首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Ketamine, etomidate and propofol modified behavioral and electrographic correlates of kindled seizures in rats. In detail, ketamine (5 mg/kg) and propofol (15 mg/kg) significantly increased afterdischarge threshold, reduced seizure severity and shortened seizure and afterdischarge durations. Etomidate (7.5 mg/kg) was effective in terms of seizure and afterdischarge durations. Moreover, the combinations of ketamine (2.5 mg/kg) with carbamazepine (15 mg/kg) or valproate (50 mg/kg; all drugs at their subeffective doses), reduced the severity and duration of kindled seizures. The antiseizure potency of the ketamine/carbamazepine combination was comparable to that of carbamazepine alone administered at 20 mg/kg, while the effect of ketamine/valproate was comparable to the efficacy of valproate alone at 100 mg/kg. However, the combinations of ketamine with phenobarbital or diphenylhydantoin did not exert any protective action. Propofol and etomidate entirely failed to interact with conventional antiepileptics. The combinations of ketamine with carbamazepine or valproate did not induce any significant motor impairment in the chimney test or memory deficit in the passive avoidance task. A pharmacokinetic interaction, at least in plasma, can be excluded, because ketamine (2.5 mg/kg) did not affect the free plasma concentrations of carbamazepine or valproate. Results of the present study may suggest that there may be no risk of negative interactions between injectable anesthetics and antiepileptics in cases of partial epilepsy.  相似文献   

2.
The aim of this study was to evaluate the effects of chronic astemizole and ketotifen administration on the anticonvulsant activity of antiepileptic drugs against maximal electroshock-induced convulsions in mice. Adverse effects were evaluated in the chimney test (motor performance) and passive avoidance task (long-term memory). Brain and plasma levels of antiepileptics were measured by immunofluorescence. Astemizole (2 mg/kg) and ketotifen (8 mg/kg) significantly diminished the electroconvulsive threshold, being without effect upon this parameter at lower doses. Astemizole significantly reduced the anticonvulsant action of phenobarbital and diphenylhydantoin, but it did not affect that of carbamazepine and valproate. Moreover, ketotifen (at the subprotective dose of 4 mg/kg) remained without effect upon the protective activity of valproate, diphenylhydantoin or phenobarbital, but significantly diminished the anticonvulsant effect of carbamazepine. Histamine receptor antagonists combined with antiepileptic drugs, did not alter their brain and free plasma levels. Also, they did not influence adverse potential of carbamazepine, diphenylhydantoin and valproate while that of phenobarbital was significantly enhanced. Valproate, phenobarbital and diphenylhydantoin alone at their ED50s against maximal electroshock or combined with the histamine receptor antagonists disturbed long-term memory. The results of this study indicate that H1 receptor antagonists, should be used with caution in epileptic patients.  相似文献   

3.
Experimental studies have indicated that the central histaminergic system plays an important role in the inhibition of seizures through the stimulation of histamine H1 receptors. H1 receptor antagonists, including classical antiallergic drugs, occasionally may induce convulsions in healthy children and patients with epilepsy. The purpose of this study was to investigate the effects of antazoline and ketotifen (two H1 receptor antagonists) on the anticonvulsant activity of antiepileptic drugs against maximal electroshock (MES)-induced convulsions in mice. The following antiepileptic drugs were used: valproate, carbamazepine, diphenylhydantoin and phenobarbital. In addition, the effects of antiepileptic drugs alone or in combination with antazoline or ketotifen were studied on long-term memory (tested in the passive avoidance task) and motor performance (evaluated in the chimney test), acutely and after 7-day treatment with these H1 receptor antagonists. The influence of antazoline and ketotifen on the free plasma and brain levels of the antiepileptics was also evaluated. Antazoline (at 0.5 mg/kg), given acutely and after 7-day treatment, significantly diminished the electroconvulsive threshold. Similarly, ketotifen, after acute and chronic doses of 8 mg/kg markedly reduced the threshold for electroconvulsions. In both cases, antazoline and ketotifen were without effect upon this parameter at lower doses. Antazoline (0.25 mg/kg) significantly raised the ED50 value of carbamazepine against MES (both, acutely and after 7-day treatment). Furthermore antazoline (0.25 mg/kg) also reduced the anticonvulsant activity of diphenylhydantoin, but only after repeated administration, without modifying the brain and free plasma level of this drug. Moreover, valproate and phenobarbital did not change their protective activity when combined with antazoline. Ketotifen (4 mg/kg) possessed a biphasic action, acutely it enhanced the anticonvulsant action of carbamazepine and phenobarbital while, following 7-day treatment, reduced the antiseizure activity of carbamazepine. Ketotifen did not affect the free plasma or brain levels of antiepileptics tested. Only acute antazoline (0.25 mg/kg) applied with valproate impaired the performance of mice evaluated in the chimney test. Ketotifen (4 mg/kg) co-administered with conventional antiepileptic drugs impaired motor coordination in mice treated with valproate, phenobarbital or diphenylhydantoin. Acute and chronic antazoline (0.25 mg/kg) alone or in combination with antiepileptic drugs did not disturb long-term memory, tested in the passive avoidance task. Similarly, ketotifen (4 mg/kg) did not impair long-term memory, acutely and after 7-day treatment. However, valproate alone or in combination with chronic ketotifen (4 mg/kg) worsened long-term memory. The results of this study indicate that H1 receptor antagonists, crossing the blood brain barrier, should be used with caution in epileptic patients. This is because antazoline reduced the protective potential of diphenylhydantoin and carbamazepine. Also, ketotifen reduced the protection offered by carbamazepine and elevated the adverse activity of diphenylhydantoin, phenobarbital and valproate.  相似文献   

4.
Interactions between chronically administered fluoxetine and valproate, carbamazepine, phenytoin, or phenobarbital were studied in the maximal electroshock test in mice. Fluoxetine administered for 14 days at doses up to 20 mg/kg failed to affect the electroconvulsive threshold. Nevertheless the drug (at 15 and 20 mg) enhanced the anticonvulsant activity of valproate, carbamazepine, and phenytoin. When applied at 20 mg/kg, it potentiated the protective action of phenobarbital. Fluoxetine, antiepileptic drugs, and their combinations did not produce significant adverse effects evaluated in the chimney test (motor coordination) and passive-avoidance task (long-term memory). Chronically applied fluoxetine significantly increased the brain concentrations of valproate, carbamazepine, phenobarbital and phenytoin, indicating a pharmacokinetic contribution to the observed pharmacodynamic interactions. In conclusion, long-term treatment with fluoxetine exhibited some favorable effects on the anticonvulsant properties of conventional antiepileptic drugs, resulting, however, from pharmacokinetic interactions.  相似文献   

5.
Competitive antagonists of N-methyl-D-aspartate (NMDA) receptors, D(-) CPP (up to 0.625 mg/kg) and (+/-)CPP (up to 0.625 mg/kg), did not influence the electroconvulsive threshold in mice. At a dose of 1.25 mg/kg, both drugs significantly elevated the threshold. D(-)CPP (0.625 mg/kg) and (+/-)CPP (0.625 mg/kg) potentiated the anticonvulsant activity of valproate, carbamazepine and phenobarbital. No potentiation was observed in the case of diphenylhydantoin. Moreover, these competitive NMDA antagonists did not influence the plasma levels of antiepileptic drugs, so a pharmacokinetic interaction, in terms of total and free plasma levels at least, is not probable. The combined treatment of both CPP agents with either carbamazepine, diphenylhydantoin or phenobarbital (providing a 50% protection against maximal electroshock) was devoid of significant side effects (in the tests evaluating motor and long-term memory impairment). Valproate co-administered with CPP compounds caused a moderate motor impairment, but did not affect cognitive functions in mice. It is noteworthy that valproate and phenobarbital given alone at doses equal to their ED50s resulted in significant long-term memory deficit. The results indicate that combinations of antiepileptic drugs with some NMDA receptor antagonists, apart from enhanced anticonvulsant potential, may not necessarily result in the occurrence of considerable adverse reactions.  相似文献   

6.
The aim of this study was to determine the effect of WIN 55,212-2 mesylate (WIN — a non-selective cannabinoid CB1 and CB2 receptor agonist) on the protective action of four classical antiepileptic drugs (carbamazepine, phenytoin, phenobarbital, and valproate) in the mouse maximal electroshock seizure (MES) model. The results indicate that WIN (10 mg/kg, i.p.) significantly enhanced the anticonvulsant action of carbamazepine, phenytoin, phenobarbital and valproate in the MES test in mice. WIN (5 mg/kg) potentiated the anticonvulsant action of carbamazepine and valproate, but not that of phenytoin or phenobarbital in the MES test in mice. However, WIN administered alone and in combination with carbamazepine, phenytoin, phenobarbital and valproate significantly reduced muscular strength in mice in the grip-strength test. In the passive avoidance task, WIN in combination with phenobarbital, phenytoin and valproate significantly impaired long-term memory in mice. In the chimney test, only the combinations of WIN with phenobarbital and valproate significantly impaired motor coordination in mice. In conclusion, WIN enhanced the anticonvulsant action of carbamazepine, phenytoin, phenobarbital and valproate in the MES test. However, the utmost caution is advised when combining WIN with classical antiepileptic drugs due to impairment of motor coordination and long-term memory and/or reduction of skeletal muscular strength that might appear during combined treatment.  相似文献   

7.
SIB 1893, a non-competitive antagonist of group I metabotropic glutamate receptor subtype 5, administered at doses ranging from 0.25 to 10 mg/kg, failed to influence pentetrazole-induced convulsions in mice. Moreover, SIB 1893 (10 and 20 mg/kg) did not affect the protective action of valproate, ethosuximide, phenobarbital and clonazepam in this test. Similarly, the mGluR5 antagonist did not modulate the antiseizure activity of carbamazepine, diphenylhydantoin and phenobarbital against maximal electroshock in mice. The combined treatment of SIB 1893 with conventional antiepileptic drugs did not lead to motor impairment. Long-term memory disturbances were observed only in the case of the combination of SIB 1893 with phenobarbital.  相似文献   

8.
The interactions between cholecalciferol, a precursor of the active form of Vitamin D(3), and conventional antiepileptic drugs (valproate, carbamazepine, phenytoin, and phenobarbital) were studied in the maximal electroshock test in mice. Vitamin D(3) applied i.p. at doses of 37.5 and 75 mug/kg, but not at 18.75 mug/kg, significantly raised the electroconvulsive threshold. Furthermore, cholecalciferol (at its highest subthreshold dose of 18.75 mug) potentiated the anticonvulsant activity of phenytoin and valproate. The action of carbamazepine and phenobarbital was also enhanced by Vitamin D(3), but when it was given at the higher dose of 37.5 mug/kg. Cholecalciferol, antiepileptic drugs, and their combinations did not produce significant adverse effects evaluated in the chimney test (motor coordination) and passive-avoidance task (long-term memory). Cholecalciferol did not significantly increase the brain concentrations of conventional antiepileptics, indicating a pharmacodynamic nature of revealed interactions. Our findings show that cholecalciferol may play an anticonvulsant role in the brain and can influence the efficacy of antiepileptic drugs, at least in experimental conditions.  相似文献   

9.
Histamine is one of the aminergic neurotransmitters, playing an important role in the regulation of a number of physiological processes. There are several subtypes of histamine receptors-H(1), H(2), H(3) and the recently discovered H(4). H(1) receptors exist on mast cells, basophils, enterochromaffin cells and in the central nervous system, being located postsynaptically. H(1) receptor antagonists, including classical antiallergy drugs, occasionally have been expected to induce convulsions in children and epileptics. The aim of this study was to evaluate the effects of astemizole-given intraperitoneally, singly or for 7 days on the anticonvulsant activity of antiepileptic drugs (AEDs) against maximal electroshock (MES)-induced convulsions in mice. The following AEDs were administered intraperitoneally: valproate magnesium, carbamazepine, diphenylhydantoin and phenobarbital. Adverse effects were evaluated in the chimney test (motor performance) and passive avoidance task (long-term memory). Brain and plasma levels of AEDs were measured by immunofluorescence. Astemizole (a single dose and following a 7-day treatment at 2-6 mg/kg) reduced the threshold for electroconvulsions, being without effect upon this parameter at lower doses. Astemizole (1 mg/kg) did not significantly alter the protective effect of AEDs against MES (after acute and 7-day administration). Also, acute astemizole (2 mg/kg) remained ineffective in this respect. Astemizole (2 mg/kg), following chronic administration, significantly reduced the protective efficacy of phenobarbital and diphenylhydantoin, reflected by an increase in their ED(50) values (50% effective dose necessary to protect 50% of animals tested against MES) from 21.1 to 34.0 mg/kg and from 10.4 to 19.2 mg/kg, respectively. Astemizole (2 mg/kg) did not alter the protective activity of the remaining AEDs. Moreover, astemizole (2 mg/kg) did not influence the free plasma levels and brain concentration of the studied AEDs. Also, this H(1) receptor antagonist did not impair long-term memory or motor coordination when given acutely. However, 7-day treatment with astemizole (2 mg/kg) significantly decreased TD(50) (50% toxic dose required to induce motor impairment in 50% of animals) value of phenobarbital, being without effect on carbamazepine, valproate and diphenylhydantoin in this respect. Similarly, phenobarbital and diphenylhydantoin, administered alone at their ED(50)s against MES, or combined with astemizole, disturbed long-term memory in mice. The results of this study indicate that astemizole may need to be used with caution in epileptic patients.  相似文献   

10.
Amlodipine, a calcium channel antagonist of the dihydropyridine class, up to 10 mg kg(-1)(i.p.) did not significantly affect the threshold for electroconvulsions. However, this calcium channel antagonist (10 mg kg(-1)) enhanced the anticonvulsive activity of carbamazepine, valproate and phenobarbital against maximal electroshock-induced seizures in mice. Furthermore, amlodipine (5 mg kg(-1)) intensified the protection offered by carbamazepine. This effect was associated with the increased free plasma level of carbamazepine in the presence of amlodipine. Amlodipine did not influence the free or total plasma level of phenobarbital and valproate, so a pharmacokinetic interaction is not probable for valproate and phenobarbital. The anticonvulsive action and free plasma level of diphenylhydantoin was not modified by amlodipine. The combined treatment of the calcium channel antagonist and antiepileptics caused motor impairment (evaluated in the chimney test). Long-term memory (assessed in the passive avoidance test) in case of combinations of amlodipine with carbamazepine or diphenylhydantoin was not affected. The combination of amlodipine with valproate or phenobarbital significantly influenced the retention in this test. A possible usefulness of amlodipine as add-on therapy in epileptic patients may be limited by its considerable adverse effect revealed by behavioural tests. The pharmacokinetic interaction between carbamazepine and amlodipine might have some clinical importance for patients treated with these drugs.  相似文献   

11.
The purpose of this study was to evaluate the influence of the glycine site antagonist of the NMDA receptor, MRZ 2/576 (8-chloro-4-hydroxy-1-oxo-1,2-dihydropyridazino[4,5-b]quinolin-5-oxide choline salt), on the anticonvulsive activity of carbamazepine, oxcarbazepine, diphenylhydantoin, phenobarbital and valproate against maximal electroshock (MES)-induced seizures and ethosuximide, valproate and clonazepam against pentetrazole (PTZ)-induced seizures in mice. MRZ 2/576 applied intraperitoneally 5 min before electroconvulsions, at the dose of 10 and 15 mg/kg, significantly raised the convulsive threshold (from 6.9 to 8.8 and 10.8 mA respectively). At lower doses, it did not affect the threshold. MRZ 2/576 applied at the dose of 5, 10 and 20 mg/kg did not influence the clonic phase of PTZ-induced seizures, but protected the animals against the tonic phase. The anticonvulsant effect of a given antiepileptic drug was expressed as its ED(50) value (in mg/kg), which represents the dose of the drug required to protect 50% of animals against MES or PTZ seizures. MRZ2/576 co-administered at a subprotective dose (5 mg/kg) with carbamazepine, oxcarbazepine, diphenylhydantoin, phenobarbital or valproate, significantly reduced their ED(50) values in MES test. Also, at the dose of 2.5 mg/kg it enhanced the protective activity of carbamazepine and valproate. At the lowest tested dose (1.25 mg/kg), it still potentiated the anticonvulsant activity of valproate. However, MRZ 2/576 (5 mg/kg) applied with valproate, ethosuximide or clonazepam did not influence their protective effects in the PTZ test. The combinations of MRZ 2/576 with almost every studied antiepileptic drug (providing a 50% protection against maximal electroshock or PTZ-induced seizures) did not produce motor impairment in the chimney test nor long-term memory deficit measured in the passive avoidance task. Only valproate alone or combined with MRZ 2/576 impaired both of these measures. It may be concluded that MRZ 2/576 enhanced the anticonvulsive activity of antiepileptic drugs against MES without accompanying potentiation of adverse effects. However, there was no positive interaction in the PTZ test. Finally, pharmacokinetic interactions do not seem responsible for the obtained results because MRZ 2/576 (5 mg/kg) did not alter the free plasma levels of the antiepileptics tested in the present study.  相似文献   

12.
The aim of this study was to determine the influence of acute (single) and chronic (once daily for 7 consecutive days) treatments with atorvastatin and fluvastatin on the anticonvulsant potential of three antiepileptic drugs: carbamazepine, phenytoin and valproate in the mouse maximal electroshock-induced seizure model. Additionally, the effects of acute and chronic administration of both statins on the adverse effect potential of three antiepileptic drugs were assessed in the chimney test (motor performance) and passive avoidance task (long-term memory). To evaluate the pharmacokinetic characteristics of interaction between antiepileptic drugs and statins, the total brain concentrations of antiepileptic drugs were estimated with the fluorescence polarization immunoassay technique. Results indicate that atorvastatin at doses up to 80mg/kg in chronic experiment attenuated the anticonvulsant potential of carbamazepine by increasing its ED(50) value against maximal electroconvulsions. Acute fluvastatin (80mg/kg) enhanced the anticonvulsant potential of carbamazepine and valproate by decreasing their ED(50) values. Acute fluvastatin (80mg/kg) also markedly increased the total brain carbamazepine concentration by 61% in a pharmacokinetic reaction. Atorvastatin (acute and chronic) and fluvastatin (chronic) in combinations with valproate impaired long-term memory in mice. Both statins in combinations with all three antiepileptic drugs had no impact on their adverse effects in the chimney test. Based on this preclinical study, one can conclude that chronic administration of atorvastatin reduces the anticonvulsant action of carbamazepine and acute fluvastatin can enhance the anticonvulsant potency of the carbamazepine and valproate. The former interaction was pharmacokinetic in nature.  相似文献   

13.
(+)-3-(3-Hydroxyphenyl)-N-(1-propyl)-piperidine (3-PPP; a sigma receptor ligand), administered at 30 mg kg-1, 30 min before the test, significantly decreased the electroconvulsive threshold in mice, being ineffective in lower doses. 3-PPP (20 mg kg-1) diminished the protective activity of diphenylhydantoin, phenobarbital and valproate, but not that of carbamazepine against maximal electroshock. The effect of 3-PPP upon the electroconvulsive threshold and the 3-PPP-induced inhibition of the protective action of antiepileptics was reversed by haloperidol (0.5 mg kg-1). Moreover, 3-PPP did not alter the total and free plasma levels of antiepileptic drugs, so a pharmacokinetic interaction is not probable. The combined treatment of 3-PPP with antiepileptic drugs, providing a 50% protection against maximal electroshock, did not affect motor performance in mice, although resulted in significant long-term memory deficits. Our data indicate that sigma receptor-mediated events may play some role in seizure processes in the central nervous system and can modulate the protective activity of some conventional antiepileptic drugs.  相似文献   

14.
Rationale Epilepsy often coexists with depression. Therefore, the probability of simultaneous treatment with antiepileptics and antidepressants and the possibility of interactions between them are relatively high. Objective The effects of acute and chronic administration of mianserin on the protective activity of valproate (VPA), carbamazepine, phenytoin, and phenobarbital were evaluated in the maximal electroshock in mice. Materials and methods Animals were subjected to electroconvulsions. Undesired effects were evaluated in the chimney test (motor impairment) and passive-avoidance task (memory deficit). Brain concentrations of antiepileptic drugs were assessed by immunofluorescence. Results When given acutely, mianserin (at doses greater than or equal to 20 mg/kg) significantly raised the electroconvulsive threshold. The antidepressant, at the subanticonvulsant doses, enhanced the anticonvulsant action of carbamazepine, phenytoin, and VPA. Mianserin administered chronically at 30 mg/kg significantly decreased the electroconvulsive threshold. In contrast to acute treatment, the antidepressant at subeffective doses diminished the anticonvulsant activity of VPA and phenytoin. Mianserin given either acutely or chronically did not affect the brain concentrations of antiepileptic drugs, so a pharmacokinetic contribution to the observed interactions is not probable. Acute and chronic treatment with mianserin and its combinations with antiepileptic drugs did not impair either motor coordination or long-term memory. Conclusion Although acute application of mianserin may potentiate the anticonvulsant action of some antiepileptics, its chronic administration can lead to the opposite effect. Therefore, as far as the presented results can be transferred to clinical conditions, the antidepressant therapy with mianserin should be limited or even avoided in epileptic patients.  相似文献   

15.
LY 300164 (5 mg/kg), a selective non-competitive antagonist of AMPA/kainate receptors, exerted a significant anticonvulsant effect in amygdala-kindled rats, being ineffective at 2 mg/kg. LY 235959 (1--5 mg/kg), a selective competitive antagonist of NMDA receptors, failed to modify behavioral and electrographic correlates of kindled seizures. Amygdala-kindled seizures were inhibited by conventional antiepileptics, their lowest effective doses were: 20 mg/kg for carbamazepine and phenobarbital, 50 mg/kg for diphenylhydantoin, and 100 mg/kg for valproate magnesium. The combined treatment of the AMPA/kainate antagonist (2 mg/kg) with valproate at sub-effective doses (25--75 mg/kg) resulted in the reduced severity and duration of kindled seizures. Also, a clear-cut protective effect was observed when LY 235959 was co-administered with diphenylhydantoin (40 mg/kg). Any interaction at the pharmacokinetic level can be excluded because neither LY 300164 nor LY 235959 interfered with the free plasma levels of valproate or diphenylhydantoin, respectively. The combination of the AMPA/kainate receptor antagonist (2 mg/kg) with valproate (75 mg/kg) did not impair performance of rats in the rotorod test (motor co-ordination) or passive-avoidance task (long-term memory). Conversely, the NMDA receptor antagonist alone or in combination with diphenylhydantoin, produced significant mnemonic deficits. The results indicate that AMPA/kainate receptor antagonists might be of importance as adjuvant antiepileptic drugs in patients treated with valproate. A possible use of NMDA receptor antagonists may be questionable.  相似文献   

16.
The aim of this study was the isobolographic evaluation of interactions between two enantiomers of losigamone, AO-242 [(+)-5(R)-alpha(S)-5-(2-chlorophenylhydroxymethyl)-4-methoxy-2(5H)-furanone] and AO-294 [(-)-5(S)-alpha(R)-5-(2-chlorophenylhydroxymethyl)-4-methoxy-2(5H)-furanone], and valproate, carbamazepine, phenytoin, or phenobarbital in the maximal electroshock test in mice. Both enantiomers interacted additively with conventional antiepileptic drugs at all studied fixed dose ratios (1:3, 1:1, 3:1). Furthermore, AO-242, AO-294 and antiepileptics applied alone, as well as combinations of enantiomers and antiepileptics did not affect motor performance in the chimney test. Significant impairment of long-term memory (passive-avoidance task) was noted only in the case of valproate alone, given at the dose equal to its median effective dose (ED(50)) against maximal electroshock. All other antiepileptics and their combinations with AO-242 or AO-294 did not impair memory of mice. Enantiomers did not affect the brain concentrations of antiepileptic drugs, indicating a pharmacodynamic nature of the observed interactions. In conclusion, the present results suggest both AO-242 and AO-294 as promising candidate drugs in the add-on therapy of refractory epilepsy.  相似文献   

17.
The present results refer to the action of three gonadal steroid antihormones, tamoxifen (TXF, an estrogen antagonist), cyproterone acetate (CYP, an antiandrogen) and mifepristone (MIF, a progesterone antagonist) on seizure phenomena in mice. TXF and CYP at their lowest protective dose in the electroconvulsive threshold test, enhanced the antiseizure efficacy of some antiepileptic drugs. TXF (20 mg/kg) potentiated the protective activity of valproate, diphenylhydantoin and clonazepam, but not that of carbamazepine or phenobarbital, against maximal electroshock-induced convulsions in female mice. CYP (40 mg/kg) enhanced the anticonvulsant action of valproate, carbamazepine, diphenylhydantoin and clonazepam, but not that of phenobarbital, against maximal electroshock in male animals. MIF failed to affect the electroconvulsive threshold or the efficacy of antiepileptic drugs in maximal electroshock. The effect of TXF or CYP upon the electroconvulsive threshold and on the action of antiepileptics was not reversed by sex steroid hormones (estradiol, testosterone, progesterone). However, the TXF-induced elevation of the electroconvulsive threshold was abolished by bicuculline, N-methyl-D-aspartic acid and kainic acid, and partially reversed by aminophylline, strychnine being ineffective in this respect. The action of CYP on the threshold for electroconvulsions was partially reversed by bicuculline and aminophylline. Both glutamatergic agonists and strychnine remained ineffective in this respect. Moreover, the action of TXF or CYP on the activity of antiepileptics was not influenced by strychnine, and reversed to various extents by the remaining convulsants. In contrast to maximal electroshock, none of the three antihormones affected the protective action of antiepileptic drugs against pentylenetetrazol-induced seizures in mice. Neither TXF nor CYP altered the free plasma levels of antiepileptic drugs, so a pharmacokinetic interaction is not probable. The combined treatment of the two antihormones with antiepileptic drugs, providing 50% protection against maximal electroshock, did not affect motor performance in mice, and did not result in significant long-term memory deficits. Our data indicate that steroid receptor-mediated events may be indirectly associated with seizure phenomena in the central nervous system and can modulate the protective activity of some conventional antiepileptic drugs.  相似文献   

18.
Nicotine administered acutely at subconvulsive dose of 4 mg/kg, significantly decreased the protective activity of valproate, carbamazepine, diphenylhydantoin, phenobarbital, topiramate and lamotrigine against maximal electroshock-induced tonic convulsions in mice. The obtained data may suggest that interaction between nicotine and antiepileptic drugs should be carefully considered as a cause of the therapeutic failure in epileptic patients.  相似文献   

19.
GYKI 52466 [1,4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine], a non-competitive AMPA/kainate receptor antagonist, administered i.p. at the dose of 5 mg/kg, exerted a significant anticonvulsant effect, as it decreased seizure and afterdischarge durations, being ineffective at 2 mg/kg. Subsequently, GYKI 52466 (2 mg/kg) was combined with antiepileptic drugs at doses ineffective in fully kindled rats. Co-administration of GYKI 52466 with clonazepam (0.003 mg/kg i.p.) resulted in a significant reduction of seizure severity (by 20%), seizure duration (by 31%) and afterdischarge duration (by 24%). Co-injection of GYKI 52466 with valproate (75 mg/kg i.p.) also resulted in the respective 8%, 16%, and 17% reductions of the three studied seizure parameters. No protection was observed when GYKI 52466 was co-administered with carbamazepine (20 mg/kg i.p.), phenobarbital (20 mg/kg i.p.), or diphenylhydantoin (40 mg/kg i.p.). Combinations of GYKI 524662 with antiepileptic drugs did not cause any significant motor (rotarod test) or long-term memory deficits (passive avoidance task). Only GYKI 52466 administered alone at 5 mg/kg, caused a significant impairment of retention in amygdala-kindled rats. The interaction at a pharmacokinetic level, at least in case of the combination of GYKI 52466 with valproate, can be excluded because GYKI 52466 did not interfere with the free plasma level of valproate. These results give further support to the idea of a potential clinical benefits of the combined treatment of AMPA/kainate receptor antagonists with some antiepileptic drugs.  相似文献   

20.
The present study was designed to investigate the effects of fluoxetine (FXT), a selective serotonin reuptake inhibitor, on the effect of antiepileptic drugs (AEDs) in the maximal electroshock seizure (MES) model in mice. FXT at the doses of 25, 20 and 15 mg/kg significantly increased the electroconvulsive threshold. The antidepressant applied at the lower doses (10, 5 and 2.5 mg/kg) did not influence the threshold. Moreover, FXT (at the highest subprotective dose of 10 mg/kg) increased the anticonvulsive potential of carbamazepine (CBZ), diphenylhydantoin (DPH), valproate (VPA) and phenobarbital (PB), producing a dose-related decrease in their ED50 values against MES. Nevertheless, pharmacokinetic events may be involved in the interaction between FXT and PB or CBZ, since the antidepressant raised the total brain concentration of the two antiepileptics. FXT in combination with AEDs did not influence the motor performance in the chimney test and long-term memory. In conclusion, the data suggest that FXT modulates seizure processes in the brain and may be advantageous in the treatment of epilepsy in depressed patients, improving the seizure control in epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号