首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ly49Q is a member of the polymorphic Ly49 family of NK cell receptors that displays both a high degree of conservation and a unique expression pattern restricted to myeloid lineage cells, including plasmacytoid dendritic cells (pDC). The function and ligand specificity of Ly49Q are unknown. Here, we use reporter cell analysis to demonstrate that a high-affinity ligand for Ly49Q is present on H-2(b), but not H-2(d), H-2(k), H-2(q), or H-2(a)-derived tumor cells and normal cells ex vivo. The ligand is peptide-dependent and MHC Ia-like, as revealed by its functional absence on cells deficient in TAP-1, beta(2)m, or H-2K(b)D(b) expression. Furthermore, Ly49Q is specific for H-2K(b), as the receptor binds peptide-loaded H-2K(b) but not H-2D(b) complexes, and Ly49Q recognition can be blocked using anti-K(b) but not anti-D(b) mAb. Greater soluble H-2K(b) binding to ligand-deficient pDC also suggests cis interactions of Ly49Q and H-2K(b). These results demonstrate that Ly49Q efficiently binds H-2K(b) ligand, and suggest that pDC function, like that of NK cells, is regulated by classical MHC Ia molecules. MHC recognition capability by pDC has important implications for the role of this cell type during innate immune responses.  相似文献   

2.
LCMV infection of H-2(b) mice generates a CD8(+) CTL response mainly directed toward three immunodominant epitopes. One of these, gp33, is presented by both H-2D(b) and H-2K(b) MHC class I molecules. The virus can escape immune recognition in the context of both these MHC class I molecules through single mutations of the peptide. In order to understand the underlying structural mechanism, we determined the crystal structures of both complexes. The structures reveal that the peptide is presented in two diametrically opposed manners by H-2D(b) and H-2K(b), with residues used as anchor positions in one MHC class I molecule interacting with the TCR in the other. Importantly, the peptide's N-terminal residue p1K protrudes from the binding cleft in H-2K(b). We present structural evidence that explains the functional consequences of single mutations found in escape variants.  相似文献   

3.
Recently, a powerful approach for the detection of MHC/peptide-specific T cells has been made possible by the engineering of soluble-tetrameric MHC/peptide complexes, consisting of singly biotinylated MHC/peptide molecules bound to fluorescent-labeled streptavidin. These tetrameric molecules are thought to compensate for the low affinity and relative fast dissociation rate of the TCR/MHC-peptide interaction by increasing the avidity of this interaction, thus allowing the stable binding of MHC/peptide tetramers to TCR expressing cells. Here we describe a new more simplified procedure for obtaining MHC/peptide tetramers using the well-characterized H-2K(b)/VSV system. This procedure consists of the incorporation of an unpaired cysteine residue at the C-terminus of the H-2K(b) molecule, allowing site-specific biotinylation by a -SH-specific biotinylating reagent. The H-2K(b)/VSV tetramers bound only to hybridomas expressing H-2K(b)/VSV-specific TCRs. When coated on a plate, these tetramers were able to induce IL-2 release by those hybridomas. Furthermore, H-2K(b)/VSV tetramers bound to CTL populations obtained from mice immunized with VSV-peptide. The specificity of the binding was further refined by studying cross-recognition of VSV by CTL populations obtained from mice immunized with single amino acid substituted VSV peptide variants. H-2K(b)/VSV tetramers bound only to those CTL populations that cross-reacted with the wild-type VSV peptide. Our method provides a simple, efficient and inexpensive procedure for making MHC/peptide tetramers, a highly specific and very useful reagent with a number of important applications in basic and clinical T cell research.  相似文献   

4.
张小萍  王靖雪  魏静  万瑛  吴玉章 《免疫学杂志》2005,21(6):442-444,452
目的筛选SARS病毒(Severe acutere spiratorysyndromeas sociated coronavirus,SARSCoV)结构蛋白S(Spike)特异性的模拟表位,为抗SARS疫苗研究提供基础。方法以抗SARS病毒S蛋白的单克隆抗体为固相筛选分子,对人工合成的噬菌体随机12肽库进行5轮“吸附洗脱扩增”的筛选,随机挑选30个克隆,经噬菌体酶联免疫吸附(ELISA)法和交叉反应实验鉴定阳性克隆,再进行DNA序列分析和竞争抑制结合实验,以确定SARS病毒S蛋白的模拟表位。结果经噬菌体富集后,从随机挑选的30个克隆中得到了29个编码8种12肽的阳性克隆,8条肽与S蛋白的320~350氨基酸序列有较高同源性,确定YF、W、E和K氨基酸残基为模拟表位的骨架结构。结论用噬菌体12肽库成功筛选到了SARS病毒S蛋白的模拟表位,为基于S蛋白的肽疫苗研制提供了基础。  相似文献   

5.
Ly49A is a C-type lectin-like receptor on NK cells that recognizes MHC class I ligands, H-2D(d) and D(k). The engagement of Ly49A with the ligands inhibits activation of NK cells and protects target cells from lysis by NK cells. Here we express the extracellular region of Ly49A with an N-terminal biotinylation tag in Escherichia coli to obtain soluble Ly49A (sLy49A) after refolding. sLy49A is indistinguishable from native Ly49A expressed on NK cells serologically and in the ability to specifically bind H-2D(d) after tetramerization with R-phycoerythrin-coupled streptavidin. The fluorescently labeled tetramer of sLy49A is applied to explore MHC class I haplotype specificity of Ly49A. We demonstrate the hierarchical reactivity of Ly49A with H-2 of various alleles in the order of d > k, r > p > v > q > s > z. Reactivity of sLy49A tetramer to spleen lymphocytes from B10.QBR mice (H-2K(b), I(b), D(q), Qa-1/Tla(b)) but not from C57BL/10 mice (H-2(b)) identifies H-2D(q) and L(q) as candidates for a Ly49A ligand. Binding of sLy49A tetramer to H-2D(q)- or L(q)-transfected cell lines demonstrates that the two highly related MHC class I molecules, H-2D(q) and L(q), are ligands for Ly49A. sLy49A tetramer staining also demonstrates preferential expression of Ly49A ligand on a subset of B cells in P/J mice. These results provide the basis to examine the molecular mechanism by which Ly49A discriminates polymorphic MHC class I molecules.  相似文献   

6.
The immune responses to a cell surface protein antigen (PAc) of Streptococcus mutans and a peptide corresponding to residues 301 to 319 of the protein antigen [PAc(301-319)] in various strains of mice were studied, with attention being given to the haplotype of major histocompatibility complex (MHC) class II genes. Subcutaneous immunization of mice carrying the MHC class II I-Ad gene [BALB/c, B10.D2, B10.GD, and (B10.D2 x B10.G)F1 mice] with the peptide induced strong serum immunoglobulin G (IgG) responses to recombinant PAc (rPAc) and the peptide. Subcutaneous immunization of mice carrying the haplotype k or b of the H-2 I-A gene (C3H/HeN, C57BL/6, B10.BR, B10.A, or B10 mice) with the peptide induced intermediate serum IgG responses to rPAc and the peptide, and subcutaneous immunization of mice carrying the haplotype s or q of the H-2 I-A gene (DBA/1, B10.S, or B10.G mice) induced weak serum IgG responses to rPAc and the peptide compared with the responses of mice carrying the I-Ad gene. PAc(301-319) strongly induced PAc(301-319)-specific T-cell proliferation in B10.D2 mice but not in B10.G mice. The T-cell proliferation in B10.D2 mice was inhibited by treatment of antigen-presenting cells with anti-I-Ad monoclonal antibody but not with anti-I-Ab monoclonal antibody. These results indicate that the immune responses to the peptide in mice are genetically restricted or dominated by the MHC class II gene (I-Ad). To map antigenic epitopes in PAc(301-319) and PAc in mice bearing different H-2 haplotypes, 10 overlapping decapeptides covering PAc(301-319) and 153 decapeptides covering the entire mature PAc were synthesized. Of 10 decapeptides covering PAc(301-319), 6, 7, 1, and 1 decapeptides showed strong reactions with anti-PAc(301-319) sera from B10.D2 (H-2d), B10.GD (H-2g2), B10.BR (H-2k), and B10.A (H-2a) mice, respectively. None of these overlapping decapeptides reacted with anti-PAc(301-319) sera from B10.S (H-2s) and B10.G (H-2q) mice. Epitope-scanning analyses of the mature PAc molecule showed that antigenic epitopes scattered throughout the molecule and that antigenic epitope patterns differed in mice with different H-2 haplotypes. In addition, there was little overlap of immunogenic peptides among the mice with different haplotypes.  相似文献   

7.
CD8 can serve as a co-receptor or accessory molecule on the surface of CTL. As a co-receptor, CD8 can bind to the alpha3 domain of the same MHC class I molecules as the TCR to facilitate TCR signaling. To evaluate the role of the MHC class I molecule alpha3 domain in the activation of CD8(+) CTL, we have produced a soluble 227 mutant of H-2D(d), with a point mutation in the alpha3 domain (Glu227 --> Lys). 227 mutant class I-peptide complexes were not able to effectively activate H-2D(d)-restricted CD8 T cells in vitro, as measured by IFN-gamma production by an epitope-specific CD8(+) CTL line. However, the 227 mutant class I-peptide complexes in the presence of another MHC class I molecule (H-2K(b)) (that cannot present the peptide) with a normal alpha3 domain can induce the activation of CD8(+) CTL. Therefore, in order to activate CD8(+) CTL, the alpha3 domain of MHC class I does not have to be located on the same molecule with the alpha1 and alpha2 domains of MHC class I. A low-avidity CD8(+) CTL line was significantly less sensitive to stimulation by the 227 mutant class I-peptide complexes in the presence of the H-2K(b) molecule. Thus, low-avidity CTL may not be able to take advantage of the interaction between CD8 and the alpha3 domain of non-presenting class I MHC molecules, perhaps because of a shorter dwell time for the TCR-MHC interaction.  相似文献   

8.
Shen C  He Y  Cheng K  Zhang D  Miao S  Zhang A  Meng F  Miao F  Zhang J 《Immunology letters》2011,138(2):144-155
FasL-expressing killer antigen-presenting cells (KAPCs) have the ability to delete antigen-specific T cells and, therefore, could potentially be used for the treatment of allograft rejection and autoimmunity; however, their cellular nature markedly limits their clinical use. Novel bead-based killer artificial antigen-presenting cells (KaAPCs), which are generated by coupling major histocompatibility complex (MHC) class I antigens together with the apoptosis-inducing anti-Fas monoclonal antibody (mAb) onto magnetic beads, have recently attracted more attention. KaAPCs have a number of advantages over KAPCs and are able to deplete specific T cells in cocultures. However, it remains unknown whether bead-based KaAPCs can also induce apoptosis of alloreactive or autoreactive T cells and, consequently, generate hyporesponsiveness in vivo. In this study, H-2K(b)/peptide monomers and anti-Fas mAb have been covalently coupled to latex beads and administered intravenously into BALB/c mice (H-2K(d)) that had previously been grafted with skin squares from C57BL/6 mice (H-2K(b)). Alloskin graft survival was prolonged for 6 days. A 60% decrease of H-2K(b) antigen-alloreactive T cells was demonstrated by several measures 2 days after each injection of KaAPCs, but intact immune function, including antitumor activity, was maintained. These data provide the first in vivo evidence that bead-based KaAPCs can selectively deplete antigen-specific T cells without the loss of overall immune responsiveness and, therefore, highlight the therapeutic potential of this novel strategy for the treatment of allograft rejection and autoimmune disorders.  相似文献   

9.
The interaction between T cell receptors (TCR) and peptide-major histocompatibility complex (pMHC) antigens can lead to varying degrees of agonism (T cell activation), or antagonism. The P14 TCR recognises the lymphocytic choriomeningitis virus (LCMV)-derived peptide, gp33 residues 33-41 (KAVYNFATC), presented in the context of H-2D(b). The cellular responses to various related H-2D(b) peptide ligands are very well characterised, and P14 TCR-transgenic mice have been used extensively in models of virus infection, autoimmunity and tumour rejection. Here, we analyse the binding of the P14 soluble TCR to a broad panel of related H-2D(b)-peptide complexes by surface plasmon resonance, and compare this with their diverse cellular responses. P14 TCR binds H-2D(b)-gp33 with a KD of 3 microM (+/-0.5 microM), typical of an immunodominant antiviral TCR, but with unusually fast kinetics (k(off) = 1 s(-1)), corresponding to a half-life of 0.7 s at 25 degrees C, outside the range previously observed for murine agonist TCR/pMHC interactions. The most striking feature of these data is that a very short half-life does not preclude the ability of a TCR/pMHC interaction to induce antiviral immunity, autoimmune disease and tumour rejection.  相似文献   

10.
Functional MHC class I molecules are expressed on the cell surface in the absence of beta(2)-microglobulin (beta(2)m) light chain that can interact with CD8(+) T lymphocytes. Whether their assembly requires peptide binding and whether their recognition by CD8(+) T lymphocytes involves the presentation of peptide epitopes remains unknown. We show that beta(2)m-free H-2D(b) assembles with short peptides that are approximately 9 amino acid residues in length, akin to ligands associated with completely assembled beta(2)m(+) H-2D(b). Remarkably, a subset of the peptides associated with the beta(2)m-free H-2D(b) has an altered anchor motif. However, they also include peptides that contain a beta(2)m(+)H-2D(b) binding anchor motif. Further, the H-2K(b)- and H-2D(b)-restricted peptide epitopes derived from SV-40 T antigen also assemble with H-2(b) class I in beta(2)m-deficient cells and are recognized by epitope-specific CD8(+) T lymphocytes. Taken together our data reveal that functional MHC class I molecules assemble in the absence of beta(2)m with peptides and form CD8(+) T lymphocyte epitopes.  相似文献   

11.
The major histocompatibility complex (MHC) encodes cell surface and secreted products involved in immune regulation and function. We have measured Class I MHC expression on doxorubicin (DOX) sensitive (P388/S) and resistant (P388/R84 and R84A) murine tumor cells using a monoclonal antibody to H-2d molecules. The present report shows a correlation between increased Class I MHC (H-2d) expression and drug resistance in P388 cells. Exposure of P388 cells to H-2d antibody diminished H-2d expression, whereas, treatment with murine recombinant gamma-interferon increased H-2d expression. Neither treatment significantly altered cellular DOX resistance or chemosensitivity. Thus, H-2d molecules can be used to identify DOX resistant P388 tumor cells but are probably not involved functionally in drug resistance.  相似文献   

12.
The proximity of H-2K and D antigens and influenza virus haemagglutinin (HA) molecules on the surface of infected target cells was assessed by a topographical study using monoclonal antibodies to H-2 and to HA. The effect of pretreatment of fixed, infected cells with excess of one monoclonal antibody on the subsequent binding of a second radiolabelled antibody was measured. Using CBA mouse B lymphoblasts which were paraformaldehyde fixed 5 hr postinfection with influenza virus (A/USSR/90/77), pretreatment with monoclonal antibody 30/3 to H-2Kk and Dk partially blocked (Approximately equal to 37%) the binding of one radiolabelled monoclonal anti-HA antibody (264/2). A different monoclonal IgG (W18/1) directed to the same HA molecule was not blocked by similar pretreatment of cells with the anti-H-2 antibody. Interaction of monoclonal antibodies with their sites is highly specific, and mutual blocking of two antibodies requires very closely located sites even if the antibodies are directed to the same molecule. We therefore have evidence for proximity of H-2 and HA molecules; however, we were unable to demonstrate cocapping of H-2K and D antigens with influenza HA.  相似文献   

13.
The CD8 co-receptor is essential for TCR-dependent immune recognition and T cell development involving peptides bound to MHC class I (MHCI) molecules. The dominant interaction of CD8 alpha alpha and alpha beta co-receptors is with the alpha3 domain of an MHCI molecule. Whether this interaction is different for the products of various MHCI loci is currently unknown. Here we examine the interaction between H-2K(b) and H-2D(b), the two MHCI molecules in the C57BL / 6 mouse, and CD8 using H-2K(b) and H-2D(b) tetramers. The MHCI molecules bind to the CD8alpha beta co-receptor on double-positive thymocytes with different avidities (H-2K(b) > D(b)). The differences are linked to their respective alpha3 domains. Hence, an H-2D(b)K(b) tetramer comprising D(b)alpha1--alpha2 and K(b)alpha3 domains shows more binding than H-2D(b). We also quantitated the monomeric affinities of CD8alpha alpha and CD8alpha beta for H-2K(b) and H-2D(b). The H-2K(b) interaction with CD8alpha alpha and CD8alpha beta is stronger than that of H-2D(b). Given that T cell repertoire selection of DP thymocytes is a function of both TCR-pMHCI and CD8alpha beta-pMHCI avidities, these differences may explain the dominant role of H-2K(b) as compared to H-2D(b) in CD8 T cell development of C57BL / 6 mice. The influence of allelic and non-allelic alpha3 polymorphisms on thymic selection processes are discussed.  相似文献   

14.
Using a serotype-specific monoclonal antibody (MAb) of dengue virus type 1 (DEN-1), 15F3-1, we identified the B-cell epitope of DEN-1 from a random peptide library displayed on phage. Fourteen immunopositive phage clones that bound specifically to MAb 15F3-1 were selected. These phage-borne peptides had a consensus motif of HxYaWb (a = S/T, b = K/H/R) that mimicked the sequence HKYSWK, which corresponded to amino acid residues 111 to 116 of the nonstructural protein 1 (NS1) of DEN-1. Among the four synthetic peptides corresponding to amino acid residues 110 to 117 of the NS1 of DEN-1, -2, -3, and -4, only one peptide, EHKYSWKS (P14M) of DEN-1, was found to bind to 15F3-1 specifically. Furthermore, P14M was shown to inhibit the binding of phage particles to 15F3-1 in a competitive inhibition assay. Histidine(111) (His(111)) was crucial to the binding of P14M to 15F3-1, since its binding activity dramatically reduced when it changed to leucine(111) (Leu(111)). This epitope-based peptide demonstrated its clinical diagnostic potential when it reacted with a high degree of specificity with serum samples obtained from both DEN-1-infected rabbits and patients. Based on these observations, our DEN-1 epitope-based serologic test could be useful in laboratory viral diagnosis and in understanding the pathogenesis of DEN-1.  相似文献   

15.
Murine natural killer (NK) cells are inhibited from killing their targets by the interaction between inhibitory, C-type lectin like Ly49 receptors and major histocompatibility complex (MHC) class I molecules. The receptors have overlapping specificity, and it has been difficult to analyze specific aspects of the interaction between different Ly49 receptors and their respective ligands. We have addressed this problem using tetramers of bacterially expressed, non-glycosylated, MHC class I molecules refolded with different peptides. Our results indicate that this technology is useful for analysis of Ly49 receptor specificity as well as for monitoring of NK cell subsets, with the following major conclusions emerging from this study: (1) tetramers of H-2D(d) bound the Ly49A receptor; the MHC associated glycan, previously suggested to be involved in recognition by this receptor, is thus not required for Ly49A receptor binding; (2) in support and extension of a recent report indicating peptide selectivity in the recognition of H-2K(b) by Ly49C(+) cells, H-2K(b) tetramer binding to Ly49C receptors was strongly influenced by the peptide presented by the MHC class I molecule; (3) tetramer binding allowed visualization of interactions that have not previously been detected in functional studies, such as the recognition of H-2D(b) by Ly49A and Ly49C.  相似文献   

16.
Natural killer cells have been shown to interact with MHC class I molecules via inhibitory receptors. However, it is not known whether the inhibition induced by MHC class I molecules requires other NK cell-target cell interactions. Thus, we examined whether purified MHC class I molecules alone were able to inhibit NK cell function. Purified H-2K(b) and H-2D(b) molecules inhibited the release of IFN-gamma from spleen (H-2(b))-derived lymphokine-activated killer (LAK) cell cultures stimulated by anti-NK1.1 antibody in a concentration-dependent manner. LAK cells generated from newborn mice that express low levels of MHC class I binding Ly49 inhibitory receptors were significantly less sensitive to inhibition by H-2K(b) compared to LAK cells from adult mice. Furthermore, LAK cells generated from spleen cells of Ly49C-transgenic mice were significantly more sensitive to inhibition by H-2K(b) compared to non-transgenic littermates. Taken together, the data indicate that MHC class I induced inhibition of NK cell mediated effector functions, as assessed by IFN-gamma release after NK1.1 triggering, does not require additional cell surface molecules other than MHC class I.  相似文献   

17.
人巨细胞病毒单克隆抗体识别的抗原表位的筛选   总被引:5,自引:1,他引:4  
目的找出人巨细胞病毒(HCMV)单克隆抗体识别的抗原表位以进行HCMV多肽疫苗的研制。方法通过链亲和素-生物素的作用将HCMV单抗固定在酶联板上,加入噬菌体随机六肽文库,经过三轮捕捉、洗脱、扩大培养的筛选过程,并逐轮增加冲洗强度,与HCMVMcAb具有亲合力的噬菌体得到了富集;从最后得到的三级库中,随机挑选16个单克隆,测定其所携带的外源DNA的序列,找出一致序列并进行同源性查询。结果16个克隆中有15个序列相同,5'-AGTGCTGGTTGGGCTTCT-3',对应的氨基酸序列为Ser-Ala-Gly-Trp-Ala-Ser,此序列同源性查询结果显示与HCMV病毒膜糖蛋白UL01有78.8%的同源性,其中有4个氨基酸残基(AGWA)是完全相符的。结论所筛选到的六肽序列可能为HCMV抗原表位,从而说明用噬菌体肽库技术寻找抗原表位的可行性  相似文献   

18.
A set of predictive rules governing the likelihood of generating a particular peptide-major histocompatibility complex (MHC) class II complex from an intact antigen has not been fully elucidated. We investigated the influence of positional and structural constraints in the region of the epitope by designing a set of recombinant antigens that each contained the well-characterized T-cell epitope moth cytochrome c (MCC) (88-103), which is specifically recognized by the monoclonal antibody (mAb) D4 when complexed with H-2Ek. Our model antigens contained MCC(88-103) either peripherally, at or towards the C-terminus, or internally. Their abilities to bind directly to soluble H-2Ek, and the extent of D4 epitope formation from them by antigen processing-competent and -incompetent cell lines, were determined. Here we report that three of these four antigens yielded MCC(88-103)/H-2Ek complexes independently of the conventional MHC class II antigen-processing and presentation pathway, and in each case the epitope was carried peripherally; two bound directly as intact proteins, probably as a result of spatial separation of the epitope from the major globular domain, and one was processed to peptide by a cell-surface protease. One protein, which carried the epitope inserted into an internal loop, acted as a conventional processing-dependent MCC(88-103) delivery vehicle. Thus, this epitope has different presentation requirements depending on its context. These antigens constitute a panel whose framework could be modified to further define predictive rules for antigen processing for presentation through the different MHC class II complex-generating pathways.  相似文献   

19.
Mice with functionally deleted genes encoding MHC class I heavy (H-2K(b), H-2D(b)) and light (beta2-microglobulin) chains were used in bone marrow cell transfer experiments to study the role of class Ia and Ib molecules in NK cell function. Absence of H-2K(b) and absence of H-2D(b) on bone marrow cells resulted in complete and in almost complete NK-mediated rejection, respectively. Absence of either H-2 class Ib (at least when expressed in H-2 class Ia-deficient mice) or cell surface class Ia free heavy chains did not result in bone marrow rejection. Thus, in C57BL/6 adult mice, the inactivation of NK cells required for bone marrow cell engraftment relies entirely upon-H-2 class Ia molecules. These results imply the existence of an inhibitory receptor which recognizes either directly or indirectly H-2D(b) molecules and further suggest that in C57BL/6 mice the NK cells which do not express a H-2K(b) specific inhibitory receptor necessarily express an H-2D(b)-specific one.  相似文献   

20.
The MHC class II molecule I-Ag7 is essential for the development of insulin-dependent diabetes mellitus (IDDM) in the non-obese diabetic (NOD) mouse but the requirements for peptide binding to I-Ag7 are still controversial. We have now isolated I-Ag7-binding phage from a large phage display library encoding random nonamer peptides. Ninety peptide-encoding regions of phage eluted from I-Ag7 were sequenced and >75% of the corresponding synthetic peptides bound to I-Ag7. Peptide alignment led to the identification of position-specific anchor residues. Hydrophobic (V and P) and positively charged (K) residues were highly enriched at P6 and positively charged (R and K), aromatic (Y) or hydrophobic (L) residues at P9. In addition, small amino acid residues (G and A) were enriched at P7 and G at P8. The primary anchors at P6 and P9 defining the phage-derived motif were present in most high-affinity I-Ag7-binding peptides from IDDM candidate antigens but only in < or =25% of peptides that were low-affinity binders or failed to bind to I-Ag7. A comparison of these results with the proposed motifs for peptide binding to I-Ag7 validates the one we have previously described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号