首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subcortical vascular mild cognitive impairment(svMCI)is a common prodromal stage of vascular dementia.Although mounting evidence has suggested abnormalities in several single brain network metrics,few studies have explored the consistency between functional and structural connectivity networks in svMCI.Here,we constructed such networks using resting-state f MRI for functional connectivity and diffusion tensor imaging for structural connectivity in 30 patients with svMCI and 30 normal controls.The functional networks were then parcellated into topological modules,corresponding to several well-defined functional domains.The coupling between the functional and structural networks was finally estimated and compared at the multiscale network level(whole brain and modular level).We found no significant intergroup differences in the functional–structural coupling within the whole brain;however,there was significantly increased functional–structural coupling within the dorsal attention module and decreased functional–structural coupling within the ventral attention module in the svMCI group.In addition,the svMCI patients demonstrated decreased intramodular connectivity strength in the visual,somatomotor,and dorsal attention modules as well as decreased intermodular connectivity strength between several modules in the functional network,mainly linking the visual,somatomotor,dorsal attention,ventral attention,and frontoparietal control modules.There was no significant correlation between the altered module-level functional–structural coupling and cognitive performance in patients with svMCI.These findings demonstrate for the first time that svMCI is reflected in a selective aberrant topological organization in multiscale brain networks and may improve our understanding of the pathophysiological mechanisms underlying svMCI.  相似文献   

2.
Brain structure and cognitive function change in the temporal lobe,hippocampus,and prefrontal cortex of patients with mild cognitive impairment and Alzheimer’s disease,and brain network-connection strength,network efficiency,and nodal attributes are abnormal.However,existing research has only analyzed the differences between these patients and normal controls.In this study,we constructed brain networks using resting-state functional MRI data that was extracted from four populations(normal controls,patients with early mild cognitive impairment,patients with late mild cognitive impairment,and patients with Alzheimer’s disease)using the Alzheimer’s Disease Neuroimaging Initiative data set.The aim was to analyze the characteristics of resting-state functional neural networks,and to observe mild cognitive impairment at different stages before the transformation to Alzheimer’s disease.Results showed that as cognitive deficits increased across the four groups,the shortest path in the resting-state functional network gradually increased,while clustering coefficients gradually decreased.This evidence indicates that dementia is associated with a decline of brain network efficiency.In addition,the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and Alzheimer’s disease.The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions,and we speculate that early impairments in memory,hearing,and language function can eventually lead to diffuse brain injury and other cognitive impairments.  相似文献   

3.
Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer's disease (AD), and 75%-80% of aMCI patients finally develop AD. So, early identification of patients with aMCI or AD is of great significance for prevention and intervention. According to cross-sectional studies, it is known that the hippocampus, posterior cingulate cortex, and corpus callosum are key areas in studies based on structural MRI (sMRI), functional MRI (fMRI), and diffusion tensor imaging (DTI) respectively. Recently, longitudinal studies using each MRI modality have demonstrated that the neuroimaging abnormalities generally involve the posterior brain regions at the very beginning and then gradually affect the anterior areas during the progression of aMCI to AD. However, it is not known whether follow-up studies based on multi-modal neuroimaging techniques (e.g., sMRI, fMRI, and DTI) can help build effective MRI models that can be directly applied to the screening and diagnosis of aMCI and AD. Thus, in the future, large-scale multi-center follow-up studies are urgently needed, not only to build an MRI diagnostic model that can be used on a single person, but also to evaluate the variability and stability of the model in the general population. In this review, we present longitudinal studies using each MRI modality separately, and then discuss the future directions in this field.  相似文献   

4.
In this issue     
《上海精神医学》2013,25(5):263-265
This issue starts with a review of the status of research in China on the cognitive functioning of individuals with schizophrenia.[1] Two major factors have accelerated this type of research in China since the early 1990s: (a) the realization that the quality of life and social functioning of individuals afflicted by schizophrenia are closely associated with the degree of cognitive impairment they experience as part of their illness; and (b) the rapid development of functional imaging technologies that have made it possible to localize and, to some extent, characterize the brain abnormalities associated with specific cognitive disabilities. The review considers research in China about the assessment of the various types of cognitive impairments seen in schizophrenia, the factors that are correlated with the severity of cognitive dysfunction, the biological basis and structural localization of cognitive impairment, and the available pharmacological and non-pharmacological treatments. The authors conclude that more cross-disciplinary research and more long-term cohort studies are needed to understand the natural history of cognitive functioning during the course of schizophrenia and, thus, to develop effective strategies to prevent or limit cognitive dysfunction in persons with schizophrenia.  相似文献   

5.
Electroencephalographic studies using graph theoretic analysis have found aberrations in functional connectivity in children with developmental dyslexia. However, how the training with visual tasks can change the functional connectivity of the semantic network in developmental dyslexia is still unclear. We looked for differences in local and global topological properties of functional networks between 21 healthy controls and 22 dyslexic children(8–9 years old) before and after training with visual tasks in this prospective case-control study. The minimum spanning tree method was used to construct the subjects' brain networks in multiple electroencephalographic frequency ranges during a visual word/pseudoword discrimination task. We found group differences in the theta, alpha, beta and gamma bands for four graph measures suggesting a more integrated network topology in dyslexics before the training compared to controls. After training, the network topology of dyslexic children had become more segregated and similar to that of the controls. In the θ, α and β1-frequency bands, compared to the controls, the pre-training dyslexics exhibited a reduced degree and betweenness centrality of the left anterior temporal and parietal regions. The simultaneous appearance in the left hemisphere of hubs in temporal and parietal(α, β1), temporal and superior frontal cortex(θ, α), parietal and occipitotemporal cortices(β1), identified in the networks of normally developing children was not present in the brain networks of dyslexics. After training, the hub distribution for dyslexics in the theta and beta1 bands had become similar to that of the controls. In summary, our findings point to a less efficient network configuration in dyslexics compared to a more optimal global organization in the controls. This is the first study to investigate the topological organization of functional brain networks of Bulgarian dyslexic children. Approval for the study was obtained from the Ethics Committee of the Institute of Neurobiology and the Institute for Population and Human Studies, Bulgarian Academy of Sciences(approval No. 02-41/12.07.2019) on March 28, 2017, and the State Logopedic Center and the Ministry of Education and Science(approval No. 09-69/14.03.2017) on July 12, 2019.  相似文献   

6.
Impaired cognitive function,along with positive and negative symptoms,is a core clinical feature of schizophrenia.Earlier studies suggest that impaired cognitive functioning should be assessed from the perspective of brain networks.The recently developed brainnetome approach to evaluating brain networks-an approach that was initially developed by Chinese scientists-provides a new methodology for studying this issue.In this paper we first introduce the concept of brainnetome.We then review recent progress in developing a brainnetome of impaired cognitive function in people with schizophrenia.The models of the relevant brain networks considered were created using data obtained from functional and anatomical brain imaging technologies at different levels of analysis:networks centered on regions of interest,networks related to specific cognitive functions,whole brain networks,and the attributes of brain networks.Finally,we discuss the current challenges and potential new directions for research about brainnetome.  相似文献   

7.
Numerous studies have shown abnormal brain functional connectivity in individuals with Alzheimer’s disease(AD)or amnestic mild cognitive impairment(aMCI).However,most studies examined traditional resting state functional connections,ignoring the instantaneous connection mode of the whole brain.In this case-control study,we used a new method called dynamic functional connectivity(DFC)to look for abnormalities in patients with AD and aMCI.We calculated dynamic functional connectivity strength from functional magnetic resonance imaging data for each participant,and then used a support vector machine to classify AD patients and normal controls.Finally,we highlighted brain regions and brain networks that made the largest contributions to the classification.We found differences in dynamic function connectivity strength in the left precuneus,default mode network,and dorsal attention network among normal controls,aMCI patients,and AD patients.These abnormalities are potential imaging markers for the early diagnosis of AD.  相似文献   

8.
The rapidly increasing prevalence of cognitive impairment and Alzheimer’s disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer’s disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer’s disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer’s disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer’s disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed.  相似文献   

9.
Impaired structure and function of the hippocampus is a valuable predictor of progression from amnestic mild cognitive impairment(a MCI) to Alzheimer’s disease(AD). As a part of the medial temporal lobe memory system,the hippocampus is one of the brain regions affected earliest by AD neuropathology,and shows progressive degeneration as a MCI progresses to AD. Currently,no validated biomarkers can precisely predict the conversion from a MCI to AD. Therefore,there is a great need of sensitive tools for the early detection of AD progression. In this review,we summarize the specifi c structural and functional changes in the hippocampus from recent a MCI studies using neurophysiological and neuroimaging data. We suggest that a combination of advanced multi-modal neuroimaging measures in discovering biomarkers will provide more precise and sensitive measures of hippocampal changes than using only one of them. These will potentially affect early diagnosis and disease-modifying treatments. We propose a new sequential and progressive framework in which the impairment spreads from the integrity of fibers to volume and then to function in hippocampal subregions. Meanwhile,this is likely to be accompanied by progressive impairment of behavioral and neuropsychological performance in the progression of a MCI to AD.  相似文献   

10.
Multiple sclerosis is associated with structural and functional brain alterations leading to cognitive impairments across multiple domains including attention,memory,and the speed of information processing.The hippocampus,which is a brain important structure involved in memory,undergoes microstructural changes in the early stage of multiple sclerosis.In this study,we analyzed hippocampal function and structure in patients with relapsing-remitting multiple sclerosis and explored correlations between the functional connectivity of the hippocampus to the whole brain,changes in local brain function and microstructure,and cognitive function at rest.We retrospectively analyzed data from 20 relapsing-remitting multiple sclerosis patients admitted to the Department of Neurology at the China-Japan Union Hospital of Jilin University,China,from April 2015 to November 2019.Sixteen healthy volunteers were recruited as the healthy control group.All participants were evaluated using a scale of extended disability status and the Montreal cognitive assessment within 1 week before and after head diffusion tensor imaging and functional magnetic resonance imaging.Compared with the healthy control group,the patients with relapsing-remitting multiple sclerosis had lower Montreal cognitive assessment scores and regions of simultaneously enhanced and attenuated whole-brain functional connectivity and local functional connectivity in the bilateral hippocampus.Hippocampal diffusion tensor imaging data showed that,compared with the healthy control group,patients with relapsing-remitting multiple sclerosis had lower hippocampal fractional anisotropy values and higher mean diffusivity values,suggesting abnormal hippocampal structure.The left hippocampus whole-brain functional connectivity was negatively correlated with the Montreal cognitive assessment score(r=-0.698,P=0.025),and whole-brain functional connectivity of the right hippocampus was negatively correlated with extended disability status scale score(r=-0.649,P=0.042).The mean diffusivity value of the left hippocampus was negatively correlated with the Montreal cognitive assessment score(r=-0.729,P=0.017)and positively correlated with the extended disability status scale score(r=0.653,P=0.041).The right hippocampal mean diffusivity value was positively correlated with the extended disability status scale score(r=0.684,P=0.029).These data suggest that the functional connectivity and presence of structural abnormalities in the hippocampus in patients with relapse-remission multiple sclerosis are correlated with the degree of cognitive function and extent of disability.This study was approved by the Ethics Committee of China-Japan Union Hospital of Jilin University,China(approval No.201702202)on February 22,2017.  相似文献   

11.
正Increased occurrence of age-associated disabilities and neurodegenerative diseases is the price we pay for the tremendous elevation in life expectancy in our modern society.Aging comes along with structural,neurochemical and physiological alte rations in the brain that cause memory decline and cognitive impairments (Rozycka and LiguzLecznar,2017).  相似文献   

12.
A large number of studies have demonstrated that depression patients have cognitive dysfunction. With recently developed brain functional imaging, studies have focused on changes in brain function to investigate cognitive changes. However, there is still controversy regarding abnormalities in brain functions or correlation between cognitive impairment and brain function changes. Thus, it is important to design an emotion-related task for research into brain function changes. We selected positive, neutral, and negative pictures from the International Affective Picture System. Patients with major depressive disorder were asked to judge emotion pictures. In addition, functional MRI was performed to synchronously record behavior data and imaging data. Results showed that the total correct rate for recognizing pictures was lower in patients compared with normal controls. Moreover, the consistency for recognizing pictures for depressed patients was worse than normal controls, and they frequently recognized positive pictures as negative pictures. The consistency for recognizing pictures was negatively correlated with the Hamilton Depression Rating Scale. Functional MRI suggested that the activation of some areas in the frontal lobe, temporal lobe, parietal lobe, limbic lobe, and cerebellum was enhanced, but that the activation of some areas in the frontal lobe, parietal lobe and occipital lobe was weakened while the patients were watching positive and neutral pictures compared with normal controls. The activation of some areas in the frontal lobe, temporal lobe, parietal lobe, and limbic lobe was enhanced, but the activation of some areas in the occipital lobe were weakened while the patients were watching the negative pictures compared with normal controls. These findings indicate that patients with major depressive disorder have negative cognitive disorder and extensive brain dysfunction. Thus, reduced activation of the occipital lobe may be an initiating factor for cognitive disorder in depressed patients.  相似文献   

13.
The verbal fluency test (VFT) can be dissociated into "clustering" (generating words within subcategories) and "switching" (shifting between clusters), which may be valuable in differential diagnosis. In the current study, we investigated the validity of VFT in the differential diagnosis of Alzheimer’s disease (AD, n = 65), vascular dementia (VaD, n = 65), mild cognitive impairment (MCI, n = 92), and vascular cognitive impairment without dementia (VCIND, n = 76) relative to cognitively normal senior controls (NC, n = 374). We found that in the NC group, the total correct score was significantly correlated with age and education; males generated more subcategories; cluster size increased with education, and subcategory and switching decreased with age. A significantly progressive advantage was observed in VFT scores in the sequence NC > MCI/VCIND > AD/VaD, and this significantly discriminated dementia patients from the other groups. AD patients performed better in all four VFT scores than VaD patients. Subcategory and switching scores significantly distinguished AD from VaD patients (AD > VaD; mean difference, 0.50 for subcategory, P <0.05; 0.71 for switching, P <0.05). MCI patients scored higher than VCIND patients, but the difference did not reach statistical significance. These results suggest that semantic VFT is useful for the detection of MCI and VCIND, and in the differential diagnosis of cognitive impairment.  相似文献   

14.
Specific patterns of brain atrophy may be helpful in the diagnosis of Alzheimer's disease (AD). In the present study, we set out to evaluate the utility of grey-matter volume in the classification of AD and amnestic mild cognitive impairment (aMCI) compared to normal control (NC)individuals. Voxel-based morphometric analyses were performed on structural MRIs from 35 AD patients, 27 aMCI patients, and 27 NC participants. A two-sample two-tailed t-test was computed between the NC and AD groups to create a map of abnormal grey matter in AD. The brain areas with significant differences were extracted as regions of interest (ROIs), and the grey-matter volumes in the ROIs of the aMCI patients were included to evaluate the patterns of change across different disease severities. Next, correlation analyses between the grey-matter volumes in the ROIs and all clinical variables were performed in aMCI and AD patients to determine whether they varied with disease progression. The results revealed significantly decreased grey matter in the bilateral hippocampus/ parahippocampus, the bilateral superior/middle temporal gyri, and the right precuneus in AD patients.The grey-matter volumes with clinical variables were positively correlated Finally, we performed exploratory linear discriminative analyses to assess the classifying capacity of grey-matter volumes in the bilateral hippocampus and parahippocampus among AD, aMCI, and NC. Leave-one-out cross- validation analyses demonstrated that grey-matter volumes in hippocampus and parahippocampus accurately distinguished AD from NC. These findings indicate that grey-matter volumes are useful in the classification of AD.  相似文献   

15.
Cognitive impairments are commonly observed in patients with multiple sclerosis and are associated with lower levels of quality of life. No consensus has been reached on how to tackle effectively cognitive decline in this clinical population non-pharmacologically. This exploratory case-control study aims to investigate the effectiveness of a hypothesis-based cognitive training designed to target multiple domains by promoting the synchronous co-activation of different brain areas and thereby improve cognition and induce changes in functional connectivity in patients with relapsing-remitting multiple sclerosis. Forty-five patients(36 females and 9 males, mean age 44.62 ± 8.80 years) with clinically stable relapsing-remitting multiple sclerosis were assigned to either a standard cognitive training or to control groups(sham training and nonactive control). The standard training included twenty sessions of computerized exercises involving various cognitive functions supported by distinct brain networks. The sham training was a modified version of the standard training that comprised the same exercises and number of sessions but with increased processing speed load. The non-active control group received no cognitive training. All patients underwent comprehensive neuropsychological and magnetic resonance imaging assessments at baseline and after 5 weeks. Cognitive and resting-state magnetic resonance imaging data were analyzed using repeated measures models. At reassessment, the standard training group showed significant cognitive improvements compared to both control groups in memory tasks not specifically targeted by the training: the Buschke Selective Reminding Test and the Semantic Fluency test. The standard training group showed reductions in functional connectivity of the salience network, in the anterior cingulate cortex, associated with improvements on the Buschke Selective Reminding Test. No changes were observed in the sham training group. These findings suggest that multi-domain training that stimulates multiple brain areas synchronously may improve cognition in people with relapsing-remitting multiple sclerosis if sufficient time to process training material is allowed. The associated reduction in functional connectivity of the salience network suggests that training-induced neuroplastic functional reorganization may be the mechanism supporting performance gains. This study was approved by the Regional Ethics Committee of Yorkshire and Humber(approval No. 12/YH/0474) on November 20, 2013.  相似文献   

16.
Schizophrenia is hypothesized to arise from disrupted brain connectivity. This "dysconnectivity hypothesis" has generated interest in discovering whether there is anatomical and functional dysconnectivity between the prefrontal cortex(PFC) and other brain regions, and how this dysconnectivity is linked to the impaired cognitive functions and aberrant behaviors of schizophrenia. Critical advances in neuroimaging technologies, including diffusion tensor imaging(DTI) and functional magnetic resonance imaging(f MRI), make it possible to explore these issues. DTI affords the possibility to explore anatomical connectivity in the human brain in vivo and f MRI can be used to make inferences about functional connections between brain regions. In this review, we present major advances in the understanding of PFC anatomical and functional dysconnectivity and their implications in schizophrenia. We then briefl y discuss future prospects that need to be explored in order to move beyond simple mapping of connectivity changes to elucidate the neuronal mechanisms underlying schizophrenia.  相似文献   

17.
Several lines of evidence suggest that efficient information integration between brain regions is disrupted in schizophrenia. Abnormalities in white matter tracts that interconnect brain regions may be directly relevant to this pathophysiological process. As a complex mental disorder with high heritability, mapping abnormalities in patients and their firstdegree relatives may help to disentangle the risk factors for schizophrenia. We established a weighted network model of white matter connections using diffusion tensor imaging in 25 nuclear families with schizophrenic probands(19 patients and 41 unaffected parents) and two unrelated groups of normal controls(24 controls matched with patients and 26 controls matched with relatives). The patient group showed lower global efficiency and local efficiency. The decreased regional efficiency was localized in hubs such as the bilateral frontal cortices, bilateral anterior cingulate cortices, and left precuneus. The global effi ciency was negatively correlated with cognition scores derived from a 5-factor model of schizophrenic psychopathology.We also found that unaffected parents displayed decreased regional efficiency in the right temporal cortices, left supplementary motor area, left superior temporal pole, and left thalamus. The global efficiency tended to be lower in unaffected parents. Our data suggest that(1) the global effi ciency loss in neuroanatomical networks may be associated with the cognitive disturbances in schizophrenia; and(2) genetic vulnerability to schizophrenia may influence the anatomical organization of an individual’s brain networks.  相似文献   

18.
正The restricted neurogenesis limits the brain ability to overcome neuronal cell death following ischemic lesion:Failure of the damaged brain to regenerate following cerebral ischemia results in functional deficits those are most often irreversible and can further deteriorate,causing mortality and severe disability,progressive memory loss and cognitive impairments,known as dementia.This is caused by massive neuronal cell death and neurotoxicity following limited blood supply to the brain.Ischemic death of brain neurons(acute or delayed after lesion)has been the etiology of  相似文献   

19.
Recent studies have made substantial progress in understanding the interactions between cognitive functions, from language to cognitive control, attention, and memory. However, dissociating these functions has been hampered by the close proximity of regions involved, as in the case in the prefrontal and parietal cortex. In this article, we review a series of studies that investigated the relationship between language and other cognitive functions in an alternative way –– by examining their functional(co-)lateralization. We argue that research on the hemispheric lateralization of language and its link with handedness can offer an appropriate startingpoint to shed light on the relationships between different functions. Besides functional interactions, anatomical asymmetries in non-human primates and those underlying language in humans can provide unique information about cortical organization. Finally, some open questions and criteria are raised for an ideal theoretical model of the cortex based on hemispheric specialization.  相似文献   

20.
Alzheimer's disease(AD) is the most common age-related, progressive neurodegenerative disease. It is characterized by memory loss and cognitive decline and responsible for most cases of dementia in the elderly. Late-onset or sporadic AD accounts for 95% of cases, with age at onset 65 years. Currently there are no drugs or other therapeutic agents available to prevent or delay the progression of AD. The cellular and molecular changes occurring in the brains of individuals with AD include accumulation of β-amyloid peptide and hyperphosphorylated tau protein, decrease of acetylcholine neurotransmitter, inflammation, and oxidative stress. Aggregation of β-amyloid peptide in extracellular plaques and the hyperphosphorylated tau protein in intracellular neurofibrillary tangles are characteristic of AD. A major challenge is identifying molecular biomarkers of the early-stage AD in patients as most studies have been performed with blood or brain tissue samples(postmortem) at late-stage AD. Subjects with mild cognitive impairment almost always have the neuropathologic features of AD with about 50% of mild cognitive impairment patients progressing to AD. They could provide important information about AD pathomechanism and potentially also highlight minimally or noninvasive, easy-to-access biomarkers. MicroRNAs are dysregulated in AD, and may facilitate the early detection of the disease and potentially the continual monitoring of disease progression and allow therapeutic interventions to be evaluated. Four recent reviews have been published of microRNAs in AD, each of which identified areas of weakness or limitations in the reported studies. Importantly, studies in the last three years have shown considerable progress in overcoming some of these limitations and identifying specific microRNAs as biomarkers for AD and mild cognitive impairment. Further large-scale human studies are warranted with less disparity in the study populations, and using an appropriate method to validate the findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号