested carriers on the aqueous solubility of clotrimazole. The dissolution of all the preparations was tested using the USP paddle method. The selected solid dispersions and inclusion complexes were characterized by differential scanning calorimetry and X-ray powder diffractometry studies, and results clarified the role of the tested carriers in decreasing the crystallinity of clotrimazole and complexing abilities. Based on physical characters and in vitro drug release pattern, polyvinylpyrrolidone solid dispersions (1:1 weight ratio) and ternary cyclodextrin complexes (clotrimazole-β-cyclodextrin complexes with either polymer, 1:1 molar ratio) were selected as ideal batches for suppositories. Suppocire AM/50 mg carbopol 940, was chosen as a suppository base and the suppositories were prepared by molding technique. The prepared suppositories were characterized for weight variation, softening time and drug content. All these properties were found to be ideal. The in vitro drug release pattern was determined in citrate buffer (pH 4.5) containing 1% sodium lauryl sulfate. The in vitro release of clotrimazole from its solid dispersions and inclusion complexes incorporated suppositories was markedly improved when compared to the intact drug incorporated suppositories. Polyvinyl pyrrolidone solid dispersions incorporated suppositories were found to possess excellent antifungal activity.  相似文献   

3.
Improving drug solubility for oral delivery using solid dispersions.   总被引:22,自引:0,他引:22  
The solubility behaviour of drugs remains one of the most challenging aspects in formulation development. With the advent of combinatorial chemistry and high throughput screening, the number of poorly water soluble compounds has dramatically increased. Although solid solutions have tremendous potential for improving drug solubility, 40 years of research have resulted in only a few marketed products using this approach. With the introduction of new manufacturing technologies such as hot melt extrusion, it should be possible to overcome problems in scale-up and for this reason solid solutions are enjoying a renaissance. This article begins with an overview of the historical background and definitions of the various systems including eutectic mixtures, solid dispersions and solid solutions. The remainder of the article is devoted to the production, the different carriers and the methods used for the characterization of solid dispersions.  相似文献   

4.
The effect of solid dispersion (SD) formation on the solubility of phenazepam has been studied. Phenazepam and its SDs with poly(ethyleneglycol)-1500 (PEG), poly(vinylpyrrolidone)-10000 (PVP), and β-cyclodextrin were studied. The SD with PVP increases both the solubility and the dissolution rate of phenazepam. Results obtained by a complex of physical and chemical methods suggest that the improved release of phenazepam from the SD with PVP is due to solubilization, amorphization, and formation of a colloidal dispersion of the parent drug substance.  相似文献   

5.
6.
The influence of solid dispersions (SDs) on the solubility of synthomycin (INN chloramphenicol) has been determined. SDs of synthomycin with poly(ethyleneglycol) (PEG-1500), poly(vinylpyrrolidone) (PVP-10000), and β-cyclodextrin have been obtained and studied. The solubility of synthomycin from SDs increases by a factor of 1.5–2.0; the solubility rate, 2.7–3.4, as compared to those for the parent substance. Data obtained by a combination of physicochemical methods indicate that the improved release of synthomycin from SDs is related to a decrease in the degree of crystallinity and to the formation of intermolecular complexes.  相似文献   

7.
The effect of solid dispersions (SDs) on the solubility of parmidin has been studied by comparing the solubility of parmidin, its SDs, and physical mixtures with polyethyleneglycol-1500, polyvinylpyrrolidone-10000, and β-cyclodextrin. It is established that the formulation of SDs increases the solubility and the dissolution rate of parmidin. Data obtained using a complex of physical and chemical methods suggest that improvement of the drug release from SDs is due to the solubilization and the formation of a colloidal-dispersion state of the given substance.  相似文献   

8.
9.
Abstract

The purpose of this study was to investigate changes in the water solubility of artemether; a poorly soluble drug used for the treatment of malaria. Different solid dispersions (SDs) of artemether were prepared using artemether and polyethylene glycol 6000 at ratio 12:88 (Group 1), self-emulsified solid dispersions (SESDs) containing artemether, polyethylene glycol 6000, cremophor-A-25, olive oil, hydroxypropylmethylcellulose and transcutol in the ratio 12:75:5:4:2:2, respectively (Group 2). SESDs were also prepared by substituting cremophor-A-25 in Group 2 with poloxamer 188 (noted as Group 3). Each of these preparations was formulated using physical mixing and the solvent evaporation method. Aqueous solubility of artemether improved 11-, 95- and 102-fold, while dissolution (in simulated gastric fluid) increased 3-, 13- and 14-fold, for formulation groups 1, 2 and 3, respectively. X-ray diffraction patterns of SDs indicated a decrease in peak intensities at 10° implying reduced artemether crystallinity. Scanning electron micrographs invariably revealed embedment of artemether by various excipients and a glassy appearance for solvent evaporated mixtures for all three formulation Groups. Our findings indicate improved hydrophilic interactions for drug particles yield greater solubility and dissolution in the following order for artemether formulating methods: solvent evaporation mixtures?>?physical mixtures?>?pure artemether.  相似文献   

10.
The solubility behavior of solid dispersions of two drugs with similar structures was studied. Valdecoxib (VLB) and etoricoxib (ETB) were used as model drugs, and their solid dispersions were prepared with 1, 2, 5, 10, 15, and 20% w/w poly(vinylpyrrolidone) (PVP) by the quench cooling method. The interactions between the drug and polymer molecules were studied by Fourier transform infrared spectroscopy (FT-IR). The thermodynamic aspects of solubility behavior were studied by plotting van't Hoff plots. Both the drugs showed significant differences in their solubility behavior. In the case of VLB, solubility was found to increase significantly with increasing PVP concentration. ETB however did not show any significant solubility enhancement and was found to have decreased solubility at high PVP concentrations. H-bonding interactions were established between VLB and PVP molecules, while none were observed in ETB-PVP dispersions. Solution thermodynamics of amorphous and crystalline forms of both the drugs were studied by van't Hoff plots. The results obtained showed very high negative value of Gibbs free energy for VLB as compared to ETB, thus demonstrating high spontaneity of VLB solubilization. Entropy of amorphous VLB was found to be highly favorable, while being slightly unfavorable for ETB. From this study H-bonding interactions were found to play a major role in dictating the solubility behavior of these drugs from solid dispersions.  相似文献   

11.
Flunarizine is a selective calcium entry blocker poorly water-soluble. In this report, the interactions of this drug with polyvinylpyrrolidone in solid dispersions, prepared according to the dissolution method using methanol as the solvent, have been investigated. For purposes of comparison physical mixtures were prepared by simple mixture and homogeneization of the two pulverized components. Combinations of flunarizine/polyvinylpyrrolidone of the following percentage proportions were prepared: 10/90, 20/80, 30/70, 40/60, 50/50, 60/40 and 80/20 (mean particle size of 0.175 mm). The physicochemical properties of solid dispersions were investigated with X-ray diffraction, infrared spectroscopy, differential scanning calorimetry and solubility in equilibrium. X-ray patterns and differential scanning calorimetry have shown that polyvinylpyrrolidone inhibits the crystallization of flunarizine when percentages drug/polymer are 10/90, 20/80 and 30/70. The infrared spectra suggest that there was no chemical interaction between flunarizine and polyvinylpyrrolidone. Equilibrium solubility studies showed that drug solubility was enhanced as the polymer content increased. In general, the solubility increase was greater in solid dispersions than in physical mixtures and the solubility in equilibrium for solid dispersions and physical mixtures at the same drug/polymer proportion showed significant differences (P < 0.05).  相似文献   

12.
13.
Fosinopril is one of the most hydrophobic substances among the angiotensin-converting enzyme inhibitors, exhibiting low water solubility and poor bioavailability following oral administration. Inclusion complexes between the drug substance and cyclodextrins (CDs) were obtained in order to improve its solubility. The purpose of this study was to investigate the guest-host interaction of fosinopril sodium (FOS) with beta-cyclodextrin (beta-CD) and its derivative, randomly methylated beta-cyclodextrin (RAMEB) in solution by phase solubility diagrams (PSD) and in solid state by using thermal analysis, powder X-ray diffractometry (PXRD) and Fourier transform infrared spectroscopy (FTIR). The phase solubility analysis indicated that the solubility of FOS in simulated gastric fluid was increased in the presence of CDs and revealed for RAMEB an A(L)-type diagram, suggesting the formation of a 1:1 inclusion complex, and for beta-CD a B(s)-type phase diagram. The estimated apparent stability constant (K1:1), according to the Higuchi and Connors method, is 3209.99 M(-1) and 1770.34 M(-1) for RAMEB and beta-CD complexes respectively. The binary systems FOS/CDs were prepared using the kneading method in the molar ratio 1:1. The PXRD patterns and the thermograms indicated a drug amorphization process, higher for FOS/RAMEB binary system and the FTIR analysis suggested that the ester group of FOS is probably enclosed in the CD's cavity. The results of this study confirm the formation of inclusion complexes both in solution and in solid state and suggest that the complexes formation between FOS and CDs could improve the bioavailability of the drug due to the enhancing absorption expected from increased drug solubility.  相似文献   

14.
The solid-state properties and dissolution behaviour of lamotrigine in its inclusion complex with beta-cyclodextrin (betaCD) and solid dispersions with polyvinylpyrrolidone K30 (PVP K30) and polyethyleneglycol 6000 were investigated. The phase solubility profile of lamotrigine with betaCD was classified as AL-type, indicating formation of a 1:1 stoichiometry inclusion complex, with a stability constant of 369.96+/-2.26 M(-1). Solvent evaporation and kneading methods were used to prepare solid dispersions and inclusion complexes, respectively. The interaction of lamotrigine with these hydrophilic carriers was evaluated by powder X-ray diffractometry, Fourier transform infrared spectroscopy and differential scanning calorimetry. These studies revealed that the drug was no longer present in crystalline state but was converted to an amorphous form. Among the binary systems tested, PVP K30 (1:5) showed greatest enhancement of the solubility and dissolution of lamotrigine.  相似文献   

15.
Low-order high-energy nifedipine (NIF) solid dispersions (SDs) were generated by melt solvent amorphization with polyethylene glycol (PEG) 1450 and hypromellose acetate succinate (HPMCAS-HF) to increase NIF solubility while achieving acceptable physical stability. HPMCAS-HF was used as a crystallization inhibitor. Individual formulation components, their physical mixtures (PMs), and SDs were characterized by differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy (FTIR). NIF solubility and percent crystallinity (PC) were determined at the initial time and after 5?days stored at 25?°C and 60% RH. FTIR indicated that hydrogen bonding was involved with the amorphization process. FTIR showed that NIF:HPMCAS-HF intermolecular interactions were weaker than NIF:PEG 1450 interactions. NIF:PEG 1450 SD solubilities were significantly higher than their PM counterparts (p?<?0.0001). The solubilities of NIF:PEG 1450:HPMCAS-HF SDs were significantly higher than their corresponding NIF:PEG 1450 SDs (p?<?0.0001-0.043). All the SD solubilities showed a statistically significant decrease (p?<?0.0001) after storage for 5 days. SDs PC were statistically lower than their comparable PMs (p?<?0.0001). The PCs of SDs with HPMCAS-HF were significantly lower than SDs not containing only PEG 1450. All SDs exhibited a significant increase in PC (p?<?0.0001–0.0089) on storage. Thermogravimetric analysis results showed that HPMCAS-HF bound water at higher temperatures than PEG 1450 (p?<?0.0001–0.0039). HPMCAS-HF slowed the crystallization process of SDs, although it did not completely inhibit NIF crystal growth.  相似文献   

16.
Improvement of solubility and stability of thalidomide by inclusion complexation with cyclodextrins Thalidomide ( 1 ), which is only poorly soluble in water and also unstable due to spontaneous hydrolysis in aqueous solution, forms relatively stable inclusion complexes with β- and γ-cyclodextrin. The solubility in water can be increased thereby up to the fivefold. The half-life time of hydrolysis at pH 8.5 rises from less than 1 min for non-complexed 1 up to 170 and 30 min, respectively, for the β- and γ-cyclodextrin inclusion complex. α-Cyclodextrin, on the other hand, does not significantly improve the solubility of 1 , and it has no influence on its stability.  相似文献   

17.
The objective of this study was to use low viscosity grade hydroxypropyl methyl cellulose (Methocel® E3 LV and Methocel® E5 LV) to enhance the solubility and dissolution of poorly water soluble drug simvastatin (SIM). Two different technologies, hot melt extrusion and spray drying were employed. Characterization of hot melt extrudes and spray dried samples was done by Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction studies and scanning electron microscopy. The result of the study showed the conversion of crystalline form drug into amorphous form indicating increase in dissolution rate and solubility of SIM.  相似文献   

18.
The effect of cyclodextrin (beta-CD) on the solubility and dissolution rate of various paracetamol dispersion powders (1:1 w/w), and tablets was studied. Lower solubility was exhibited by a spray dried solid dispersion made from paracetamol-Ethocel-Macrogol 6000 (95:2:3). The improvement in solubility was influenced by complexation with beta-CD and the crystalline nature of the powder products made by different procedures. The difference in crystallinity was confirmed by X-ray powder diffraction patterns. The dissolution rate of paracetamol from tablets made from the solid dispersions was satisfactory compared with paracetamol alone. The differences between the dissolution rate from the examined paracetamol tablets resulted from the different solubility of each powder and from the structural changes of particles which influenced the consolidation of the tablet mass.  相似文献   

19.
Increase in the poor water solubility and dissolution rate of norfloxacin was studied. Two systems were used: solid dispersion with PEG 6000 prepared using the fusion method and inclusion complexes with cyclodextrins (β-cyclodextrin and HP-β-cyclodextrin) obtained by freeze-drying. IR spectrophotometry, X-ray diffractometry, and differential scanning calorimetry showed differences between norfloxacin/cyclodextrin complexes and their corresponding physical mixtures, but not between norfloxacin/PEG 6000 solid dispersions and their corresponding physical mixtures. The solubility and dissolution rate of norfloxacin were significantly increased with PEG solid dispersions and cyclodextrin complexes as well as with norfloxacin-CD physical mixtures. However, enhancement was not statistically different either among various cyclodextrin complexes, or between solid dispersions and cyclodextrin complexes.  相似文献   

20.
The aim of this study was to prepare and characterize solid dispersions of water insoluble non-steroidal anti-inflammatory drug, indomethacin (IND), with polyethylene glycol 4000 (PEG4000) and Gelucire 50/13 (Gelu.) for enhancing the dissolution rate of the drug. The solid dispersions (SDs) were prepared by hot melting method at 1:1, 1:2 and 1:4 drug to polymer ratios. Scanning electron microscopy (SEM), X-ray powder diffractometry (XRD) and differential scanning calorimetry (DSC) were used to examine the physical state of the drug. Furthermore, the solubility and the dissolution rate of the drug in its different systems were explored. The data from the XRD showed that the drug was still detectable in its solid state in all SDs of IND–Gelu. and disappeared in case of higher ratio of IND–PEG4000. DSC thermograms showed the significant change in melting peak of the IND when prepared as SDs suggesting the change in crystallinity of IND. The highest ratio of the polymer (1:4) enhanced the drug solubility about 4-folds or 3.5-folds in case of SDs of IND–PEG or IND–Gelu., respectively. An increased dissolution rate of IND at pH 1.2 and 7.4 was observed when the drug was dispersed in these carriers in form of physical mixtures (PMs) or SDs. IND released faster from the SDs than from the pure crystalline drug or the PMs. The dissolution rate of IND from its PMs or SDs increased with an increasing amount of polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号