首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Serotonin (5-HT) immunoreactive (-ir) profiles within the isthmo-optic nucleus (ION) of the centrifugal visual system (CVS) were studied in the pigeon using light microscopic immunohistofluorescent and electron microscopic immunocytochemical pre-embedding techniques. The brainstem origin of the 5-HT input upon the ION was determined by combining 5-HT immunohistofluorescence (FITC) and retrograde transneuronal tracing after intraocular injection of Rhodamine beta-isothiocyanate. The light microscopic results showed that 5-HT endings were mainly localised within the neuropillar zones of the ventral ION. The 5-HT-ir cell bodies, belonging to a lateral extension of the dorsal raphe system, were observed within the same region as the centrifugal ectopic neurons (EN) underlying the ION and some displayed dendritic processes which penetrated the nucleus. Double-labeled neurons, representing 5-HT-ir afferents to the ION, were identified only within the n. linearis caudalis region of the ventral raphe. The electron microscopic results confirmed the presence of 5-HT-ir dendritic processes within the ventral part of the nucleus and showed that they were contacted by axon terminals belonging to intrinsic interneurons. The functional organisation of the ION and the possible contribution of serotonergic raphe afferents and efferents are discussed in relation to present hypotheses linking the avian CVS to mechanisms of visual attention.  相似文献   

2.
Although the avian retina has long been known to receive projection from a midbrain nucleus, the isthmo-optic nucleus (ION), the output of its target cells has remained obscure. We labeled the isthmo-optic (IO) terminals in the Japanese quail retina, by using anterograde transport of fluorescent tracer injected into the ION, and then labeled target cells for these terminals by means of intracellular tracer injection under direct microscopic observation. Somata of the IO target cells (IOTCs) lie in the innermost zone of the inner nuclear layer of the ventral half of the retina and have no dendrites but an axon. The axons run in the inner plexiform layer (IPL) for up to 6 mm and terminate densely in a round or elliptical terminal field, about 90-290 microm in diameter, of the outermost zone of the IPL. Longer axons (> 2 mm) extend dorsally, but shorter ones (< 1 mm) project ventrally or horizontally, so the terminals are distributed widely in both dorsal and ventral halves of the retina. The IOTCs cannot be classified into any of the five conventional major classes of retinal cells, including amacrine cells, and are thought to be "slave" neurons whose output is controlled by the neurons in the brain. Topographic separation between input to and output from the IOTCs by the axons might be essential for the overall topographic organization of the centrifugal visual system in birds.  相似文献   

3.
Previous work has demonstrated that layer V pyramidal cells of primary auditory cortex project directly to the cochlear nucleus. The postsynaptic targets of these centrifugal projections, however, are not known. For the present study, biotinylated dextran amine, an anterograde tracer, was injected into the auditory cortex of rats, and labeled terminals were examined with light and electron microscopy. Labeled corticobulbar axons and terminals in the cochlear nucleus are found almost exclusively in the granule cell domain, and the terminals appear as boutons (1–2 μm in diameter) or as small mossy fiber endings (2–5 μm in diameter). These cortical endings contain round synaptic vesicles and form asymmetric synapses on hairy dendritic profiles, from which thin (0.1 μm in diameter), nonsynaptic “hairs” protrude deep into the labeled endings. These postsynaptic dendrites, which are typical of granule cells, surround and receive synapses from large, unlabeled mossy fiber endings containing round synaptic vesicles and are also postsynaptic to unlabeled axon terminals containing pleomorphic synaptic vesicles. No labeled fibers were observed synapsing on profiles that did not fit the characteristics of granule cell dendrites. We describe a circuit in the auditory system by which ascending information in the cochlear nucleus can be modified directly by descending cortical influences. © 1996 Wiley-Liss, Inc.  相似文献   

4.
In the nucleus raphe dorsalis of the cat, an electron microscopic immunocytochemistry method was used to identify the fine structure of serotoninergic dendritic profiles and axon terminals analyzed in serial sections. Two classes of serotoninergic dendrites were distinguished in the nucleus. The first class was constituted by conventional serotonin (5-HT) dendrites that were contacted by unlabeled axon terminals containing differing populations of synaptic vesicles. The second class consisted of serotoninergic dendrites that contained vesicles in their dendritic shafts. Such 5-HT dendrites were further subdivided into two groups according to their synaptic contacts. In some 5-HT vesicle-containing dendrites, the vesicles were densely packed in small clusters and were associated with a well-defined synaptic specialization. These dendrites were classified as serotoninergic presynaptic dendrites and established synaptic contacts with unlabeled and labeled dendrites and were contacted by unlabeled axon terminals. In other 5-HT vesicle-containing dendrites, extensive serial section examination showed that the vesicles could be observed near the membrane but were never found to be associated with any synaptic membrane specialization. Serotoninergic axon terminals that were presumed to be recurrent collaterals of 5-HT neurons were present in the nucleus. Some of them were observed in synaptic contact with dendrites or dendritic protrusions whereas others did not exhibit synaptic specializations. The existence of serotoninergic dendrodendritic synaptic contacts and axon terminals suggests direct local interactions between serotoninergic neurons within the nucleus raphe dorsalis.  相似文献   

5.
In an attempt to contribute to the current knowledge of the brainstem reticular formation synaptic organization, the ultrastructure and distribution of synaptic terminal profiles on neurons in the ventral part of the oral pontine reticular nucleus (vRPO), the rapid eye movement (REM) sleep-induction site, were studied quantitatively. Terminals with asymmetric contacts and rounded vesicles were classified according to vesicle density as type I or II (high or low density, respectively). The area, apposed perimeter length, and mitochondrial area of type I terminals, on average, were significantly smaller than those of type II terminals. Type III and IV terminals had symmetric contacts and oval and/or flattened vesicles; type III terminals formed synapses between them and on initial axons. Type V and VI terminals showed characteristics intermediate to those of asymmetric and symmetric synapses. Interestingly, some terminal features were related to both terminal area and postsynaptic dendritic diameter. The percentages of different synapses sampled on somata were as follows: asymmetric synapses (usually formed by type II terminals; mean +/- S.D.), 26.4% +/- 3%; symmetric synapses, 46.7% +/- 5.2%; and intermediate synapses, 26.9% +/- 6.1%. The percentages of different synapses sampled on dendrites were asymmetric synapses, 62.1% +/- 9%; symmetric synapses, 25.6% +/- 8.1%; and intermediate synapses, 12.3% +/- 1.7%. Comparison between large- and small-diameter dendrites revealed that the percentages of symmetric synapses and type II terminals decreased, whereas the percentages of type I terminals increased as postsynaptic dendritic diameters became smaller. Synaptic density was approximately four times lower on somata than on dendrites. The vRPO synaptic organization reflects some patterns that are similar to those found in other regions of the central nervous system as well as specific synaptic patterns that are probably related to its functions: the generation and maintenance of REM sleep and the control of eye movement or limb muscle tone.  相似文献   

6.
We have carried out an ultrastructural study to determine the characteristics and distribution of glutamate-containing constituents of the anterodorsal (AD) and anteroventral (AV) thalamic nuclei in adult rats. We used a polyclonal antibody to glutamate and a postembedding immunogold detection method in animals in which the neurons of AD/AV projecting to the cortex had been retrogradely labelled and the terminals of corticothalamic afferents anterogradely labelled by injection of cholera toxin-horseradish peroxidase (HRP) into the retrosplenial granular cortex. The heaviest immunogold labelling was over axon terminals 0.42 to 2.2 microm in diameter containing round synaptic vesicles and establishing Gray type 1 (asymmetric) synaptic contact (type 1 terminals) on HRP-labelled or non-labelled dendrites. Mean gold particle densities over such terminals were 3-4 times higher than the densities over the dendrites to which they were presynaptic and 5-6 times higher than over terminals establishing Gray type 2 (symmetric) synaptic contacts (type 2 terminals). Gold particle densities over neuronal cell bodies and dendrites and over a subpopulation of myelinated axons were intermediate between the densities over type 1 and type 2 terminals. In adjacent serial sections immunoreacted for gamma aminobutyric acid, type 2 terminals were heavily immunolabelled whereas type 1 terminals and other profiles with moderate gold particle densities after glutamate immunoreaction displayed very low labelling. A subpopulation of small type 1 axon terminals (up to 1 microm diameter) contained HRP reaction product identifying them as cortical in origin; they contacted small dendritic profiles (most <1 microm diameter) many of which also contained HRP reaction product. We conclude that terminals of the corticothalamic projection from retrosplenial granular cortex to AD/AV are glutamatergic and innervate predominantly distal dendrites of thalamocortical projection neurons.  相似文献   

7.
The morphology and distribution of serotonin-containing axon terminals in the rat hypoglossal nucleus (XII) was investigated immunocytochemically at the electron microscopic level. Serotonin-positive profiles were found throughout all regions of XII and included unmyelinated axons, varicosities and axon terminals. Most labeled profiles (68.1%) were nonsynaptic unmyelinated axons and varicosities, while synaptic profiles, ending on dendrites and somata, were seen less frequently (28.7%). The majority of labeled axon terminals (76.9%) ended on small-to-medium-sized dendrites. Most axodendritic terminals contained small, round agranular vesicles (20-55 microns), several large (60-100 microns) dense core vesicles, and were associated with a pronounced asymmetric postsynaptic specialization. By contrast, labeled axosomatic terminals were seen less often than those ending on dendrites (23.0%). Axosomatic terminals typically contained small, round, agranular and large dense core vesicles and were associated with a symmetric or no postsynaptic specialization. These results provide the structural substrates for elucidating the functional role of serotonin in tongue control.  相似文献   

8.
The serotoninergic (5-hydroxytryptamine, 5-HT) innervation of the rat ventral tegmental area (VTA) was examined by light and electron microscopic radioautography following intraventricular infusion of [3H]5-HT. The [3H]5-HT labeled processes were characterized with respect to their regional distribution, ultrastructure and relationships with all neurons, including dopaminergic neurons, identified in the same sections using immunocytochemistry for the localization of the catecholamine-synthesizing enzyme, tyrosine hydroxylase (TH). By light microscopy, [3H]5-HT labeled axons and axonal varicosities were detected throughout the interfascicular nucleus and ventral portion of the VTA. By electron microscopy, [3H]5-HT-labeled axons were found to be mainly small and unmyelinated, although a few showed several lamellae of myelin. The labeled varicosities measured 0.6 μm in mean diameter and contained many small, round or flattened agranular vesicles and a few large granular vesicles. More than 18% showed synaptic specializations in single thin sections. Most of these synapses were asymmetric and established on dendritic shafts. Based on the probability of seeing such synaptic specializations in single thin sections, it was estimated that as many as 50% of the labeled 5-HT terminals formed synaptic contacts in the VTA. In dually labeled light microscopic sections, [3H]5-HT-accumulating processes often appeared adjacent to TH-immunoreactive perikarya and proximal dendrites. Electron microscopy demonstrated that terminals with radioautographic labeling for 5-HT formed conventional synapses both with TH-labeled and unlabeled dendrites in the VTA. Many additional 5-HT terminals lacking recognizable synaptic densities were directly apposed to TH-labeled dendrites and were isolated from the rest of the neuropil by thin glial leaflets. These results suggest that 5-HT neurons innervate both dopaminergic and non-dopaminergic neurons in the VTA and may influence mesocortical and mesolimbic efferent systems through synaptic as well as non-synaptic mechanisms.  相似文献   

9.
This study examines the termination pattern of axons from the medial mammillary nucleus within the ventral tegmental nucleus of Gudden (TV) in rats by using anterograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) and visualized with tetramethylbenzidine. The neuropil of TV contains three classes of axodendritic terminals, that is, terminals containing round, flat, and pleomorphic synaptic vesicles. These types make up 55.6%, 26.1%, and 18.3%, respectively, of all normal axodendritic terminals. Injection of WGA-HRP into the medial mammillary nucleus permits ultrastructural recognition of anterogradely labeled terminals within the TV. More than 80% of the labeled terminals contain round synaptic vesicles and form asymmetric synaptic contacts, whereas about 16% contain flat synaptic vesicles with symmetric synaptic contacts. There are a few labeled terminals with pleomorphic vesicles and only a few axosomatic terminals. Almost all labeled terminals are small, having diameters of less than 1.5 microns. Compared with the distributions of normal and labeled terminals with round vesicles, there is an increase of the percentage of labeled terminals with round vesicles on the intermediate dendrites (1-2 microns diameter) and a decrease on the distal dendrites (less than 1 micron diameter). Anterogradely labeled axon terminals often contact retrogradely labeled dendrites. These results suggest that the medial mammillary neurons send mainly excitatory as well as a few inhibitory inputs to the dendrites of TV and have direct reciprocal contacts with the TV neurons.  相似文献   

10.
Using a modification of the peroxidase-antiperoxidase technique, serotonin immunoreactivity was localized at the ultrastructural level in the nucleus of the solitary tract of the cat. Structures containing serotonin immunoreactivity included unmyelinated axons, varicosities (0.5 to 2 micrometers in diameter), and synaptic terminals. The serotonin-containing synaptic terminals were found less frequently than axons or varicosities. Within unmyelinated axons and varicosities, the immunoreactivity was associated mainly with large granular vesicles (80 to 150 nm). While large granular vesicles were found in all immunoreactive structures, greater numbers were observed in axons and nonsynaptic varicosities. Serial sections of several nonsynaptic serotonin-immunoreactive varicosities indicated the lack of synaptic specializations associated with these structures. In a typical section, only one or two granular vesicles were in synaptic terminals which contained numerous small clear vesicles. Serotonin-immunoreactive terminals formed asymmetrical contacts with dendrites and spines. No synaptic contacts involving immunoreactive terminals were found on cell bodies or other axonal structures. Serotonin-containing neuronal perikarya within the nucleus of the solitary tract were never observed. The abundance of nonsynaptic varicosities containing large granular vesicles suggests a possible neurohumoral role for serotonin within the feline nucleus of the solitary tract. This is discussed in relation to previous reports concerning the paucity of genuine synaptic contacts involving serotonin in other regions of the central nervous system. The presence of serotonin-immunoreactive terminals in the nucleus of the solitary tract also suggests its function as a putative neurotransmitter.  相似文献   

11.
The basolateral nuclear complex of the amygdala (BLC) receives a dense serotonergic innervation that appears to play a critical role in the regulation of mood and anxiety. However, little is known about how serotonergic inputs interface with different neuronal subpopulations in this region. To address this question, dual-labeling immunohistochemical techniques were used at the light and electron microscopic levels to examine inputs from serotonin-immunoreactive (5-HT+) terminals to different neuronal subpopulations in the rat BLC. Pyramidal cells were labeled by using antibodies to calcium/calmodulin-dependent protein kinase II, whereas different interneuronal subpopulations were labeled by using antibodies to a variety of interneuronal markers including parvalbumin (PV), vasoactive intestinal peptide (VIP), calretinin, calbindin, cholecystokinin, and somatostatin. The BLC exhibited a dense innervation by thin 5-HT+ axons. Electron microscopic examination of the anterior basolateral nucleus (BLa) revealed that 5-HT+ axon terminals contained clusters of small synaptic vesicles and a smaller number of larger dense-core vesicles. Serial section reconstruction of 5-HT+ terminals demonstrated that 76% of these terminals formed synaptic junctions. The great majority of these synapses were symmetrical. The main targets of 5-HT+ terminals were spines and distal dendrites of pyramidal cells. However, in light microscopic preparations it was common to observe apparent contacts between 5-HT+ terminals and all subpopulations of BLC interneurons. Electron microscopic analysis of the BLa in sections dual-labeled for 5-HT/PV and 5-HT/VIP revealed that many of these contacts were synapses. These findings suggest that serotonergic axon terminals differentially innervate several neuronal subpopulations in the BLC.  相似文献   

12.
Although the excitatory neurotransmitter glutamate is known to be present in the cat superior colliculus (SC), the types of synapses that contain glutamate have not been examined. We, therefore, studied the ultrastructure of synaptic profiles labeled by a glutamate antibody by using electron microscopic postembedding immunocytochemistry. In addition, unilateral aspiration lesions of areas 17–18 were made at 5–28 days before death in order to determine whether degenerating terminals from visual cortex were glutamate immunoreactive (Glu-ir). Three types of axon terminal were glu-ir: 1) those containing large, round synaptic vesicles and pale mitochondria, characteristic of retinal terminals (RT profiles); 2) those containing small, round synaptic vesicles and dark mitochondria (RSD profiles); and 3) those containing large, round synaptic vesicles and dark mitochondria (RLD profiles). Measures of mean gold particle density revealed that RT, RSD, and RLD profiles had similar average grain densities (11.3–12.7 particles/unit area). Other labeled profile types included cell bodies, large-calibre dendrites, and myelinated axons. Axon terminals containing flattened synaptic vesicles and vesicle-containing presynaptic dendrites, both of which contain γ-aminobutyric acid (GABA), had many fewer gold particles (3.6 and 4.8 mean particles/unit area, respectively). Following unilateral removal of visual cortex, normal RSD terminals were observed infrequently in the SC ipsilateral to the lesion. Synaptic terminals in the initial stages of degeneration were heavily labeled by the glutamate antibody, as were axon terminals and myelinated axons undergoing hypertrophied or neurofilamentous degeneration. These results show that both major sensory afferents to the superficial layers of cat SC contain glutamate—RT terminals from the retina and RSD terminals from visual cortex. The origin of RLD terminals is unknown. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The thalamic reticular nucleus has been shown to receive cholinergic innervation from both the nucleus basalis of Meynert in the forebrain and the pedunculopontine and laterodorsal tegmental nuclei in the brainstem (Steriade et al.: Brain Res. 408:372-376, '87; Levey et al.: Neurosci. Lett. 74:7-13, '87). Relatively dense populations of choline acetyltransferase-(ChAT) immunoreactive axons and terminallike varicosities have been shown to be distributed throughout this nucleus (Levey et al.: J. Comp. Neurol. 257:317-332, '87). In this study, the ultrastructure of ChAT-immunoreactive axons and of their synaptic terminals in the reticular nucleus was examined in the electron microscope. All ChAT-immunoreactive axonal profiles in the reticular nucleus were presynaptic; the postsynaptic elements were exclusively dendritic profiles; and no axo-axonic or axosomatic contacts from labelled axons were observed. Most ChAT-immunoreactive synaptic contacts were made by profiles less than 0.25 micron in minor diameter. Single ChAT-immunoreactive axons made synaptic contact with several dendritic profiles as the axons were followed through serial sections. These results suggest that the cholinergic innervation of the reticular nucleus will modulate the function of reticular neurons by synapsing onto the dendrites of its neurons without direct effect on the corticothalamic and thalamocortical terminals which also innervate the reticular nucleus.  相似文献   

14.
The isthmo-optic nucleus of the centrifugal system in birds receives primarily input from the ipsilateral tectum and projects to the contralateral retina. The present study using brain slices and microiontophoresis shows that synaptic transmission from the tectum to the centrifugal nucleus in pigeons is excitatory. About 75% of tecto-isthmo-optic fibers are glutamatergic, mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid but not N-methyl-D-aspartate-receptors, and 25% of others may use nitric oxide as a transmitter or modulator. On the other hand, about 60% of isthmo-optic cells receive glutamatergic afferents, 20% receive nitric oxidergic afferents, and 20% of others receive both glutamatergic and nitric oxidergic afferents from the tectum. In the last group, it is more likely that both glutamate and nitric oxide may co-release from the same tecto-isthmo-optic terminals. All the isthmo-optic cells examined in the present study also receive gamma-aminobutyric acid (GABA)ergic afferents via GABA(A) and GABA(B) receptors probably from some extratectal structures.  相似文献   

15.
The anterograde transport of Phaseolus vulgaris-leucoagglutinin (PHA-L) was combined with postembedding immunocytochemistry for gamma-aminobutyric acid (GABA) to study the topography, the synaptic organization and the neurotransmitter content of the pallidosubthalamic projection in the rat. After injections of PHA-L in different parts of the globus pallidus a rich plexus of anterogradely labelled fibres and terminals was found in the ipsilateral subthalamic nucleus. The immunoreactive elements were distributed according to a mediolateral and rostrocaudal topography. Injections of PHA-L restricted to the lateral two-thirds of the globus pallidus gave rise to a massive anterograde labelling confined to the lateral half of the subthalamic nucleus. On the other hand, injections of PHA-L strictly confined to the medial part of the globus pallidus resulted in anterograde labelling that occupied the ventromedial pole of the subthalamic nucleus. In some cases a few retrogradely labelled cells were found in the subthalamic nucleus after PHA-L injections in the globus pallidus. The perikarya and the primary dendrites of these labelled cells were sometimes surrounded by anterogradely labelled terminals suggesting a close reciprocal connection between the globus pallidus and the subthalamic nucleus. Electron microscopic analysis of the PHA-L-labelled terminals revealed that they contain many mitochondria, numerous small round or slightly pleomorphic vesicles and occasionally one or two large dense core vesicles. They form symmetrical synaptic contacts predominantly with the proximal dendrites (39%) and less frequently with the perikarya (31%) and the distal dendrites (30%) of the subthalamic cells. Quantitative measurements showed that the pallidosubthalamic varicosities have a diameter ranging from 0.7 to 4.5 microm and a mean cross-sectional area of 0.79 +/- 0.26 microm2 (Mean +/- SD). Postembedding immunocytochemistry for GABA revealed that the PHA-L-immunoreactive pallidosubthalamic axon terminals display GABA immunoreactivity. The results of our study demonstrate that the pallidosubthalamic projection is organized according to a mediolateral and rostrocaudal topography and that the proximal dendrites of the subthalamic cells are the major targets of the GABA-immunoreactive pallidosubthalamic terminals. This suggests that the globus pallidus exerts a powerful control over the subthalamic cells through an inhibitory GABAergic pathway.  相似文献   

16.
The parvicellular and magnocellular divisions of the red nucleus of the old world monkey, Macaca fascicularis, were analyzed at an electron microscopic level to examine the morphology of the synaptic profiles terminating on rubral neurons and to categorize them by their individual characteristics. The parvicellular division, or anterior two-thirds of the nucleus, is composed of small (10-15 microns) and medium-size (20-30 microns) cells, which are uniformly distributed with high packing density throughout this portion of the nucleus. These cells have invaginated nuclei and are often indented by blood vessels and glial cell somata (satellite cells) that lie in close proximity. The magnocellular portion, occupying the caudal one-third of the nucleus, is composed of an additional population of large cells, ranging from 50-90 microns in diameter, which often contain prominent lipofuscin granules and are frequently indented by blood vessels. Satellite glial cells are not a prominent feature in the magnocellularis portion of the nucleus. The large cells are separated one from the other by fields of myelinated axons either coursing through the nucleus or projecting to and from the nucleus itself. Although the divisions of the nucleus in the Macaca fascicularis are spatially distinct, each possesses a morphological similarity in regard to the categories of synaptic profiles seen at the electron microscopic level. These synaptic profiles are classified as follows: large terminals containing numerous, predominantly rounded vesicles (LR), which can often be seen to form the central profile in a synaptic glomerular arrangement; terminals of similar size with predominantly rounded vesicles but with a pale axoplasmic matrix (LRP); small profiles with rounded vesicles (SR); profiles containing granular dense-cored vesicles (DCV); profiles with numerous flattened vesicles (F); profiles containing pleomorphic vesicles (PL), some of which can be interpreted as presynaptic dendrites (PSD) because they are seen to be postsynaptic and contain ribosomes; and profiles with rounded synaptic vesicles, which are associated with subsynaptic Taxi bodies (T). Most of the various synaptic profile types were found to have similar distributions on the dendritic arbors of rubral neurons in both divisions of the nucleus. However, the LRP-type terminal predominates on the cell bodies and proximal dendrites of the large neurons in magnocellularis. Unlike other regions in the nervous system, F type terminals are rarely seen to contact neuronal somata. This study provides a basis for future experimental studies of afferents to the nucleus in this species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Neurons in the ventrolateral (VL) subdivision of rat trigeminal nucleus oralis (Vo) have most of their dendritic arbors confined within this region. This study examines the morphology and synaptic connections of a population of myelinated primary trigeminal axons that arborize within VL and are in a position to provide input directly to VL neurons. Primary axons were visualized for light and electron microscopic analysis by injecting 30% horseradish peroxidase (HRP) in 2% dimethylsulfoxide (DMSO) into the sensory root of the trigeminal nerve and allowing 24-36 hours for the anterograde transport of HRP into the terminal axonal arbors. This population is characterized by its cone-shaped terminal arbors, which generate many axonal endings (2-8 micron in diameter) along unmyelinated terminal strands. These arbors arise from collaterals emanating from thinly myelinated (2-5 micron in diameter) parent branches descending in the spinal V tract, which, on the basis of their size, are considered to be small myelinated (A sigma) primary trigeminal axons. HRP-labeled P endings belonging to this population of primary axons are scalloped, filled with spherical to ovoid (40-70 nm in diameter) synaptic vesicles, and lie centrally in glomeruli where they make asymmetrical axodendritic synapses on dendritic shafts and spine heads. It is at these synapses that this population of primary trigeminal axons is probably transferring its input directly to the dendritic arbors of VL neurons. The dendritic shafts and spine heads also receive symmetrical to intermediate axodendritic synapses from endings containing flattened (70 X 29 nm) synaptic vesicles. These terminals also establish axo-axonic synapses on the P ending. Other synaptic components found less often in the glomeruli include small terminals containing oval (14-23 nm) synaptic vesicles that establish symmetrical to intermediate synapses on the P ending, boutons containing pleomorphic (35-80 nm) synaptic vesicles that form symmetrical to intermediate synapses on the P ending as well as on dendritic shafts, and small peripheral endings containing round (20-40 nm) synaptic vesicles that establish asymmetrical synapses on dendritic shafts.  相似文献   

18.
The development of corticogeniculate synapses was studied in 16 cats ranging in age from newborn to adult. Tritiated proline was injected into areas 17 and 18 of the visual cortex in order to label corticogeniculate terminals in lamina A of the dorsal lateral geniculate nucleus. The labeled terminals were then characterized ultrastructurally using electron microscopic autoradiography. Labeled synaptic profiles were found in newborn kittens, indicating that corticogeniculate connections are present in the cat at birth. Morphologically, however, many corticogeniculate endings in newborn and 1-week-old kittens are different from those in older animals in that they do not form well-defined terminal boutons, and their synaptic vesicles are often loosely packed. In kittens 2 weeks of age and older, corticogeniculate axons end as RSD terminals exclusively; i.e., they are relatively small in size and contain round, densely packed synaptic vesicles, and occasionally an electron-dense mitochondrion (Guillery: Z. Zellforsch. 99: 1-38, '69). However, not all RSD terminals in the LGN represent input from visual cortex. Injections of 3H-proline into the mesencephalic reticular formation also label RSD terminals selectively in the lateral geniculate nucleus. At all ages corticogeniculate axons make synaptic contacts with dendrites exclusively, and they are always presynaptic. This suggests that the essential pattern of corticogeniculate synapses is formed early and is not altered during subsequent development. Quantitatively, there is no significant change in the size of corticogeniculate terminals or their synaptic vesicles in kittens 2 weeks of age (the youngest measured) and older. In contrast, the synaptic contact lengths of these terminals decreases about 28% between 2 and 12 weeks. During this same period there is approximately a twofold increase in the density of corticogeniculate terminals in the neuropil of lamina A. Since the volume of neuropil in lamina A increases almost fourfold between 2 and 12 weeks, the doubling of corticogeniculate terminal density represents about an eightfold increase in terminal number. After 12 weeks there is little change in the length, density, or number of corticogeniculate synaptic contacts, which suggests that the morphological development of the corticogeniculate pathway is essentially complete by this age.  相似文献   

19.
A quantitative electron microscopic analysis of glutamate (GLU) immunoreactivity using the post-embedding immunogold technique was carried out within the isthmo-optic nucleus (ION) of the pigeon centrifugal visual system (CVS). Measurements were performed in each of eight different categories of axon terminals, including those that were GABA-immunoreactive (-ir), considered representing control profiles and identified using a single or double-label immunocytochemical procedure. The results demonstrated that the glutamate immunogold particle densities for both mitochondrial and vesicular pools and for total surface area of bouton profiles were significantly higher in P1a, P1b and P2b terminals and not significantly different in P4 and P5 terminals compared to those recorded in control GABA-ir terminals (P2a, P2c, P3). Moreover, the values measured in GLU-ir positive profiles were all significantly higher than in either P4 or P5 terminals. The results suggest that tectal neurons, which provide the main input to the ION cells, are either inhibitory GABA-ir possibly associated with P2c and/or P3 terminals or excitatory GLU-ir via P1a, P1b and P2b terminals. Such differential effects of tectal afferents may be the basis for the modulation of centrifugal activity and consequently of end target retinal ganglion cell responses. The data are relevant to hypotheses implicating the avian CVS in mechanisms of selective enhancement of visual attention to either novel or meaningful stimuli within the visual field.  相似文献   

20.
Unmyelinated sensory axons in the sacral spinal cord may play a role in bladder reflexes under certain pathological conditions. Previous data suggested vasoactive intestinal polypeptide (VIP) might be contained exclusively in sensory C-fibers, some of which innervate the bladder. This study was undertaken to describe the morphology of these VIP fibers in the sacral cord of the cat. VIP immunoreactivity was confined to unmyelinated axons observed at several levels of the sensory pathway including the dorsal root ganglia, dorsal roots, Lissauer's tract, and the lateral collateral pathway. A combination of light and electron microscopic observations showed VIP-immunoreactive fibers with labeled varicosities and synaptic terminals in laminae I, IIo, V, VII, and X. VIP-immunolabeled varicosities had a mean diameter of 1.6 microm (range = 0.11-7.4 microm, S.D. = 1.01, n = 311) with a small percentage (8%) being relatively large (3-7.4 microm). VIP varicosities contained a mixture of small clear vesicles (CLV) and large dense core vesicles (LDV). Although most varicosities contained a moderate number of LDVs (14.86 LDVs/microm2), some varicosities contained a large number of LDVs, whereas others contained very few. Varicosities that possessed synaptic specializations were classed as terminals and were divided into three morphological classes. Two of these resembled Gray's Type I terminal, whereas a third was similar to the Gray's Type II terminal. There was no consistent relationship between vesicle content of the terminal and the type of synaptic contact it possessed. This study shows that in the sacral spinal cord of the cat, VIP terminals originate only from C-fibers, terminate primarily in laminae I and V, and exhibit a variety of morphologies consistent with heterogeneous origins and functions of the lower urinary tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号